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Abstract

A complete description of groups of kind
⊕
i∈I

Zpi that can be realized as

groups of all computable automorphisms for appropriate computable mod-
els is obtained. We introduce a three–level classification of isomorphism
types of groups of computable automorphisms by possible arithmetical
complexity of their orbits and prove this classification to be nontrivial.
Bibliogr. 5.

Basic notions and results on groups of computable automorphisms are con-
tained in [1].

Recall some basic definitions. A computable model

M =
〈
A, fn0

0 , . . . ; Pm0
0 , . . .

〉

is a model in which A is a computable subset of natural numbers ω, the mappings
i 7→ ni (number of arguments of fi) and i 7→ mi (number of arguments of Pi)are
computable, and all operations fi and predicates Pi are computable uniformly
on i. A computable automorphism of a computable model M is an automorphism
of M which is a computable function on its universe. All such automorphisms
form a group which will be denoted as Aut cM.

One of the basic problems in the study of groups of computable automor-
phisms is finding a characterization of this class of groups. However any attempt
to describe it meets serious difficulties. In particular, this class cannot be de-
scribed as the class of all groups computable in some oracle [2]. The elementary
theory of the class of such groups appears to be computably isomorphic to arith-
metic [3]. Also the attempts to find a reasonable description even for finitely
generated subgroups fail [4]. The only result that makes things a little bit clearer
is

Theorem 1 [1, 5] An arbitrary finitely generated group G is isomorphic
to a group of kind Aut cM for some computable model M if and only if its
word problem is decidable, (in other words, if and only if it is isomorphic to a
computable group).

In this paper, we give one more description of groups of computable au-
tomorphisms within a very narrow class of groups which nevertheless enables
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us to define a natural three-level hierarchy within this class and to prove its
nontriviality.

We denote the ith prime by pi, i. e. p0 = 2, p1 = 3, . . ..
Theorem 2 A group of kind

⊕
i∈I

Zpi is isomorphic to a group of kind Aut cM

for some computable model M if and only if I ∈ Σ0
3.

Proof. First we prove this condition to be sufficient. We need the following
Lemma 1 [5] Assume I ∈ Σ0

3. There exists a computable sequence of linear
orderings Lj , j ∈ ω such that

1. if j ∈ I then Lj is computably isomorphic to an ordering of type ω2

with computable set of pairs of neighbors and there exists a monotonic
enumeration of the set of all limit elements (here we do not guarantee the
homogeneity on j);

2. if j /∈ I, then Lj is isomorphic to ω.

Note that all computable linear orderings that satisfy the condition 1 of this
Lemma are pairwise computably isomorphic.

The basic set of M will contain several types of elements. First we consider
an ordered set

B =
{
a0
0 < a0

1 < a1
0 < a1

1 < a1
2 < . . . < ak

0 < . . . < ak
pk−1 < . . .

}
.

This set B can be thought of as the union of mutually disjoint blocks of kind{
ak
0 , ak

1 , . . . , ak
pk−1

}
, k = 0, 1, . . ., situated one after another. We call j-th block

the pj element set
{
aj
0, a

j
1, . . . , a

j
pj−1

}
.

Fix a computable linear ordering L of type ω2 whose set of neighbors is
recursive and that possesses a monotonic enumeration of all limit elements.

The basic set of M will consist of two disjoint parts: the first one is B and
the second one is the set of ordered pairs of kind

〈
aj

i , b
〉
, where b is an element

from some ordering L′j arising in the course of the construction, which almost
coincides with Lj from Lemma if i 6= 0, and b is an element from L if i = 0.

The basic predicates are defined as follows.
1. The predicate U1 distinguishes the set B.
2. The predicate R2 is true on a pair of elements 〈x, y〉 if and only if

U(x),¬U(y) and y = 〈x, b〉.
3. The predicate P 2 is true on a pair 〈x, y〉 if x = aj

i , y = aj
i+1 and i < pj−1

or x = aj
pj−1, y = aj

0 (i. e. it forms a cycle of length pj on the jth block).
4. The predicate ¹ defines a linear ordering on elements of sets

{
aj

k

}× L′j ,
j ∈ ω, which is obtained by transferring the initial ordering on L′j by means
of the mapping x ∈ L′j 7→

〈
aj

k, x
〉
. Elements of distinct sets

{
aj

k

} × L′j , j ∈ ω,
0 ≤ k ≤ pj − 1, are pairwise incomparable with respect to ¹.

Idea of the proof. First we hang up the orders L of type ω2 to elements
aj
0 for all j ∈ ω by means of the predicate R. Next we construct the model M

by steps, hanging rigid linear orderings Lj of type ω or ω2 from Lemma to
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all elements except for aj
0. Each automorphism will permute elements within

blocks. To avoid automorphisms that nontrivially permute infinite number of
blocks, we add some new elements to the ordering hanged to aj

k, k 6= 0 so that
the number of elements added to each such ordering will be finite and no added
new element will be maximal there. By this, isomorphism types and algorithmic
properties of orders mentioned in Lemma remain the same.

Now let us check that an arbitrary automorphism M can move elements
within blocks with orderings isomorphic to ω2 only. Indeed, assume an auto-
morphism f takes elements of one block to elements of another one: f(ak

i ) = ar
j ,

k 6= r. Since f preserves P , we obtain that k = r, i. e. the mentioned above
mixing is impossible. If we assume that f nontrivially moves elements within
blocks with orderings isomorphic ω hanged, then we obtain f(aj

i ) = aj
0, i 6= 0.

This means that f takes some ordering of type ω onto an ordering of type ω2,
which is impossible. If all hanged orderings within the jth block have type ω2

then after adding a finite number of new non-maximal elements will preserve
recursiveness of the set of neighbors and the existence of monotonic enumeration
of all limit elements. All such orderings will be pairwise computably isomorphic.
In view of this, there is a computable automorphism that cyclically permutes
elements within jth block and does not move elements in other blocks.

Formal description of the construction. We start with the set B
defined at the beginning. Define P as above.

In what follows, we understand the words “we build an ordering S over an
element aj

i” as adding new elements of kind
〈
aj

i , b
〉
, b ∈ S to our model on

which the ordering ¹ is defined as image of the ordering on S with respect to
the mapping b 7→ 〈

aj
i , b

〉
; we put R

(
aj

i ,
〈
aj

i , b
〉)

b ∈ S.
We consider our construction to be executed over natural numbers by natural

identification of elements of the model we construct with natural numbers.
Fix some Kleene’s computable numbering of all partial recursive functions

ϕn, n ∈ ω. Let ϕt
n be a finite part of ϕn computed at first t steps.

We will use the enumeration of orderings Lj (j ∈ ω) from Lemma 1 that
comes from the process of their generation:

L0
j ⊆ L1

j ⊆ . . . ⊆ Lt
j ⊆ . . . ⊆

⋃
s

Ls
j = Lj .

We suppose that at each step only one element is added to the ordering, i. e.,∣∣Lt+1
j \Lt

j

∣∣ = 1 for all t ∈ ω. Fix the same enumeration for the ordering L.
At each step t, we we build an ordering L′j over an element aj

i , i 6= 0,
by putting there new elements enumerated at Lj up to the step t elements
and,possibly new elements arising in the course of the construction. We build
an ordering L over each aj

0.
If at step t the elements n, j ≤ t n < j and b0, b1, b

′
0, b

′
1 ≤ t, k 6= 0, k < pj

appeared such that

ϕt
n

(〈
aj
0, b0

〉)
=

〈
aj

k, b′0
〉
, ϕt

n

(〈
aj
0, b1

〉)
=

〈
aj

k, b′1
〉
,

and b0 and b1 are neighbors in L, and b0 is not greater than b1 L, n was not
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considered before, b′0 is less than b′1 in the ordering that is build over aj
k, then

we take the minimal such n and minimal j and add a new element c to the
ordering built over aj

k placing it between b′0 and b′1; so that b′0 and b′1 will be
not neighbors anymore We put also R

(
aj

k,
〈
aj

k, c
〉)

. After this we think of n as
already considered and never consider it again. Note that if we need to add
a new element that corresponds to an element in Lj to the ordering we build
over aj

k, some indeterminacy about the place for it may occur. In this case we
put it to the leftmost possible position.

The construction is complete.
It follows from the construction that the so constructed model is computable.
Note also that for each m in each ordering we build over an element in mth

block only a finite number of elements can be added, sine each time we add a
new element we consider some n ≤ m which could be considered only once.

As is already noted, each automorphism of this model cyclically permutes
elements within blocks whose all orderings built over elements of these blocks are
isomorphic to ω2. Since orderings we build over elements of the block are rigid,
the way an automorphism acts is completely defined by its action on blocks.
Now if a function ϕn defines an automorphism of our model then it cannot
permute elements within blocks whose numbers are greater than n nontrivially,
since otherwise at some step it will be fixed that ϕn takes a pair of neighbors
with respect to ¹ to a pair of non-neighbors, namely it takes a pair of neighbors
of some order we build over aj

0 to a pair of non-neighbors of the ordering we
build over aj

k. A contradiction.
Thus, if we denote a computable automorphism that cyclically permutes ele-

ments in ith block for i ∈ I, then each automorphism of the obtained model will
be a product of finite number of automorphisms γi. This yields an isomorphism
between

⊕
i∈I

Zpi and Aut cM.

Prove necessity. Assume the group
⊕
i∈I

Zpi is isomorphic to

the group of all automorphisms of some computable model. One can easily
ascertain that

i ∈ I ⇐⇒ ∃x0 . . . xpi−1

( ∧

0≤k<j<pi

(xk 6= xj)∨(〈x0 . . . xpi−1〉 ∼=c 〈x1 . . . xpi−1, x0〉)
)
. (1)

We will do it a little bit later.
As it was noted in [5], the relation ∼=c is always in Σ0

3, which could be checked
immediately. From this equivalence it follows that I ∈ Σ3

0.
Check the equivalence (1). Suppose i ∈ I. It means that our model possesses

a computable automorphism of order pi which yields the existence of the cycle
x0 . . . xpi−1 whose length is the prime pi. Assume now the right hand condition
holds. Take a computable automorphism f that cyclically permutes x0 . . . xpi−1.
Since the automorphism group is isomorphic to the direct sum of cyclic groups of
different prime orders, the order of this automorphism is finite and is divisible
by pi By this the group contains a generator of order pi, i. e., i ∈ I. If it
is not true, denote the isomorphic image of f by f̂ ; then f̂ = ai1

pj1
. . . a

iq
pjq

,
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where apjs
is a generator of direct summand Zpjs

, s = 1, . . . , q, pjs 6= pi, which
implies fpj1 ...pjq (x0) 6= x0 and 1 6= (f̂)pj1 ...pjq =

(
ai1

pj1
. . . a

iq
pjq

)pj1 ...pjq = 1; a
contradiction. ¤

Now we pass to the definition of three-level hierarchy on the class of groups
of computable automorphisms and prove it is nontrivial.

Denote by Γi the class of all groups isomorphic to groups of all computable
automorphisms of computable models M whose relation ∼=c is in Σ0

i , i = 1, 2, 3.
As it was noted before, this relation is always in Σ0

3 and introducing higher
levels makes no sense.
Theorem 3 The following relations hold:

Γ1 $ Γ2 $ Γ3.

Proof. Both inclusions are obvious. We should prove them to be nontrivial.
Lemma 2. Let GI =

⊕
i∈I

Zpi and let GI be isomorphic to the group of

all computable automorphisms of some computable model M . Assume k ∈
{1, 2, 3}. Then if the relation ∼=c on M is in Σ0

k, then I ∈ Σ0
k.

Proof follows immediately from the equivalence (1).
Resume the proof of the Theorem. Take an arbitrary set I ∈ Σ0

3 \ Σ0
2. By

Lemma and the fact that the relation ∼=c is always in Σ0
3 we obtain GI ∈ Γ3 \Γ2.

It remains to check that the inclusion Γ1 $ Γ2 is nontrivial. Take an ar-
bitrary immune set I ∈ Π0

1 \ Σ0
1 with enumerable complement and construct a

model M as follows. The signature of M will contain a unique binary predi-
cate P . We start the construction from the set which is the union of nontrivial
disjoint directed cycles formed by means of the predicate P so that for each
prime pi, i < ω it will contain exactly one cycle of length pi. Then we will
enumerate the complement I of without repetitions and each time when some
new element i will be enumerated into the complements of I, we will add a new
element by means of P to the unique cycle of length pi a new element so that
to spoil all its nontrivial symmetries.

It is clear from the construction that the group of all computable auto-
morphisms of the so constructed model will be isomorphic to GI since by the
immunity of I no computable automorphism can move elements in infinitely
many cycles.

Moreover, we can see that the relation ∼=c on our model is 0′-computable;
henceforth it is in Σ0

2 (and even in ∆0
2). Thus, GI ∈ Γ2 and by Lemma we have

GI /∈ Γ1. ¤
Question: Does there exist a group which is isomorphic to the group of all

computable automorphisms of an appropriate computable model with enumer-
able ∼=c but is not isomorphic to a group of all computable automorphisms in
which this relation is computable?
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