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Abstract
A complete description of groups of kind € Z,, that can be realized as
i€l

groups of all computable automorphisms for appropriate computable mod-
els is obtained. We introduce a three—level classification of isomorphism
types of groups of computable automorphisms by possible arithmetical
complexity of their orbits and prove this classification to be nontrivial.
Bibliogr. 5.

Basic notions and results on groups of computable automorphisms are con-
tained in [1].
Recall some basic definitions. A computable model

M= (A, fro,. ;P

is a model in which A is a computable subset of natural numbers w, the mappings
i — n; (number of arguments of f;) and ¢ — m; (number of arguments of P;)are
computable, and all operations f; and predicates P; are computable uniformly
oni. A computable automorphism of a computable model 91 is an automorphism
of 9t which is a computable function on its universe. All such automorphisms
form a group which will be denoted as Aut ..

One of the basic problems in the study of groups of computable automor-
phisms is finding a characterization of this class of groups. However any attempt
to describe it meets serious difficulties. In particular, this class cannot be de-
scribed as the class of all groups computable in some oracle [2]. The elementary
theory of the class of such groups appears to be computably isomorphic to arith-
metic [3]. Also the attempts to find a reasonable description even for finitely
generated subgroups fail [4]. The only result that makes things a little bit clearer
is

Theorem 1 [1,5] An arbitrary finitely generated group G is isomorphic
to a group of kind Aut N for some computable model M if and only if its
word problem is decidable, (in other words, if and only if it is isomorphic to a
computable group).

In this paper, we give one more description of groups of computable au-
tomorphisms within a very narrow class of groups which nevertheless enables



us to define a natural three-level hierarchy within this class and to prove its
nontriviality.

We denote the ith prime by p;, i.e. pg =2, p1 =3,....

Theorem 2 A group of kind € Z,, is isomorphic to a group of kind Aut ;9

il

for some computable model 9 if and only if I € X§.

Proof. First we prove this condition to be sufficient. We need the following
Lemma 1 [5] Assume I € X3. There exists a computable sequence of linear
orderings L;, j € w such that

1. if j € I then L; is computably isomorphic to an ordering of type w?
with computable set of pairs of neighbors and there exists a monotonic
enumeration of the set of all limit elements (here we do not guarantee the
homogeneity on j);

2. if j ¢ I, then L; is isomorphic to w.

Note that all computable linear orderings that satisfy the condition 1 of this
Lemma are pairwise computably isomorphic.

The basic set of 91 will contain several types of elements. First we consider
an ordered set

0 0 1 1 1 k k
B={ag<a}<ay<a;<az<..<ag<..<ay ;<...}.

This set B can be thought of as the union of mutually disjoint blocks of kind
{alg, ak,. .., a’;k_l}, k=0,1,..., situated one after another. We call j-th block
the p; element set {aé, a{, ceey a;j_l}.

Fix a computable linear ordering L of type w? whose set of neighbors is
recursive and that possesses a monotonic enumeration of all limit elements.

The basic set of 9 will consist of two disjoint parts: the first one is B and
the second one is the set of ordered pairs of kind <a§ , b>, where b is an element
from some ordering L; arising in the course of the construction, which almost
coincides with L; from Lemma if ¢ # 0, and b is an element from L if i = 0.

The basic predicates are defined as follows.

1. The predicate U' distinguishes the set B.

2. The predicate R? is true on a pair of elements (z,y) if and only if
U(z),~U(y) and y = (x,b). , ‘

3. The predicate P? is true on a pair (z,y) if v = a], y = ag_H and 7 < p; —1

J
pj—1>

4. The predicate < defines a linear ordering on elements of sets {ai} X L;,
j € w, which is obtained by transferring the initial ordering on L; by means

orxr=a Y= aé (i. e. it forms a cycle of length p; on the jth block).

of the mapping z € L} — <a£, ). Elements of distinct sets {ai} x L, jew,
0 <k <pj; — 1, are pairwise incomparable with respect to <.
IDEA OF THE PROOF. First we hang up the orders L of type w? to elements

aé for all j € w by means of the predicate R. Next we construct the model 9t
by steps, hanging rigid linear orderings L; of type w or w? from Lemma to



all elements except for ag. Each automorphism will permute elements within

blocks. To avoid automorphisms that nontrivially permute infinite number of
blocks, we add some new elements to the ordering hanged to aj, k # 0 so that
the number of elements added to each such ordering will be finite and no added
new element will be maximal there. By this, isomorphism types and algorithmic
properties of orders mentioned in Lemma remain the same.

Now let us check that an arbitrary automorphism 9t can move elements
within blocks with orderings isomorphic to w? only. Indeed, assume an auto-
morphism f takes elements of one block to elements of another one: f(a¥) = ay,
k # r. Since f preserves P, we obtain that &k = r, i. e. the mentioned above
mixing is impossible. If we assume that f nontrivially moves elements within
blocks with orderings isomorphic w hanged, then we obtain f(a!) = al, i # 0.
This means that f takes some ordering of type w onto an ordering of type w?,
which is impossible. If all hanged orderings within the jth block have type w?
then after adding a finite number of new non-maximal elements will preserve
recursiveness of the set of neighbors and the existence of monotonic enumeration
of all limit elements. All such orderings will be pairwise computably isomorphic.
In view of this, there is a computable automorphism that cyclically permutes
elements within jth block and does not move elements in other blocks.

FORMAL DESCRIPTION OF THE CONSTRUCTION. We start with the set B
defined at the beginning. Define P as above.

In what follows, we understand the words “we build an ordering S over an
element a!” as adding new elements of kind <a§,b>, b € S to our model on
which the ordering = is defined as image of the ordering on S with respect to
the mapping b — (a?,b); we put R(a?,(al,b)) beS.

We consider our construction to be executed over natural numbers by natural
identification of elements of the model we construct with natural numbers.

Fix some Kleene’s computable numbering of all partial recursive functions
©n, n € w. Let ¢! be a finite part of ¢, computed at first ¢ steps.

We will use the enumeration of orderings L; (j € w) from Lemma 1 that
comes from the process of their generation:

0 1 ¢ s _ 1.
cryc...crbc...clJL; =1,

We suppose that at each step only one element is added to the ordering, i. e.,
|L§+1\L§’ =1 for all ¢ € w. Fix the same enumeration for the ordering L.

At each step t, we we build an ordering L;- over an element ag , 1 # 0,
by putting there new elements enumerated at L; up to the step ¢ elements
and,possibly new elements arising in the course of the construction. We build
an ordering L over each aj.

If at step t the elements n, j <t n < j and b, by, b, b <t, k#0, k < p;
appeared such that

en((ag,b0)) = (a.b),  @n((af, b)) = (a}.by),

and by and b; are neighbors in L, and by is not greater than b; L, n was not



considered before, bf, is less than b in the ordering that is build over ai, then
we take the minimal such n and minimal j and add a new element c to the
ordering built over aj, placing it between b, and b}; so that b and b} will be

not neighbors anymore We put also R(ai, <ai, c>) After this we think of n as
already considered and never consider it again. Note that if we need to add
a new element that corresponds to an element in L; to the ordering we build
over a% some indeterminacy about the place for it may occur. In this case we
put it to the leftmost possible position.

THE CONSTRUCTION IS COMPLETE.

It follows from the construction that the so constructed model is computable.

Note also that for each m in each ordering we build over an element in mth
block only a finite number of elements can be added, sine each time we add a
new element we consider some n < m which could be considered only once.

As is already noted, each automorphism of this model cyclically permutes
elements within blocks whose all orderings built over elements of these blocks are
isomorphic to w?. Since orderings we build over elements of the block are rigid,
the way an automorphism acts is completely defined by its action on blocks.
Now if a function ¢, defines an automorphism of our model then it cannot
permute elements within blocks whose numbers are greater than n nontrivially,
since otherwise at some step it will be fixed that ¢, takes a pair of neighbors
with respect to < to a pair of non-neighbors, namely it takes a pair of neighbors
of some order we build over a)) to a pair of non-neighbors of the ordering we
build over ai. A contradiction.

Thus, if we denote a computable automorphism that cyclically permutes ele-
ments in ¢th block for ¢ € I, then each automorphism of the obtained model will
be a product of finite number of automorphisms ;. This yields an isomorphism
between @ Z,, and Aut IN.

i€l
Prove necessity. Assume the group @Z,, is isomorphic to
iel
the group of all automorphisms of some computalfle model. One can easily
ascertain that

i€l < dxg... SUp,;—l( /\ (xp #z;)V((xo ... Tp,—1) Ze (1. .. xpi_l,x0>)). (1)
0<k<j<pi

We will do it a little bit later.

As it was noted in [5], the relation 2, is always in 39, which could be checked
immediately. From this equivalence it follows that I € 33.

Check the equivalence (1). Suppose i € I. It means that our model possesses
a computable automorphism of order p; which yields the existence of the cycle
Zo ... %p,—1 whose length is the prime p;. Assume now the right hand condition
holds. Take a computable automorphism f that cyclically permutes xq ...z, —1.
Since the automorphism group is isomorphic to the direct sum of cyclic groups of
different prime orders, the order of this automorphism is finite and is divisible
by p; By this the group contains a generator of order p;, i. e, ¢ € I. If it

is not true, denote the isomorphic image of f by f ; then f = agh ...a;‘qu,



where a,,; is a generator of direct summand Z,, , s =1,...,q, p;, # pi, which
implies fPi1Pia (20) # 2o and 1 £ (f)Pir-Pia = (a;l, ...a;‘;q)p“"'% =1;a

. . J1
contradiction. [J

Now we pass to the definition of three-level hierarchy on the class of groups
of computable automorphisms and prove it is nontrivial.

Denote by I'; the class of all groups isomorphic to groups of all computable
automorphisms of computable models M whose relation 2, is in £, i = 1,2, 3.
As it was noted before, this relation is always in 39 and introducing higher
levels makes no sense.

Theorem 3 The following relations hold:

Iy Gy G T

Proof. Both inclusions are obvious. We should prove them to be nontrivial.

Lemma 2. Let Gy = @ Z,, and let G; be isomorphic to the group of

iel
all computable automorphis?ns of some computable model M. Assume k €
{1,2,3}. Then if the relation 2. on M is in X9, then I € X9.
Proof follows immediately from the equivalence (1).

Resume the proof of the Theorem. Take an arbitrary set I € X9\ ¥9. By
Lemma and the fact that the relation . is always in Eg we obtain Gy € I's\T's.

It remains to check that the inclusion I'; ; I's is nontrivial. Take an ar-
bitrary immune set I € 1§ \ 3} with enumerable complement and construct a
model M as follows. The signature of M will contain a unique binary predi-
cate P. We start the construction from the set which is the union of nontrivial
disjoint directed cycles formed by means of the predicate P so that for each
prime p;, ¢ < w it will contain exactly one cycle of length p;. Then we will
enumerate the complement I of without repetitions and each time when some
new element ¢ will be enumerated into the complements of I, we will add a new
element by means of P to the unique cycle of length p; a new element so that
to spoil all its nontrivial symmetries.

It is clear from the construction that the group of all computable auto-
morphisms of the so constructed model will be isomorphic to G since by the
immunity of I no computable automorphism can move elements in infinitely
many cycles.

Moreover, we can see that the relation =2, on our model is 0’-computable;
henceforth it is in 9 (and even in A9). Thus, G; € I's and by Lemma we have
Gr¢roy,. O

Question: Does there exist a group which is isomorphic to the group of all
computable automorphisms of an appropriate computable model with enumer-
able 2, but is not isomorphic to a group of all computable automorphisms in
which this relation is computable?
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