
Archive for Mathematical Logic manuscript No.
(will be inserted by the editor)

Dieter Spreen

Strong Reducibility of Partial Numberings

– c© Springer-Verlag 2004

Abstract. A strong reducibility relation between partial numberings is introduced which is such that the reduction
function transfersexactlythe numbers which are indices under the numbering to be reduced into corresponding
indices of the other numbering. The degrees of partial numberings of a given set with respect to this relation form
an upper semilattice.

In addition, Ershov’s completion construction for total numberings is extended to the partial case: every partially
numbered set can be embedded in a set which results from the given set by adding one point and which is enumerated
by a total and complete numbering. As is shown, the degrees of complete numberings of the extended set also form
an upper semilattice. Moreover, both semilattices are isomorphic.

This is not so in the case of the usual, weaker reducibility relation for partial numberings which allows the
reduction function to transfer arbitrary numbers into indices.

1. Introduction

Numberings have turned out to be an important tool for lifting computability notions to abstract struc-
tures. In the development of numbering theory mostly total numberings have been considered. (For an
overview of at least an important part of this development see [3–7].) This can be done as long as purely
algebraic structures are considered. Canonical numberings of topological spaces, however, are only par-
tial maps, in general. Moreover, as has been shown by the author [9], they are necessarily so. They are
total, only in case that the space has sufficiently many finite points, i.e., points with a finitely based
neighbourhood filter.

Total numberings are usually compared by the reducibility preorder. The collection of the induced
equivalence classes, called degrees, is known to be an upper semilattice. It is easy to lift the reducibility
relation to the case of partial numberings. As has been shown in a recent paper [2], these numberings
and their degrees behave very differently from the total case. Their collection is now a distributive
lattice. Moreover, a computable function can reduce several such numberings to one numbering. As a
consequence of this, degrees are uncountable in the partial case.

In the generalised reducibility preorder the reduction function is a partial computable map that is
at least defined for all indices of the numberingν to be reduced and maps them to fitting indices of
the second numberingκ. But it may also map numbers which do not appear among the indices ofν to
indices ofκ. Thus, if we know that some function value is an index of some point under numberingκ,
we cannot conclude that there is a corresponding argument which is an index of the point with respect
to numberingν.

In this note we strengthen the reducibility preorder for partial numberings so that onecanreason this
way. Note that the strengthened reducibility has already been considered in [3,9]. With respect to this
preorder partial numberings behave as in the total case: the collection of degrees is an upper semilattice
and the numberings given by the infimum operation defined for the weaker reducibility relation in [2],
are no longer infima with respect to the stronger relation.
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Ershov [3] demonstrated that every totally numbered setS can be embedded in a setŜ enumerated
by a complete numbering. To this end a special element is added to the given setS. In this note we
will see that the construction works also in the case of partial numberings. By this way, a total complete
numbering of the extension̂S of S is assigned to each numbering ofS. As will be shown, the degrees of
complete numberings of̂S also form an upper semilattice. Note that in general it is not a sub-semilattice
of the upper semilattice of the degrees of all total numberings ofŜ: the operations of taking least upper
bounds do not necessarily coincide. Moreover, we will prove that the upper semilattice of degrees of
partial numberings ofS with respect to the strengthened reducibility relation is isomorphic to the upper
semilattice of degrees of complete numberings ofŜ, thus showing that with respect to this reducibility
partial numberings behave like the total ones.

The paper is organised as follows. Section 2 contains basic definitions and results. In Section 3,
Ershov’s completion construction is extended to partial numberings and in Section 4 some properties
of the operator which maps a partial numbering to its completion are derived. Section 5 discusses the
relationship between the upper semilattice of the degrees of partial numberings of a setS and the upper
semilattices of the degrees of total and/or complete numberings of the extended setŜ. Final remarks are
made in Section 6.

2. Basic definitions and results

In what follows, let〈 , 〉 : ω2 → ω be a recursive pairing function with corresponding projectionsπ1

andπ2 such thatπi(〈a1, a2〉) = ai. Furthermore, letP (n) (R(n)) denote the set of alln-ary partial
(total) computable functions and letϕ be a G̈odel numbering ofP (1). We letϕ(a)↓ ∈ C mean that the
computation ofϕ(a) stops with value inC. Setu(〈m,n〉) = ϕm(n) and fora ∈ ω, let u′(a) be the first
c ∈ ω found in some dovetailing computation ofu with u(c) = a. Thenu′ is computable and a right
inverse ofu. Sinceu is surjective,u′ is even total.

Definition 1. LetS be a countable set. A(partial) numberingν of S is a surjective partial mapν : ω ⇀
S with domaindom(ν).

The value ofν at n ∈ dom(ν) is denoted, interchangeably, byνn andν(n). For a givens ∈ S,
anyn ∈ dom(ν) with ν(n) = s is calledindexof s. In case thatdom(ν) = ω we say thatν is a total
numbering. The set of all partial numberings of the setS is denoted byNump(S) andNum(S) stands
for the set of all total numberings ofS.

Among the total numberings of setS those being complete will be of special importance for us.

Definition 2. LetS be a countable set. A total numberingν of S is complete, if there is some element⊥
in S so that for everyp ∈ P (1) there is someg ∈ R(1) with

ν(g(a)) =

{
ν(p(a)) if a ∈ dom(p),
⊥ otherwise.

The distinguished element⊥ is calledspecialelement. LetCNum⊥(S) be the set of all complete
numberings ofS that have⊥ as special element.

Numbered sets form a category. Morphisms are the effective maps, where for two numbered sets
(S, ν) and (S′, ν′) a mapF : S → S′ is calledeffective, if there is a functionf ∈ P (1) such that
f(a)↓ ∈ dom(ν′) andF (νa) = ν′f(a), for all a ∈ dom(ν). One says in this case thatf tracksF .

Definition 3. Letν, κ ∈ Nump(S).

1. ν ≤p κ, read ν is partially reducibleto κ, if there is somewitnessfunctionf ∈ P (1) such that
dom(ν) ⊆ dom(f), f(dom(ν)) ⊆ dom(κ), andν(a) = κ(f(a)), for all a ∈ dom(ν).

2. ν ≤s κ, readν is strongly reducibleto κ, if ν ≤p κ via f ∈ P (1) so thatdom(ν) = f−1(dom(κ)).
3. ν ≡s κ, readν is strongly equivalentto κ, if ν ≤s κ andκ ≤s ν. Similarly forpartial equivalence
≡p.
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If the numberingsν andκ are total we speak ofreducibility of ν to κ and denote it byν ≤ κ. In
addition, we writeν ≡ κ if both ν ≤ κ andκ ≤ ν.

In the case of total numberingsν andκ we have thatν ≤ κ via f ∈ R(1) just if ν = κ◦f . As follows
from the definition, ifν andκ are partial numberings andν is partially reducible toκ via f ∈ P (1),
then we only have thatν(a) = κ(f(a)), for all a ∈ dom(ν), whereasν is strongly reducible toκ via
f ∈ P (1) exactly if ν = κ ◦ f , where, if read pointwise, this equality means that either both sides are
defined and equal, or both sides are undefined. It follows thatν ≤s κ via f ∈ P (1) if and only if for
everys ∈ S and alli ∈ ω,

i ∈ ν−1({s}) ⇔ f(i)↓ ∈ κ−1({s}), (1)

and thatν ≤p κ via f ∈ P (1) if and only if for everys ∈ S and alli ∈ ω,

i ∈ ν−1({s}) ⇒ f(i)↓ ∈ κ−1({s}). (2)

This shows that strong reducibility extends Ershov’s notion ofpm-reducibility for sets and families
of sets [3] to partial numberings. Moreover, we see that in the case thatν ≤p κ it is only required that
the witness functionf behaves correctly when transforming indicesi of elementss ∈ S with respect
to ν into indicesf(i) of s with respect toκ. We do not demand that iff(i) in an index of somes with
respect toκ, theni must be an index ofs with respect toν. Though in some cases we need be able to
reason in this way.

In the theory of effective topological spaces [9,10], e.g., one usually works with numberingsν for
which there is a functionpt ∈ P (1) such that ifm is an index of a certain normed enumeration of
a base of basic open sets of the neighbourhood filter of some points, thenpt(m)↓ ∈ dom(ν) and
s = ν(pt(m)). This property is invariant under partial equivalence. For some results, however, we had
to use numberingsν with the additional property that ifpt(m)↓ ∈ dom(ν), then, conversely,m is also
an index of an enumeration of a base of basic open sets of the neighbourhood filter ofν(pt(m)). This
property is only invariant under strong equivalence and it was the search for the appropriate invariance
notion in this case, which led us to consider strong reducibility and strong equivalence in [9].

As a consequence of the weaker condition (2), one function may reduce many numberings to the
same given numbering. If e.g.α is a numbering ofS then any numberingβ of S the graph of which
is included in the graph ofα is reduced toα by the identity function onω. The behaviour of partial
numberings with respect to partial reducibility has been studied in [2]. Here, we will investigate the
stronger reducibility notion.

Both,≤s and≤, respectively, are reflexive and transitive relations onNump(S) andNum(S). There-
fore we can introduce degrees of numberings as follows:

degs(ν) = {κ ∈ Nump(S) | ν ≡s κ } (ν ∈ Nump(S)),

deg(ν) = {κ ∈ Num(S) | ν ≡ κ } (ν ∈ Num(S)).

As usual the reducibilities≤s and≤, respectively, induce partial orderings on the sets of degrees
which we also denote by≤s and≤. Thus, we have the following partial orders:

Ls(S) = ({degs(ν) | ν ∈ Nump(S) },≤s),

L(S) = ({deg(ν) | ν ∈ Num(S) },≤),
C⊥(S) = ({deg(ν) | ν ∈ CNum⊥(S) },≤).

The first two structures are upper semilattices in which the supremum of the degrees ofν andκ is
induced by thejoin ν ⊕ κ defined as follows: fora ∈ ω

(ν ⊕ κ)(2a) =

{
ν(a) if a ∈ dom(ν),
undefined otherwise,

(ν ⊕ κ)(2a + 1) =

{
κ(a), if a ∈ dom(κ),
undefined otherwise.

The joinν ⊕ κ of two complete numberingsν andκ needs not be complete again. Nevertheless, we
will see that alsoC⊥(S) is an upper semilattice.

In the remainder of this section we recall some notions and facts on partially ordered sets and mono-
tone maps which we will need later (cf. [1,8]).
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Definition 4. LetP andQ be partially ordered sets. A pairs : P → Q, r : Q → P of monotone maps is
called amonotone section retraction pairif r ◦ s is the identity onP . In this situationP is said to be a
monotone retractof Q.

One sees immediately that in a section retraction pair the retraction is surjective and the section is
injective.

Definition 5. Let P andQ be partially ordered sets andl : P → Q andu : Q → P be maps. One says
that (l, u) is anadjunctionbetweenP andQ if for all x ∈ P andy ∈ Q,

x ≤ u(y) ⇔ l(x) ≤ y.

The mapsl andu, respectively, are calledlowerandupper adjoint.

Lower adjoints preserve existing suprema and upper adjoints preserve existing infima.

Definition 6. LetP be a partially ordered set.

1. Aprojectionis an idempotent, monotone self-mapp : P → P .
2. Aclosure operatoris a projectionc onP with x ≤ c(x), for all x ∈ P .

Note that the image of a closure operator is closed under the formation of existing infima. Moreover,
its co-restrictionc◦ : P → c(P ) preserves arbitrary suprema, i.e.,supc(P ) X = c(supP X), for all X ⊆
c(P ).

Lemma 1. Let P andQ be partially ordered sets and(s : P → Q, r : Q → P ) be a section retraction
pair. If s ◦ r is a closure operator onQ, then(r, s) is an adjunction betweenQ andP .

3. Completing partial numberings

In this section we transfer Ershov’s completion construction [3] to partial numberings. The result will
be weaker as in the case of total numberings. Let(S, ν) be a partially numbered set and fors ∈ S,
As = ν−1({s}). SetÂs = u−1(As), for s ∈ S, and fora ∈ ω defineν̂(a) = { s ∈ S | a ∈ Âs }. Then

ν̂(a) =

{
{ν(u(a))} if a ∈ u−1(dom(ν)),
∅ otherwise.

SetŜ = { {s} | s ∈ S } ∪ {∅}. Then(Ŝ, ν̂) is a totally numbered set. Moreover,S is embedded in̂S by
the effective mapι : S → Ŝ with ι(s) = {s}. In order to see thatι is effective leta ∈ dom(ν). Then
u′(a) ∈ u−1(dom(ν)) and hence

ν̂(u′(a)) = ι(ν(u(u′(a)))) = ι(ν(a)).

Theorem 1.For any partial numberingν of S, ν̂ is a complete numbering of̂S with special element∅.

Proof. Let p ∈ P (1) andm be a G̈odel number ofu ◦ p. Definef ∈ R(1) by f(a) = 〈m,a〉. Then
u ◦ f = u ◦ p and we have fora ∈ dom(p) with p(a) ∈ u−1(dom(ν)) that

ν̂(f(a)) = {ν(u(f(a)))} = {ν(u(p(a)))} = ν̂(p(a)).

If a ∈ dom(p), butp(a) 6∈ u−1(dom(ν)), it follows that

ν̂(f(a)) = { s ∈ S | f(a) ∈ u−1(ν−1({s})) } = ∅ = ν̂(p(a)).

Similarly, we obtain that̂ν(f(a)) = ∅, if a 6∈ dom(p).
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4. Some properties

Let S be a countable set. In this section we study the completion operation introduced in the preceding
section and its relationship to the operation which maps every numbering inNum(Ŝ) onto a numbering
in Nump(S) by co-restricting it toŜ \ {∅}.

Lemma 2. The map̂· : Nump(S) → Num(Ŝ) is injective.

Proof. Let ν, κ ∈ Nump(S) with ν̂ = κ̂. Then we have fora ∈ ω that

a 6∈ dom(ν) ⇔ u′(a) 6∈ u−1(dom(ν)) ⇔ ν̂(u′(a)) = ∅ ⇔ κ̂(u′(a)) = ∅ ⇔ a 6∈ dom(κ).

Thusdom(ν) = dom(κ). Similarly, it follows thatν(a) = κ(a), for a ∈ dom(ν).

Lemma 3. The map̂· is monotone.

Proof. Let ν, κ ∈ Nump(S) so thatν ≤s κ with witness functionf ∈ P (1). Moreover, letg ∈ R(1)

with ϕg(m)(n) = f(ϕm(n)). Seth(〈m,n〉) = 〈g(m), n〉. We will show that̂ν = κ̂ ◦ h.
By definition,f ◦ u = u ◦ h. Hence,

u−1(dom(ν)) = u−1(f−1(dom(κ)) = h−1(u−1(dom(κ)).

Therefore, we have fora ∈ u−1(dom(ν)) that

ν̂(a) = {ν(u(a))} = {κ(f(u(a)))} = {κ(u(h(a)))} = κ̂(h(a)).

If a 6∈ u−1(dom(ν)), it follows thath(a) 6∈ u−1(dom(κ)). Thus,ν̂(a) = ∅ = κ̂(h(a)).

Now, for ρ ∈ Num(Ŝ), let ρ ∈ Nump(S) be the numbering withρ(a) = ι−1(ρ(a)), if ρ(a) 6= ∅,
andρ(a) being undefined, otherwise.

Lemma 4. The map· : Num(Ŝ) → Nump(S) is monotone.

Proof. Let ρ, γ ∈ Num(Ŝ) so thatρ ≤ γ with witness functionf ∈ R(1). If a ∈ dom(ρ), then
γ(f(a)) = ρ(a) 6= ∅. Hencef(a) ∈ dom(γ) and therefore

{ρ(a)} = ρ(a) = γ(f(a)) = {γ(f(a))},

i.e.,ρ(a) = γ(f(a)).
It remains to show thatdom(ρ) = f−1(dom(γ)). We have already seen thatdom(ρ) ⊆ f−1(dom(γ)).

The converse inclusion follows analogously.

Lemma 5. For ν ∈ Nump(S), ν ≡s ν̂.

Proof. By definition we have thatdom(ν̂) = u−1(dom(ν)). Moreover,

{ν̂(a)} = ν̂(a) = {ν(u(a)},

for a ∈ dom(ν̂). Thusν̂ ≤s ν.
Conversely, we obtain fora ∈ dom(ν) that

{ν(a)} = {ν(u(u′(a))} = ν̂(u′(a)) = {ν̂(u′(a))}.

Since, in addition,
dom(ν) = u′−1(u−1(dom(ν)) = u′−1(dom(ν̂)),

it also follows thatν ≤s ν̂.

Lemma 6. Letρ ∈ Num(Ŝ). Then the following two statements hold:

1. ρ ≤ ρ̂.
2. If ρ ∈ CNum∅(Ŝ) thenρ ≡ ρ̂.
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Proof. Let a ∈ ω with ρ(a) 6= ∅. Thena ∈ dom(ρ) and henceu′(a) ∈ u−1(dom(ρ)). Thus,

ρ(a) = {ρ(a)} = {ρ(u(u′(a)))} = ρ̂(u′(a)).

If ρ(a) = ∅, thenu′(a) 6∈ u−1(dom(ρ)) and thereforeρ(a) = ∅ = ρ̂(u′(a)). This shows thatρ ≤ ρ̂.
Now, assume thatρ is complete with special element∅. In this case there is some functiong ∈ R(1)

so that

ρ(g(a)) =

{
ρ(u(a)) if a ∈ dom(u),
∅ otherwise.

If a ∈ u−1(dom(ρ)), it follows that

ρ̂(a) = {ρ(u(a))} = ρ(u(a)) = ρ(g(a)).

On the other hand, ifa ∈ dom(u), butu(a) 6∈ dom(ρ), we obtain that

ρ̂(a) = ∅ = ρ(u(a)) = ρ(g(a)).

If, finally, a 6∈ dom(u), thena 6∈ u−1(dom(ρ)) as well. Hence,̂ρ(a) = ∅ = ρ(g(a)) again. Thus,
ρ̂ ≤ ρ.

5. Main results

Let H : Ls(S) → L(Ŝ) andB : L(Ŝ) → Ls(S) be defined by

H(degs(ν)) = deg(ν̂) and B(deg(ρ)) = degs(ρ),

for ν ∈ Nump(S) andρ ∈ Num(Ŝ). By the results of the last section both maps are well defined
and monotone. Moreover, as a consequence of Lemma 5,(H,B) is a monotone section retraction pair.
Hence,H is injective andB is surjective. In addition, we obtain the following result which shows that
with respect to strong reducibility partial numberings behave as total ones.

Theorem 2.Ls(S) is a monotone retract ofL(Ŝ).

With Lemma 6(2) one readily verifies thatC∅(Ŝ) is the range of the embeddingH. Let C = H ◦
B. Then we obtain with Lemma 6(1) thatC : L(Ŝ) → L(Ŝ) is a closure operator. The next result is
therefore a consequence of Lemma 1.

Proposition 1. (B,H) is an adjunction betweenL(Ŝ) andLs(S).

It follows thatH preserves existing infima andB preserves suprema.

Corollary 1. Letρ, σ ∈ Num(Ŝ). Thenρ⊕ σ ≡s ρ⊕ σ.

SinceC is a closure operator, its co-restrictionC◦ : L(Ŝ) → C∅(Ŝ) preserves arbitrary suprema.

Proposition 2.C∅(Ŝ) is an upper semilattice with

supC∅(bS){deg(ρ),deg(σ)} = deg(ρ̂⊕ σ),

for ρ, σ ∈ CNum∅(Ŝ)

Because of Lemma 5 we obtain forν, κ ∈ Nump(S) that

H(supLs(S){degs(ν),degs(κ)}) = H(degs(ν ⊕ κ)) = supC∅(bS){H(ν),H(κ)}.

Theorem 3.The two upper semilatticesLs(S) andC∅(Ŝ) are isomorphic.
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6. Final remarks

A strong reducibility relation between partial numberings was introduced in this note that requires the
reduction function to transfer exactly the numbers which are indices under the numbering to be reduced
to corresponding indices of the other numbering. In the case of the weaker reducibility relation studied
in [2] the reduction function is allowed to map arbitrary numbers onto indices. As a result, a reduction
function may reduce several partial numberings to one numbering. Thus, the degrees of partial number-
ings with respect to the weaker relation are uncountable. Moreover, they form a distributive lattice.

It was shown here that this is not the case if the degrees are formed with respect to the strong
reducibility relation. To this end, Ershov’s completion construction was extended to the partial case:
modulo a canonical embedding every partial numbering of a given set can be extended to a total and
complete numbering of a larger set which results from the given set by adding an extra point. The
degrees of complete numberings of the extended set form an upper semilattice. As the operation of
taking suprema is different from the usual operation of taking suprema for degrees, this upper semilattice
in general is not a sub-semilattice of the upper semilattice of the degrees of all total numberings of the
extended set.

The partial order of strong degrees of partial numberings of a given set was proved to be a monotone
retract of the partial order of the degrees of all total numberings of the extended set. Moreover, the upper
semilattice of the strong degrees was shown to be isomorphic to the upper semilattice of the degrees of
complete numberings of the extended set. Both results confirm that with respect to the strong reducibility
relation partial numberings behave as in the case of total numberings.
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