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О ПРЕДЕЛЬНОСТИ НАИБОЛЬШЕГО ЭЛЕМЕНТА
ПОЛУРЕШЕТКИ РОДЖЕРСА

С. Ю. ПОДЗОРОВ∗)

Одним из основных объектов изучения теории нумераций являются
полурешетки Роджерса вычислимых нумераций. Долгое время внимание
исследователей привлекали только так называемые Σ0

1-вычислимые нумерации,
однако в последнее время ситуация изменилась. После выхода работы
Гончарова и Сорби [5] стали интенсивно изучаться Σ0

n-вычислимые нумерации
для произвольного n ∈ N. В 2003 году опубликованы 3 больших обзорных
статьи, посвященные этой теме [1, 2, 3].

Часть результатов, доказанных ранее для классического случая Σ0
1-

вычислимых нумераций, удалось перенести на обобщенный случай Σ0
n-

вычислимых нумераций для n > 2, однако для некоторых классических
теорем вопрос о справедливости их аналогов в обобщенном случая остается
открытым. К ним, в частности, относится теорема Хуторецкого [12, 7],
утверждающая, что в полурешетке Роджерса над любым ненаибольшим
элементом можно вложить линейный порядок, изоморфный первому неконструктивному
ординалу. Из теоремы Хуторецкого, помимо прочего, следует, что наибольшей
элемент полурешетки Роджерса Σ0

1-вычислимых нумераций (если он существует)
обладает свойством предельности, то есть не является минимальным
накрытием никакого другого элемента. Справедлива или нет теорема
Хуторецкого в обобщенном случае в настоящий момент не известно. Неизвестно
также, справедливо ли ее следствие, утверждающее предельность главной
нумерации.

В настоящей статье автор исследует вопрос о предельности наибольшего
элемента полурешетки Роджерса Σ0

n-вычислимых нумераций для n > 2 и
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находит ряд достаточных условий, при выполнение которых предельность
имеет место. Переходим непосредственно к изложению.

Основные понятия, относящиеся к вычислимым функциям и множествам,
можно найти в [10], к теории нумераций — в [7]. Мы предполагаем, что
читателю они известны. Зафиксируем {fi}i∈N и {Wi}i∈N — универсальные
вычислимые последовательности всех частичных вычислимых функций
от одной переменной и рекурсивно перечислимых множеств. Для частичной
функции f через δf мы обозначаем ее область определения, а через ρf —
область значений.

Пусть a — произвольная T -степень, ν, µ — нумерации. Мы говорим,
что ν a-сводится к µ и пишем ν 6a µ, если существует всюду определенная
функция f , вычислимая с оракулом a, такая что ν = µ ◦ f . Для a = 0
имеем обычное понятие сводимости. Ясно, что для a 6T b из ν 6a

µ следует ν 6b µ. Мы говорим, что нумерация µ слабо сводится к
нумерации µ и пишем ν 6w µ, если существует вычислимая функция
из N в множество конечных подмножеств N, такая что для любого x ∈ N
существует y ∈ f(x), для которого νx = µy. Мы пишем ν ≡a µ (ν ≡w µ),
если ν 6a µ и µ 6a ν (ν 6w µ и µ 6w ν).

Нумерация ν называется разрешимой, если ν(N) конечно и множество
{〈x, y〉 : νx = νy} вычислимо. Легко показать (см. [7]), что для каждого
конечного множества S существует единственная с точностью до эквивалентности
разрешимая нумерация ν : N→ S, которая сводится ко всем нумерациям
µ, таким что S ⊆ µ(N).

Если ν — нумерация и A — непустое рекурсивно перечислимое множество,
то через νA обозначим нумерацию ν ◦ f , где f — всюду определенная
вычислимая функция, такая что ρf = A. Легко показать, что с точностью
до эквивалентности нумерация νA не зависит от выбора функции f .
Справедливы следующие свойства введенного обозначения: µ 6 ν ⇔
существует рекурсивно перечислимое множество A, такое что µ ≡ νA;
ν ≡ νN и νA∪B ≡ νA ⊕ νB (определение ν ⊕ µ см. ниже). Доказательство
этих простых свойств есть, например, в [2].

До конца работы зафиксируем число n > 2. Пусть S — непустое
семейство Σ0

n-подмножеств N и ν — нумерация S. Мы называем ν Σ0
n-

вычислимой, если множество {〈x, y〉 : x ∈ νy} принадлежит классу Σ0
n

арифметической иерархии. Легко показать, что нумерация ν семейства
S является Σ0

n-вычислимой тогда и только тогда, когда существует сильно
0(n−1) -вычислимое семейство {νsx}s,x∈N конечных множеств, такое что
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для всех x ν0x ⊆ ν1x ⊆ . . . и νx =
⋃

s∈N νsx.
Свойство нумерации быть Σ0

n-вычислимой наследуется вниз относительно
0(n−1)-сводимости. Для S ⊆ Σ0

n множество всех Σ0
n-вычислимых нумераций

S является предпорядком относительно сводимости. Ассоциированный
с ним частичный порядок является верхней полурешеткой, которую мы
называем полурешеткой Роджерса и обозначаемR0

n(S). ЭлементR0
n(S),

содержащий Σ0
n-вычислимую нумерацию ν семейства S, мы обозначаем

через [ν]. Для Σ0
n-вычислимых нумераций ν и µ элемент полурешетки

Роджерса [ν ⊕ µ], является точной верхней гранью элементов [ν] и [µ],
где ν ⊕ µ — такая нумерация, что для любого x ∈ N

(ν ⊕ µ)x =

{
νy, x = 2y,

µy, x = 2y + 1.

Известно, что для произвольного S ⊆ Σ0
n полурешетка R0

n(S) либо
пуста, либо одноэлементна, либо бесконечна, причемR0

n(S) одноэлементна
тогда и только тогда, когда семейство S одноэлементно (см [2]). В дальнейшем
мы всегда будем предполагать, чтоR0

n(S) 6= ∅ и что семейство S содержит
не менее двух элементов.

Для Σ0
n-вычисмой нумерации ν семейства S и a 6T 0(n−1) через [ν]a

мы обозначаем множество таких Σ0
n-вычислимых нумераций µ семейства

S, что ν ≡a µ, и называем это множество a-степенью нумерации µ. Ясно,
что каждая a-степень является объединением некоторого семейства элементов
полурешетки Роджерса (для a = 0 это семейство одноэлементно). В
связи с этим мы будем говорить также об a-степенях элементов полурешетки
Роджерса.

Нумерация ν семейства S называется минимальной, если ν не разрешима
и для любой нумерации µ семейства S, такой что µ 6 ν, либо µ ≡ ν, либо
µ разрешима. Элемент полурешетки Роджерса назовем минимальным,
если он состоит из минимальных нумераций. Легко показать, что если
семейство S конечно, то разрешимые нумерации S Σ0

n-вычислимы и
образуют наименьший элемент в полурешетке R0

n(S). В этом случае
минимальными элементами полурешетки Роджерса будут минимальные
(относительно частичного порядка) элементы множества R0

n(S) \ {⊥},
где ⊥ — наименьший элемент в R0

n(S). Если же S бесконечно, то для
элемента R0

n(S) свойства ”быть минимальным в полурешетке” и ”быть
минимальным относительно частичного порядка” равносильны. Можно
показать [1, 2], что вR0

n(S) всегда существует бесконечно много минимальных
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элементов.
Для a, b ∈ R0

n(S) мы говорим, что b являетсяминимальным накрытием
a, если a < b и {x ∈ R0

n(S) : a 6 x 6 b} = {a, b}. Мы говорим,
что b является строго минимальным накрытием a, если a < b и {x ∈
R0

n(S) : x 6 b} = {x ∈ R0
n(S) : x 6 a} ∪ {b}. Будем называть элемент

a полурешетки R0
n(S) предельным, если для любого b ∈ R0

n(S), такого
что b < a, существует c ∈ R0

n(S), для которого b < c < a. Ясно, что
элемент является предельным тогда и только тогда, когда он не является
минимальным накрытием никакого другого элемента. Нумерацию, принадлежащую
наибольшему элементу полурешетки Роджерса (если такой элемент существует)
мы называем главной.

Нумерация ν семейства S называется полной, если существует s ∈
S, такой что для любой частичной вычислимой функции f существует
всюду определенная вычислимая функция g, для которой

νg(x) =

{
νf(x), если x ∈ δf ;

s, если x 6∈ δf ;

при всех x ∈ N. Легко показать, что если ν — полная нумерация и
µ ≡ ν, то µ также полна. В [1] доказано, что для любой Σ0

n-вычислимой
нумерации ν семейства S существует полная Σ0

n-вычислимая нумерация
S, такая что ν 6 µ. Отсюда сразу следует, что главная нумерация
всегда является полной. В [7] доказан следующий факт: если нумерация
ν полна и ν ≡ ν1 ⊕ ν2, то ν ≡ ν1 или ν ≡ ν2. Там же доказано, что
полные нумерации являются цилиндрическими (то есть если ν полна,
то существует вычислимая функция f , такая что для любых x, t, s ∈ N
f(x, t) = f(x, s) ⇔ t = s и νf(x, t) = νx).

В работе [9] доказано, что если a ∈ R0
n(S) не принадлежит наибольшей

0′-степени, то для произвольной лахлановской полурешетки L (определение
см. там же) существует b ∈ R0

n(S) для которого интервал [a, b] = {x ∈
R0

n(S) : a 6 x 6 b} изоморфен L. Так как класс лахлановских полурешеток
достаточно широк (можно показать, что он содержит все дистрибутивные
решетки с нулем и единицей, имеющие Σ0

3-представление), то наибольший
элемент полурешетки Роджерса является предельным тогда и только
тогда, когда он пределен как элемент наибольшей 0′-степени. К сожалению,
никакая 0′-степень не может быть одноэлементной (в той же работе
доказано, что любая 0′-степень содержит произвольную лахлановскую
полурешетку в качестве идеала).
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Переходим к доказательству первого достаточного условия предельности
наибольшего элемента.

Теорема 1 Если семейство S содержит наименьший по включению
элемент, то наибольший элемент полурешетки R0

n(S) (в случае, когда
он существует) является предельным.

Доказательство. Полное бинарное дерево (то есть множество конечных
последовательностей из 0 и 1) обозначим через 2<ω, а множество ветвей
полного бинарного дерева (то есть бесконечных последовательностей из
0 и 1) — через 2ω. Для τ ∈ 2<ω |τ | обозначает длину последовательности
τ . Последовательность нулевой длины обозначим через Λ. Через τ ∗ σ
обозначается конкатенация последовательностей τ и σ. Для τ ∈ 2<ω,
σ ∈ 2<ω ∪ 2ω мы пишем τ 4 σ, если существует ε ∈ 2<ω ∪ 2ω, такая
что σ = τ ∗ ε. Если σ ∈ 2ω и i ∈ N, то через σi мы обозначаем такую
последовательность τ ∈ 2<ω, что |τ | = i и τ 4 σ. Для τ, σ ∈ 2<ω ∪ 2ω мы
говорим, что τ меньше или левее, чем σ, и пишем τ < σ, если существует
ε ∈ 2<ω, такая что ε ∗ 0 4 τ и ε ∗ 1 4 σ.

Пусть есть отображение, сопоставляющее каждому элементу τ ∈ 2<ω

подмножество натурального ряда Sτ . Тогда через S∗τ мы обозначаем множество⋃{Sσ : σ ∈ 2<ω & τ 4 σ}. Под китайской системой мы понимаем тройку
〈{Sτ : τ ∈ 2<ω}, σ, U〉, такую что

1. для τ ∈ 2<ω Sτ — вычислимое подмножество натурального ряда,
σ ∈ 2ω, U — рекурсивно перечислимое множество;

2. если τ 6= σ, то Sτ ∩ Sσ = ∅;
⋃{Sτ : τ ∈ 2<ω} = N;

3. для τ ∈ 2<ω если τ < σ, то множество S∗τ конечно; если τ > σ, то
Sτ ⊆ U ; если же τ 4 σ, то множество Sτ бесконечно, а множество
Sτ ∩ U конечно;

4. для i ∈ N множество S∗σi
рекурсивно перечислимо;

5. для i ∈ N либо S∗σi+1
⊆ Wi, либо S∗σi+1

∩Wi ⊆ U ;

6. для τ ∈ 2ω если n0
τ < n1

τ < . . . — ”прямой пересчет” множества Sτ (в
случае, когда множество Sτ конечно, числа nk

τ не определены при
k большем чем число элементов множества Sτ ), то отношения ”nk

τ

определено” и ”x = nk
τ ” разрешимы с оракулом 0′.
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В теории вычислимости известны конструкции с так называемыми
”китайскими ящиками”, которые приводят к построению китайских систем
с различными дополнительными свойствами. Примеры можно найти в [8,
6, 4, 11]. Примем без доказательства, но со ссылкой на перечисленные
источники, что китайские системы существует. Если читатель все же
сомневается в их существовании, то он может, для примера, изучить
первую часть доказательства теоремы 3 в работе [4], а потом взять в
качестве Sτ множество S1

τ ∪S2
τ (обозначения взяты из указанной работы).

Зафиксируем китайскую систему 〈{Sτ : τ ∈ 2<ω}, σ, U〉. Пусть a, b —
элементы R0

n(S), такие что a < b и для Σ0
n-вычислимых нумераций

α, β семейства S a = [α] и b = [β]. Зафиксируем сильно 0(n−1)-вычис-
лимые последовательности конечных множеств α0x ⊆ α1x ⊆ . . . и β0x ⊆
β1x ⊆ . . ., такие что αx =

⋃
s∈N αsx и βx =

⋃
s∈N βsx для любого x ∈ N.

Построим нумерацию γ семейства S, такую что [γ] — минимальный
элемент полурешетки R0

n(S), не сводимый к a.
Будем строить нумерацию γ по шагам. На шаге s будем определять

для каждого x ∈ N конечное множество γsx. После исполнения всех
шагов положим γx =

⋃
s∈N γsx. Наша конструкция эффективна с оракулом

0(n−1), так что каждое из множеств γsx будет сильно вычислимо с этим
оракулом. Кроме того, построенное нами семейство конечных множеств
будет удовлетворять следующим трем свойствам:

1. для всех x, s ∈ N γsx ⊆ γs+1x;

2. для любого x ∈ N существует y ∈ N, такой что почти для всех s
γsx = βsy;

3. для любого y ∈ N существует x ∈ N, такой что почти для всех s
γsx = βsx;

так что γ окажется Σ0
n-вычислимой нумерацией семейства S.

Нам понадобится "счетчик", показывающий наличие сводимости γ к
α. Пусть

c′(i, t) = max
{
s 6 t : (∀n < s)(∀x < s)[n ∈ δfi

& (x ∈ αtfi(n) ↔ x ∈ γtn)]
}
,

а c(i, t) = max{c′(i, 0), c′(i, 1), . . . , c′(i, t)}. Легко видеть, что c(i, t) — всюду
определенная 0(n−1)-вычислимая функция, возрастающая по второму аргументу,
для которой limt→∞ c(i, t) = ∞ тогда и только тогда, когда γ = αfi.
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Без ограничения общности можно считать, что β0 — наименьший
по включению элемент семейства S и что каждый элемент S имеет в
нумерации β бесконечно много номеров. Дадим описание шагов конструкции.

Шаг 0. Для всех x ∈ N полагаем γ0x = β00. На все натуральные
числа поставим метку 〈0〉.

Шаг s + 1. Найдем минимальное число x, такое что x ∈ Sτ \ U для
некоторой последовательности τ длины > s и поставим на x метку 〈s+1〉.
После этого для всех i 6 s, для всех τ , таких что |τ | = i и для всех
k 6 c(i, s) если число nk

τ определено, не принадлежит U и на нем стоит
метка 〈0〉, то поставим на nk

τ метку 〈k〉. В заключении для каждого x ∈ N
полагаем γs+1x = γsx ∪ βs+1k, где 〈k〉 — метка, которая стоит на x.

Из определения китайской системы и описания конструкции видно,
что семейство конечных множеств {γsx}s,x∈N действительно удовлетворяет
введенным выше трем свойствам и, следовательно, γ является Σ0

n-вычис-
лимой нумерацией семейства S. Если γ 6 α, то для некоторого i ∈ N
limt→∞ c(i, t) = ∞, почти для всех k ∈ N γnk

σi
= βk и β 6 γ 6 α,

чего не может быть в силу выбора α и β. Значит, γ 66 α, для всех
i ∈ N limt→∞ c(i, t) < ∞ и для каждого τ ∈ 2<ω почти для всех k ∈ N
γnk

τ = β0. Следовательно, для всех τ γSτ — разрешимая нумерация
некоторого конечного подсемейства S. Покажем, что γ — минимальный
элемент полурешетки R0

n(S). Так как γ 66 α, то нумерация γ не может
быть разрешимой. Пусть δ 6 γ. Тогда δ ≡ γWi

для некоторого i ∈
N. Имеем N = U ∪ B ∪ C ∪ D, где B = S∗σi+1

, C =
⋃

j6i Sσj
, а D —

конечное множество, равное
⋃

τ<σi+1
Sτ . В связи со сказанным выше γC —

разрешимая нумерация. По построению γ(U) = {β0}. Получаем γ ≡
γU ⊕ γB ⊕ γC ⊕ γD ≡ γB. Теперь если B ⊆ Wi, то γ ≡ γB 6 γWi

≡ δ 6 γ и
δ ≡ γ. Если же B∩Wi ⊆ U , то δ ≡ γWi

≡ γU∩Wi
⊕γB∩Wi

⊕γC∩Wi
⊕γD∩Wi

—
разрешимая нумерация некоторого конечного подсемейства S.

В заключении предположим, что b — наибольший элемент полурешетки
R0

n(S) и a < b. Тогда, по доказанному, вR0
n(S) существует минимальный

элемент c, не сводимый к a. Имеем a < a ∪ c 6 b. Равенство a ∪ c = b не
может выполняться из-за полноты главных нумераций. ¤

Следствие 1 Если a — не наибольший и не наименьший элемент полурешетки
R0

n(S), то в этой полурешетке существует минимальный элемент,
несравнимый с a.

Доказательство. Существование такого элемента было установлено
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в ходе доказательства теоремы 1. ¤

Следствие 2 Если семейство S конечно, то в полурешетке R0
n(S)

наибольший элемент является предельным.

Доказательство. Если S содержит наименьший по включению элемент,
то это прямо следует из теоремы 1. Если же в S нет элемента, наименьшего
по включению, то, как показано в [4], в полурешетке R0

n(S) вообще нет
наибольшего элемента. ¤

В связи с доказанной теоремой возникает естественный вопрос: верно
ли, что если вR0

n(S) существует наибольший элемент, то в S существует
элемент, наименьший по включению? Ответ на этот вопрос автору неизвестен.
Если бы это оказалось так, то тогда теорема 1 полностью решала бы
вопрос о предельности наибольшего элемента полурешетки R0

n(S).
Можно привести множество достаточных условий несуществования

наибольшего элемента в полурешетке Роджерса. Так, например, в [7]
доказано утверждение, непосредственная релятивизация которого дает
следующий результат: если в R0

n(S) существует наибольшая 0(n−1)-сте-
пень, то объединение любого направленного подсемейства S (S′ ⊆ S

направлено, если для любых s1, s2 ∈ S′ существует s ∈ S′, такой что s1∪
s2 ⊆ s), обладающего Σ0

n-вычислимой нумерацией, должно лежать в S.
Поскольку 0(n−1)-степень наибольшего элемента полурешетки Роджерса
всегда является наибольшей, то из этого, в частности, следует, что для
S = {D ⊆ N : D конечно} и S = {A ⊆ N : A рекурсивно перечислимо} в
R0

n(S) нет наибольшего элемента.
Следующая теорема основана на другом достаточном условии несуществования

главной нумерации.

Теорема 2 Наибольший элемент полурешеткиR0
n(S) является предельным

при выполнении любого из следующих двух условий:

1. семейство S содержит конечное множество;

2. семейство S обладает Σ0
n−1-вычислимой нумерацией.

Доказательство. Если семейство S содержит наименьший по включению
элемент, то предельность наибольшего элементаR0

n(S) следует из теоремы 1.
Предположим, что в S нет элемента, наименьшего по включению.
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Будем говорить, что Σ0
n-вычислимая нумерация семейства S обладает

свойством (∗), если существует 0(n−1)-вычислимая всюду определенная
функция f , такая что для любого x ∈ N νx 6= νf(x). В работе [4]
показано, что если Σ0

n-вычислимая нумерация ν обладает свойством (∗),
то для [ν] в полурешеткe R0

n(S) существует минимальное накрытие. В
частности, [ν] не может быть наибольшим. Рассмотрим теперь отдельно
каждый из случаев.

Случай 1. Пусть F — конечное множество, принадлежащее S. Пусть
G = {x ∈ F : (∀s ∈ S)(x ∈ s)}. Так как в S нет множества, наименьшего
по включению, то G 6∈ S.

Пусть ν — произвольная Σ0
n-вычислимая нумерация S. Для каждого

x ∈ F \ G выберем yx ∈ N, такой что x 6∈ νyx. Пусть y ∈ N таково, что
νy = F . Определим функцию f так: для каждого z ∈ N перечисляем
νz с оракулом 0(n−1) и если в перечислении появился элемент 6∈ F , то
полагаем f(z) = y, а если появился x ∈ F \ G, то полагаем f(z) = yx.
Легко видеть, что f — всюду определенная 0(n−1)-вычислимая функция и
νx 6= νf(x) для любого x ∈ N. Следовательно, нумерация [ν] удовлетворяет
условию (∗), а так ν произвольно, то в R0

n(S) нет наибольшего элемента.
Случай 2. Пусть µ — некоторая Σ0

n−1-вычислимая нумерация семейства
S. Тогда отношение ”x ∈ µy” вычислимо с оракулом 0(n−1). Пусть ν —
произвольная Σ0

n-вычислимая нумерация семейства S. Определим функцию
f так: для произвольного z ∈ N перечисляем (µ⊕ ν)z с оракулом 0(n−1)

и для каждого из элементов, появившихся в перечислении, ищем y ∈ N,
для которого этот элемент 6∈ µy. Поскольку в S нет наименьшего по
включению множества, то такой y всегда найдется. Как только такой
y нашелся, полагаем f(z) = 2y. Легко видеть, что функция f всюду
определена, вычислима с оракулом 0(n−1) и (µ ⊕ ν)z 6= (µ ⊕ ν)f(z) для
любого z ∈ N. Следовательно, нумерация µ⊕ν обладает свойством (∗) и,
в силу произвольности выбора ν, в R0

n(S) нет наибольшего элемента. ¤

Закончим эту работу теоремой, которая связывает вопрос о предельности
наибольшего элемента полурешетки Роджерса с понятием слабой сводимости.

Теорема 3 Пусть ν — Σ0
n-вычислимая нумерация семейства S, µ —

главная Σ0
n-вычислимая нумерация S и в полурешеткеR0

n(S) [µ] является
минимальным накрытием [ν]. Тогда µ 6w ν.

Доказательство. Пусть ν и µ — такие, как в условии теоремы. Тогда
µ 66 ν и для любой вычислимой всюду определенной функции f имеем
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µx 6= νf(x) для некоторого x ∈ N. Покажем, что для любого иммунного
0(n−1)-вычислимого множества X существует вычислимая всюду определенная
вычислимая функция f , такая что µx = νf(x) для всех x ∈ X.

Предположим противное и пусть X ⊆ N — иммунное 0(n−1)-вычисли-
мое множество, такое что для любой всюду определенной вычислимой
функции f µx 6= νf(x) для некоторого x ∈ X. Нумерация µ главная,
а, значит, полная и цилиндрическая. Зафиксируем вычислимую всюду
определенную функцию ϕ, такую что при t 6= s для любого x ∈ N
ϕ(x, t) 6= ϕ(x, s) и µx = µϕ(x, t). Пусть c — вычислимая функция, взаимно
однозначно отображающая N2 на N.

Построим нумерацию γ. Построение будет вестись по шагам. На каждом
шаге будем определять значение нумерации γ на некоторых натуральных
числах либо через нумерацию µ, либо через нумерацию ν. Конструкция
эффективна с оракулом 0(n−1), так что нумерация γ окажется Σ0

n-вычис-
лимой. На всех шагах, кроме нулевого, будем определять γ на конечном
числе аргументов.

Шаг 0. Полагаем γx = µx для всех x ∈ X.
Шаг 2s + 1. Пусть s = c(i, x). Ищем минимальное y, такое что либо

ϕ(x, y) 6∈ δfi, либо fi(ϕ(x, y)) = fi(ϕ(x, y′)) для некоторого y′ < y, либо
γfi(ϕ(x, y)) еще не определено. Так как X иммунно, то такой y найдется.
В первых двух случаях ничего не делаем. В третьем случае полагаем
γfi(ϕ(x, y)) = νx.

Шаг 2s + 2. Ищем минимальное z, такое что γz еще не определено, и
полагаем γz = νs.

Нумерация γ определена. Из наличия четных шагов следует, что γ —
нумерация всего семейства S. Так как γx = µx для всех x ∈ X, то в
силу выбора X γ 66 ν. Предположим, что µ 6 γ. Тогда нумерация γ
является главной, а, значит, полной и цилиндрической. Следовательно,
существует разнозначная всюду определенная функция f , такая что µ =
γ ◦ f (см. [7]). Пусть f = fi для некоторого i ∈ N. Из описания шагов с
номерами 2c(i, x) + 1 следует, что для каждого x ∈ N существует yx ∈ N,
такой что γf(ϕ(x, yx)) = νx. Получаем µx = µϕ(x, yx) = γf(ϕ(x, yx)) =
νx для любого x ∈ N. Однако ν 6= µ; противоречие.

Таким образом, µ 66 γ. Из полноты нумерации µ получаем, что ν⊕γ <
µ. Так как γ 66 ν, то ν < ν⊕γ и [µ] — не минимальное накрытие для [ν]. Из
этого противоречия окончательно выводим, что для любого иммунного
0(n−1)-вычислимого множества X существует вычислимая функция f ,
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для которой µx = νf(x) при всех x ∈ X.
Пусть теперь f — такая 2-местная функция, что f(k, i) = min{t >

k : Wi ⊆ {0, . . . , t} или множество Wi ∩ {k + 1, . . . , t} содержит ровно
два элемента}, а g — 1-местная функция, такая что g(0) = 0 и g(t +
1) = f(g(t), t) для всех t ∈ N. Ясно, что функции f и g 0′-вычислимы
и что g(0) < g(1) < . . .. Следовательно, множество X = ρg 0′-вычисли-
мо. Легко проверить, что как само множество X, так и его дополнение
иммунны.

Пусть теперь f1 и f2 — такие вычислимые всюду определенные функции,
что µx = νf1(x) и µy = νf2(y) для всех x ∈ X и y ∈ N \ X. Получаем,
что для любого x ∈ N µx ∈ {νf1(x), νf2(x)} и, следовательно, µ 6w ν. ¤
Следствие 3 Если главная Σ0

n-вычислимая нумерация семейства S

слабо не сводится к неглавным Σ0
n-вычислимым нумерациям того же

семейства, то наибольший элемент полурешеткиR0
2(S) является предельным.

Про слабую сводимость пока мало что известно. Ясно, что если семейство
S конечно, то любые две нумерации S (не обязательно Σ0

n-вычислимые)
слабо сводятся друг к другу. Ясно также, что обычная сводимость влечет
слабую сводимость. Другие свойства слабой сводимости нуждаются в
специальном исследовании.
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