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О ЛОКАЛЬНОМ СТРОЕНИИ ПОЛУРЕШЕТОК
РОДЖЕРСА Σ0

n-ВЫЧИСЛИМЫХ НУМЕРАЦИЙ

С. Ю. ПОДЗОРОВ∗)

Понятие Σ0
n-вычислимой нумерации является обобщением понятия

вычислимой нумерации — классического объекта теории нумераций (вычислимыми
нумерациями в традиционном понимании этого термина являются в точности
Σ0

1-вычислимые нумерации). Систематическое изучение Σ0
n-вычислимых

нумераций для n > 2 началось в работе С. С. Гончарова и А. Сорби
[3], в которой было доказано, что все неодноэлементные полурешетки
Роджерса таких нумераций бесконечны и не являются решетками.

С момента выхода этой статьи большое внимание уделялось изучению
алгебраических свойств полурешеток Роджерса Σ0

n-вычислимых нумераций
для n > 2, особенно вопросам их локального строения (типы изоморфизма
интервалов и начальных сегментов таких полурешеток). Так, в [1] было
доказано, что каждая такая полурешетка для бесконечного семейства
содержит бесконечно много минимальных элементов и содержит безатомный
идеал в случае, когда семейство обладает Σ0

n-вычислимой фридберговой
нумерацией. Далее в [7] автор показал, что в каждую нетривиальную
полурешетку Роджерса Σ0

n-вычислимых нумераций для n > 2 можно
вложить идеал, изоморфный E∗ —фактор-решетке рекурсивно перечислимых
множеств по модулю конечных множеств (без наименьшего элемента
в случае, когда нумеруемое семейство бесконечно). В статье [2] также
доказано, что для произвольного элемента α полурешетки Роджерса,
который не является наибольшим относительно 0′-сводимости, существует
элемент β этой же полурешетки, такой что интервал [α, β] изоморфен
E∗. В этой же статье доказано, что для произвольной нумерации α,
которая не является наибольшей в полурешетке Роджерса относительно
0′′-сводимости и для любого рекурсивно перечислимого множества A
найдется нумерация β из указанной полурешетки, такая что интервал

∗)Работа выполнена при частичной поддержке гранта INTAS 00-499, гранта
"Университеты России"УР.04.01.013 и гранта КЦФЕ PD02-1.1-475

1



[α, β] изоморфен E∗A —фактор-решетке рекурсивно перечислимых надмножеств
A по модулю конечных множеств. Впоследствии автору этой статьи удалось
усилить последний результат: было доказано, что в его формулировке
0′′-сводимость можно заменить на 0′-сводимость и что, кроме того, для
произвольного рекурсивно перечислимого множества A в каждой нетривиальной
полурешетке Роджерса Σ0

n-вычислимых нумераций для n > 2 найдется
идеал, изоморфный E∗A (без наименьшего элемента, если нумеруемое семейство
бесконечно).

В 1972 году А. Лахлан [6] предложил описание верхних полурешеток,
которые являются главными идеалами в полурешетке рекурсивно перечислимых
m-степеней. Из указанной работы следует, что класс таких полурешеток
(которые мы будем называть лахлановскими полурешетками) достаточно
"широк"; в частности, он содержит все дистрибутивные решетки, имеющие
Σ0

3-представление (и, следовательно, все решетки вида E∗A для произвольного
рекурсивно перечислимого A).

Основным результатом данной статьи являются следующие два утверждения:
1. Для произвольной лахлановской полурешетки L в нетривиальной

полурешетке Роджерса Σ0
n-вычислимых нумераций для n > 2 найдется

идеал, изоморфный L (без наименьшего элемента, если нумеруемое семейство
бесконечно).

2. Для произвольной лахлановской полурешетки L и для произвольного
элемента α полурешетки Роджерса Σ0

n-вычислимых нумераций при n >
2, который не является наибольшим относительно 0′-сводимости, найдется
Σ0

n-вычислимая нумерация β того же семейства, для которой интервал
[α, β] изоморфен L.

Все доказанные ранее результаты, которые перечислены во введении,
являются следствиями этих двух утверждений.

§ 1. Основные определения и обозначения.

Основные понятия, относящиеся к вычислимым функциям и множествам,
можно найти в [8], к теории нумераций — в [5]. Мы предполагаем, что
читателю они известны.

Для частичной функции f через δf мы обозначаем ее область определения,
через ρf — область значений.

Зафиксируем {fi}i∈N и {Wi}i∈N — универсальные вычислимые последовательности
всех частичных вычислимых функций от одной переменной и рекурсивно
перечислимых множеств. Зафиксируем также {W s

i }i,s∈N и {f s
i }i,s∈N —

двойные сильно вычислимые последовательности конечных множеств
и функций, такие что для любого i W 0

i ⊆ W 1
i ⊆ . . ., f 0

i ⊆ f 1
i ⊆ . . .,⋃

s∈NW s
i = Wi и

⋃
s∈N f s

i = fi. Пусть для i ∈ N Hi = {x : [i/2x] − 2 ·
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[i/2x+1] = 1} (здесь [q] — целая часть рационального числа q). Последовательность
{Hi}i∈N — каноническая сильно вычислимая последовательность всех
конечных множеств.

Говоря об m-степенях, мы отождествляем степени множеств ∅,N с
другими вычислимыми степенями и считаем, что в полурешетке m-степе-
ней существует наименьший элемент, состоящий из вычислимых множеств.

Пусть U — произвольное подмножество N, A — непустое рекурсивно
перечислимое множество. Через ψU(A) мы обозначаем m-степень множества
f−1(U), где f — всюду определенная вычислимая функция, для которой
ρf = A. Ясно, что эта степень не зависит от выбора f . Отметим следующие
четыре свойства оператора ψ:

1. ψU(A) 6m U ;

2. X 6m U ⇒ X ≡m ψU(A) для некоторого A;

3. ψU(A1 ∪ A2) = ψU(A1) ∪ ψU(A2);

4. если разность A1 \ A2 конечна, то ψU(A1) 6m ψU(A2).

Пусть L — не более чем счетная верхняя полурешетка с наибольшим
и наименьшим элементами. Мы называем полурешетку L лахлановской,
если существует последовательность 〈D0,60〉, 〈D1,61〉, . . . конечных предупорядоченных
множеств, такая что:

1. D0 ⊆ D1 ⊆ . . . — сильно вычислимая последовательность конечных
подмножеств N,

⋃
i∈NDi = N;

2. для i ∈ N {0, 1} ⊆ Di, 0 <i 1, для всех x ∈ Di 0 6i x 6i 1;

3. x 6i y является Π0
2-отношением между x, y и i;

4. для всех i ∈ N ассоциированное с 〈Di,6i〉 частично упорядоченное
множество является дистрибутивной решеткой;

5. для i ∈ N и x, y ∈ Di x 6i y влечет x 6i+1 y, отображение частичных
порядков, определяемое вложением Di ⊆ Di+1, сохраняет точные
верхние грани;

6. существуют вычислимые трехместные функции u(x, y, i) и v(x, y, i),
такие что для x, y ∈ Di значения этих функций на x, y и i также
принадлежат Di и функции u, v представляют в ассоциированной с
〈Di,6i〉 дистрибутивной решетке операции взятия точной верхней
и точной нижней граней соответственно;
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7. L изоморфна прямому пределу последовательности {〈Di,6i〉}i∈N.

Из определения следует, что в лахлановской полурешетке наибольший
элемент не равен наименьшему. Кроме того, лахлановские полурешетки
дистрибутивны [5].

Нумерацию α конечного множества F мы называем разрешимой, если
для любого F ∈ F множество α−1(F ) вычислимо. Если α — разрешимая
нумерация F , β — произвольная нумерация G и F ⊆ G, то α 6 β.

Пусть a — произвольная T -степень, α, β — нумерации. Мы говорим,
что α a-сводится к β и пишем α 6a β, если существует всюду определенная
функция f , вычислимая с оракулом для a, такая что α = βf . Ясно, что
из α 6 β следует α 6a β для произвольной T -степени a. Мы пишем
α ≡a β, если α 6a β и β 6a α.

Для произвольных нумераций α и β мы рассматриваем нумерацию
α⊕ β, полагая для x ∈ N

(α⊕ β)x =

{
αy, x = 2y,

βy, x = 2y + 1.

Пусть F — непустое семейство Σ0
n-подмножеств N для n > 1, α —

нумерация F . Мы называем α Σ0
n-вычислимой, если множество {〈x, y〉 :

x ∈ αy} принадлежит классу Σ0
n арифметической иерархии. Для n = 1

имеем классическое понятие вычислимой нумерации.
Свойство нумерации быть Σ0

n-вычислимой наследуется вниз относительно
0(n−1)-сводимости. Для F ⊆ Σ0

n множество всех Σ0
n-вычислимых нумераций

F является предпорядком относительно сводимости. Ассоциированный
с ним частичный порядок является верхней полурешеткой, которую мы
называем полурешеткой Роджерса и обозначаем R0

n(F). Для Σ0
n-вычис-

лимых нумераций α и β элемент полурешетки Роджерса, содержащий
α⊕ β, является точной верхней гранью элементов, содержащих α и β.

Чтобы избежать введения громоздкой системы обозначений, мы отождествляем
Σ0

n-вычислимые нумерации с содержащими их элементами полурешетки
Роджерса. Это не приведет нас к недоразумениям.

Для X ⊆ N через 2X мы обозначаем множество {2x : x ∈ X}, а через
X + 1 — множество {x + 1 : x ∈ X}.

Пусть A — непустое рекурсивно перечислимое множество и β — нумерация
F . Через βA мы обозначаем нумерацию некоторого подcсемейства F ,
задаваемую правилом: βAx = βf(x), где f — произвольная всюду определенная
вычислимая функция, такая что ρf = A. С точностью до эквивалентности
нумераций βA не зависит от выбора f . Отметим следующие важные для
нас свойства этого обозначения.
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1. если α 6 β, то α ≡ βA для некоторого A;

2. β ≡ βN;

3. αA 6 βB ⇔ существует частичная вычислимая функция f , такая
что δf = A, ρf ⊆ B и для любого x ∈ A αx = βf(x);

4. βA ⊕ βB ≡ βA∪B;

5. αA ⊕ βB ≡ (α⊕ β)2A∪(2B+1);

6. если A и B различаются на конечном числе элементов и βA, βB —
нумерации одного и того же семейства, то βA ≡ βB.

§ 2. Гиперпростые множества и лахлановские полурешетки.

Теорема 1 Для произвольной лахлановской полурешетки L существует
гиперпростое множество U , такое что L изоморфна главному идеалу
полурешетки m-степеней, порожденному m-степенью U .

Доказательство этой теоремы основано на идеях Лахлана [6] (конструкция
с башнями является незначительной модификацией конструкции из указанной
работы). Отдельными моментами доказательства, связанными, главным
образом, с терминологией, автор обязан работе Денисова [4].

Пусть L— лахлановская полурешетка из условия теоремы. Зафиксируем
последовательность {〈Di,6i〉}i∈N из определения лахлановской полурешетки.
Через D̃i мы обозначаем конечную дистрибутивную решетку, ассоциированную
с 〈Di,6i〉, через ∪i и ∩i — операции взятия точной верхней и точной
нижней граней в этой решетке. Для x ∈ Di через [x]i обозначим элемент
D̃i, представителем которого является x.

Для x, y ∈ N мы пишем x 6ω y, если (∃i)(x, y ∈ Di & x 6i y).
Отношение x 6ω y является предпорядком на N. Ассоциированый с ним
порядок изоморфен L.

Пусть L — конечная дистрибутивная решетка. Атомом в L назовем
произвольный неразложимый элемент в L, отличный от наименьшего,
то есть такой a ∈ L, что (∃x ∈ L)(a 66 x) и (∀x, y ∈ L)(a = x ∪ y → a =
x ∨ a = y). Можно показать (см., например, [5]), что каждая конечная
дистрибутивная решетка изоморфна подрешетке булевой алгебры подмножеств
множества своих атомов: изоморфизм задается правилом, сопоставляющим
каждому элементу решетки множество атомов, лежащих под этим элементом.
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Применительно к нашему случаю введем еще одно определение атома.
Атомом в Di называется произвольное подмножество A ⊆ Di, такое что
A = {x ∈ Di : a 6i x}, где a — элемент Di и [a]i — атом в D̃i.

Через u(A, i) и v(A, i) обозначим вычислимые функции, первыми аргументами
которых являются конечные множества, причем если A — непустое подмножество
Di, то u(A, i) и v(A, i) являются элементами Di и представляют

⋃
i{[x]i :

x ∈ A} и ⋂
i{[x]i : x ∈ A} соответственно. Существование таких функций

следует из п. 6 определения лахлановской полурешетки.
Легко проверить, что A ⊆ Di — атом в Di тогда и только тогда,

когда A 6= ∅, Di и v(A, i) 66i u(Di \ A, i). Заметим, что последнее условие
является Σ0

2-условием на A и i.
Из пп. 2 и 5 определения лахлановской полурешетки следует, что

вложения Di ⊆ Di+1 задают отображения λi : D̃i → D̃i+1, сохраняющие
точные верхние грани, наибольший и наименьший элементы. Следующая
простая лемма дает важное для нас свойство этих отображений.

Лемма 1 Пусть L1, L2 — конечные дистрибутивные решетки, λ : L1 →
L2 — отображение, сохраняющее точные верхние грани и наименьший
элемент, b — атом в L2. Тогда минимальные элементы множества
{x ∈ L1 : λ(x) > b} являются атомами в L1.

Доказательство можно найти в работе Денисова [4] либо вывести
непосредственно из определений.

Следствие 1 Пусть A ⊆ Di+1 — атом в Di+1. Тогда существует единственное
множество C(A) атомов в Di, такое что C(A) непусто, A ∩ Di =⋃

C(A) и элементы C(A) попарно несравнимы (как множества).

Существование и единственность C(A) следуют из предыдущей леммы,
непустота — из того, что λi сохраняет наибольший элемент.

Введем, следуя [6] и [4], каркасы и башни.
Каркасом называется пара F = (An, . . . ,A0; cn, . . . , c1), состоящая из

двух конечных последовательностей, такая что:

F1) для i 6 n элементами Ai являются непустые подмножества Di, не
содержащие 0;

F2) для i < n ci+1 : Ai+1 → P(Ai) — отображение Ai+1 в множество
непустых подмножеств Ai, Ai =

⋃
A∈Ai+1

ci+1(A);

F3) для i < n и A ∈ Ai+1 элементы ci+1(A) попарно несравнимы и A ∩
Di =

⋃
ci+1(A);
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F4) множество An одноэлементно.

Число n в этом определении называется длиной каркаса F .
Каркас называется хорошим, если для любых i 6 n и A ∈ Ai A

— атом в Di. Из следствия 1 видно, что для произвольного атома A в
Dn существует единственный хороший каркас длины n, для которого
An = {A}.

Из приведенного выше замечания следует, что свойство каркаса "быть
хорошим"является Σ0

2-свойством. Принимая во внимание этот факт, зафиксируем
вычислимую функцию modsF , такую что:

M1) mod0F 6 mod1F 6 . . .;

M2) каркас F хороший ⇔ lims→∞ modsF < ∞;

M3) если F и G — различные каркасы, то для любых s и t modsF 6=
modtG;

M4) для всех n, s ∈ N множество каркасов {F : modsF < n} вычислимо
равномерно по n и s;

M5) для всех t mod5tF = mod5t+1F .

СвойстваM3 иM4 легко выполнить, занумеровав эффективным образом
все каркасы и определив модуль так, чтобы для каркаса F с номером
n значение modsF было равно ненулевой степени n-го простого числа.
Значение предела lims→∞ modsF обозначим через mod(F). Если каркас
F плохой, то mod(F) = ∞; для хорошего F значение mod(F) равно
натуральному числу, причем функция mod разнозначна на множестве
хороших каркасов.

Башней будем называть пару T = (Pn, . . . ,P0; ϕn, . . . , ϕ0), состоящую
из двух конечных последовательностей, такую что:

T1) для i 6 n элементами Pi являются непустые конечные подмножества
натурального ряда;

T2) для i 6 n ϕi : Pi → P(Di) — отображение из Pi в множество
подмножеств Di;

T3) Pn одноэлементно;

T4) для i 6 n и P, Q ∈ Pi если P 6= Q, то P ∩Q = ∅;
T5) для i < n и P ∈ Pi+1 существует (очевидно, единственное) εi+1(P ) ⊆

Pi, такое что P =
⋃

εi+1(P );
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T6) для i < n пусть P ∈ Pi+1, A = ϕi+1(P ) и εi+1(P ) = {P1, . . . , Pk}.
Тогда {ϕi(P1), . . . , ϕi(Pk)} зависит только от A. Обозначим это семейство
подмножеств Di через ci+1(A);

T7) Пара (ϕn(Pn), . . . , ϕ0(P0); cn, . . . , c1) является каркасом.

Мы называем каркас, определенный в T7, каркасом башни T , а про
саму башню говорим, что она построена на этом каркасе. Число n мы
называем высотой башни T . Множество, являющееся элементом Pn мы
называем основанием башни и обозначаем base(T ).

Ясно, что, имея каркас и достаточно большое конечное множество F ,
можно построить башню на этом каркасе, взяв множество F в качестве
основания.

Для башни T под modsT мы понимаем значение функции modsF , где
F — каркас T . Мы называем башню хорошей, если ee каркас является
хорошим.

Пусть F = (An, . . . ,A0; cn, . . . , c1) — каркас, k 6 n и A ∈ Ak. Существует
каркас (Bk, . . . ,B0; dk, . . . , d1) длины k, определяемый следующими соотношениями:

1. Bk = {A};
2. для i < k Bi =

⋃
B∈Bi+1

ci+1(B);

3. для i < k di+1 = ci+1 ¹ Bi+1.

Построенный таким образом каркас обозначим через Fk
A.

Пусть F = (An, . . . ,A0; cn, . . . , c1) и G = (Bk, . . . ,B0; dk, . . . , d1) — два
каркаса и k 6 n. Для i 6 k и B ∈ Bi обозначим через αi(B) множество
{A ∈ Ai : B ⊆ A}. Мы говорим, что каркас G вкладывается в каркас F
и пишем G 4 F , если для B ∈ Bk αk(B) 6= ∅ и для всех i < k, B ∈ Bi+1,
B′ ∈ di+1(B) и A ∈ αi+1(B) имеем ci+1(A) ∩ αi(B

′) 6= ∅.

Лемма 2 Пусть F = (An, . . . ,A0; cn, . . . , c1) и G = (Bk, . . . ,B0; dk, . . . , d1)
— два хороших каркаса, k 6 n и для (единственного) B ∈ Bk существует
A ∈ Ak, такое что B ⊆ A. Тогда G 4 F

Пусть для i < k и A ⊆ Di+1 — атома в Di+1 C(A) — семейство атомов
в Di, введенное в следствии 1.

Сначала покажем, что если B ⊆ A ⊆ Di+1 — атомы в Di+1, то для
любого B′ ∈ C(B) найдется A′ ∈ C(A), такой что B′ ⊆ A′. Действительно,
пусть A = {x ∈ Di+1 : a 6i+1 x} и B = {x ∈ Di+1 : b 6i+1 x},
где [a]i+1 и [b]i+1 — атомы в D̃i+1. Из построения C(B) заключаем, что
B′ = {x ∈ Di : b′ 6i x}, где [b′]i — минимальный элемент множества
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{[x]i : λi([x]i) > [b]i+1}. Так как a 6i+1 b, то найдется a′ ∈ Di, такой
что [a′]i — минимальный элемент множества {[x]i : λi([x]i) > [a]i+1},
лежащий под [b′]i. Но тогда A′ = {x ∈ Di : a′ 6i x} — атом в Di, B′ ⊆ A′

и A′ ∈ C(A).
Теперь проверим условие вложимости G в F . αk(B) 6= ∅ по условию

леммы. Пусть для i < k B ∈ Bi+1, B′ ∈ di+1(B), A ∈ Ai+1 и B ⊆ A. Так
как каркасы G и F хорошие, то di+1(B) = C(B) и ci+1(A) = C(A). Из
доказанного выше следует, что для некоторого A′ ∈ C(A) A′ ∈ αi(B

′).
Мы говорим, что каркасы F = (An, . . . ,A0; cn, . . . , c1) и G =

(Bk, . . . ,B0; dk, . . . , d1) совместны на уровне i для i 6 min{n, k}, если
для некоторых B ∈ Bi и A ∈ Ai имеем Gi

B 4 F i
A. Мы говорим, что башни

совместны, если их каркасы совместны (на некотором уровне i).
Пусть T = (Pn, . . . ,P0; ϕn, . . . , ϕ0) и S = (Qk, . . . ,Q0; ψk, . . . , ψ0) —

две различные башни с непересекающимися основаниями, совместные
на уровне i, F = (An, . . . ,A0; cn, . . . , c1) и G = (Bk, . . . ,B0; dk, . . . , d1) —
их каркасы. Для некоторых B ∈ Bi, A ∈ Ai, P ∈ Pi и Q ∈ Qi имеем
Gi

B 4 F i
A, B = ψi(Q) и A = ϕi(P ). Опишем операцию преобразования

башен.
Для i 6 j 6 n и X ∈ Pj полагаем X∗ = X, если X ∩ P = ∅, и

X∗ = X ∪Q, если P ⊆ X.
Пусть j < i и для всех X ∈ Pj+1 значение X∗ уже определено. Пусть

X ∈ Pj+1 и X = Z0 ∪ . . . ∪ Zm для Z0, . . . , Zm ∈ Pj. Если X ∩ P =
∅, то полагаем Z∗

r = Zr для всех r 6 m. Пусть X ⊆ P . Описываемое
построение таково, что X∗ \ X = Y1 ∪ . . . ∪ Yp, где Ys ⊆ Q, Ys ∈ Qj+1 и
ψj+1(Ys) ⊆ ϕj+1(X) для всех s 6 p. Пусть для s 6 p Ys = Y 0

s ∪ . . .∪Y q
s , где

Y 0
s , . . . , Y q

s ∈ Qj. Из Gi
B 4 F i

A следует, что для каждого t 6 q найдется
r 6 m, такое что ψj(Y

t
s ) ⊆ ϕj(Zr). Выберем для всех s 6 p и t 6 q(s)

такое r и положим для всех r 6 m Z∗
r = Zr ∪

⋃{Y t
s : 1 6 s 6 p, t 6

q(s), r = r(s, t)}.
Для каждого j 6 n положим P∗j = {X∗ : X ∈ Pj}. Для j 6 n и X ∈ Pj

пусть ϕ∗j(X
∗) = ϕj(X).

Легко показать, что построенная пара (P∗n, . . . ,P∗0 ; ϕ∗n, . . . , ϕ∗0) является
башней с основанием base(T ) ∪ Q, которую мы обозначим через T ∗.
Отметим следующие свойства описанного построения:

P1) каркасы башен T и T ∗ совпадают и, следовательно, modsT = modsT ∗

для любого s;

P2) для j 6 i и Y ∈ Qj либо Y ⊆ base(T ∗), либо Y ∩ base(T ∗) = ∅;
P3) для j 6 i если Y ∈ Qj и Y ⊆ base(T ∗), то для некоторого единственного

X∗ ∈ P∗j Y ⊆ X∗ и ψj(Y ) ⊆ ϕ∗j(X
∗);
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P4) для каждого j 6 n и X ∈ Pj существует единственное X∗ ∈ P∗j ,
такое что X ⊆ X∗, причем ϕj(X) = ϕ∗j(X

∗).

Мы будем говорить, что башня T ∗ получена преобразованием башни
T уровня i посредством P и Q.

Прежде чем приступить к описанию конструкции, сделаем несколько
замечаний.

Все шаги конструкции эффективны. Если на каком-либо шаге необходимо
произвести выбор из нескольких альтернатив, то этот выбор производится
некоторым эффективным образом.

На каждом шаге конструкции мы можем совершить одно из следующих
действий: построить башню, разрушить башни, подвергнуть преобразованию
одну башню и разрушить другую, перечислить элементы в множество U .
Множество чисел, перечисленных в U к шагу s, мы обозначаем через U s.
Мы называем число неиспользованным до шага s, если оно не лежит в
основании башни, построенной на меньшем шаге; в противном случае
мы говорим, что оно использовано. Через Ds мы обозначаем множество
чисел, лежащих в основаниях башен, которые были построены и затем
разрушены до шага s. Конструкция устроена так, что числа, которые
уже были использованы, не могут использоваться повторно: таким образом,
D0 ⊆ D1 ⊆ . . . и множество D =

⋃
s∈NDs рекурсивно перечислимо.

Разрушая башню, мы автоматически перечисляем ее основание в U ,
то есть Ds ⊆ U s для любого s. Другая особенность перечисления U
заключается в том, что на каждом шаге основание любой существующей
башни либо целиком лежит в U , либо не пересекается с U .

В конструкции участвуют требования двух видов. P -требования или
требования вида Pe — это требования "(∃x ∈ We)(Hx ⊆ U)". Смысл P -
требований понятен: мы стремимся сделать дополнение к U гипериммунным.
Требование Pe удовлетворено на шаге s, если существует x ∈ W s

e , такой
что Hx ⊆ U s.

Другой вид требований — это R-требования, которые имеют вид Rn,m,e

для n,m, e ∈ N. Смысл этих требований станет ясен позднее, а пока мы
дадим формальные правила работы с ними.

R-требования мы, по ходу конструкции, будем связывать с башнями.
С каждой существующей башней будет связано единственное R-требо-
вание хотя само R-требование может быть связано более чем с одной
башней (либо не связано не с одной). Для каждой башни требование,
связанное с ней, не может менятся; оно может перестать быть связанным
с башней лишь в том случае, если башня будет разрушена.

Пусть T — башня, (Ak, . . . ,A0; ck, . . . , c0) — ее каркас и A ∈ Ak. Мы
говорим, что требование Rn,m,e свободно для башни T на шаге s, если
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n ∈ A, m 6∈ A и Rn,m,e не связано на шаге s ни с какой башней S, для
которой modsS < modsT .

Зафиксируем некоторую эффективную процедуру c(T , n), такую что
если T = (Pk, . . . ,P0; ϕk, . . . , ϕ0) — башня, A ∈ ϕk(Pk), n ∈ A и p 6 k —
наименьшее число, для которого n ∈ Dp, то c(T , n) — элемент Pp, для
которого n ∈ ϕp(c(T , n)). Существование такого элемента в Pp следует
из F3 и T7.

Пусть T — башня, существующая на шаге s, с которой на этом шаге
связано требование Rn,m,e и X = c(T , n). Мы говорим, что требование
Rn,m,e удовлетворено на шаге s, если существует x ∈ X, такой что f s

e x
не определено, либо неиспользовано, либо (x ∈ U s ↔ fex 6∈ U s), либо
x 6∈ U s и fex принадлежит base(T ),

Мы считаем, что все R-требования упорядочены эффективным образом
по типу натуральных чисел.

Дадим описание конструкции.
Шаг s = 5t. Ищем каркас с наименьшим модулем, который не является

каркасом какой-либо существующей башни (мы можем сделать это эффективно
в силу M3 и M4). Строим башню на этом каркасе, беря достаточно
большой начальный отрезок неиспользованных натуральных чисел в качестве
основания. Ищем наименьшее R-требование, которое свободно для этой
башни на шаге s, и связываем его с ней.

Шаг s = 5t + 1. Ищем башню T с наименьшим модулем, существующую
к шагу s, для которой modsT < mods+5T . Если такая T найдется, разрушаем
T и все башни с модулем, большим modsT .

Шаг s = 5t + 2. Проверим, существуют ли башни T = (Pn, . . . ,P0;
ϕn, . . . , ϕ0) и S = (Qk, . . . ,Q0; ψk, . . . , ψ0), удовлетворяющие следующим
четырем условиям:

1. башни T и S совместны, то есть существуют i 6 n, k, P ∈ Pi и
Q ∈ Qi, такие что башня T может быть преобразована на уровне i
посредством P и Q;

2. modsT < modsS;
3. [base(T ) ∪ base(S)] ∩ U s = ∅;
4. P ∩W s

i = ∅, Q ∩W s
i 6= ∅.

Если такие башни существуют, то выбираем T с наименьшим модулем, а
для нее — наименьшее i. Подвергаем T преобразованию уровня i посредством
P и Q (при этом связанное с T R-требование остается связанным с T ∗),
разрушаем S и все башни с большим модулем.
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Шаг s = 5t + 3. Проверяем, существуют ли башни, для которых связанные
с ними R-требования не удовлетворены. Если есть, то выбираем среди
них башню T с минимальным модулем. Пусть с T связано требование
Rn,m,e и X = c(T , n). Выберем x ∈ X. Так как требование Rn,m,e не
удовлетворено, то fex определено, использовано, и (x ∈ U s ↔ fex ∈
U s). Если x ∈ U s, то разрушаем башню T и все башни с большим
модулем. Если x 6∈ U s, то fex 6∈ base(T ), fex 6∈ U s и, значит, fex лежит
в основании некоторой существующей башни S, отличной от T , для
которой base(S) ∩ U s = ∅. Выбираем из двух башен T , S башню с
большим модулем и перечисляем ее основание в U .

Шаг s = 5t + 4. Просматривая все e 6 s, ищем среди них наименьшее,
для которого Pe не удовлетворено и для некоторого x ∈ W s

e все элементы
Hx либо принадлежат U s, либо лежат в основаниях существующих башен
с модулями, большими e. Если такое e существует, то выберем для него
соответствующий x ∈ W s

e и перечислим в U все основания башен, которые
еще не перечислены в U и содержат элементы из Hx.

Описание конструкции закончено. Докажем ряд предложений, относящихся
к ее свойствам, из которых будет следовать утверждение теоремы.

Лемма 3 Каждая башня может быть преобразована лишь конечное
число раз.

Для башни T = (Pn, . . . ,P0; ϕn, . . . , ϕ0) рассмотрим функцию αs(T ) =∑
x6n γs

x(T ), где γs
x(T ) равно числу элементов множества Px, имеющих

непустое пересечение с W s
x . Эта функция не убывает с ростом s и уменьшается

после каждого преобразования башни T .
Из конструкции следует, что все время, пока башня существует, ее

модуль остается неизменным. Поэтому мы говорим просто о модуле башни,
опуская аргумент s. Мы называем башню финальной на шаге s (или
просто финальной), если она существует на шаге s и на всех последующих
шагах не разрушается и не подвергается преобразованиям. Из предыдущей
леммы следует, что каждая построенная башня либо через некоторое
время разрушиться, либо станет финальной.

Отметим следующий факт: если на шаге s существуют две башни
T , S и modsT < modsS, то башня T была построена раньше, чем S.
Действительно, в момент постройки S должна существовать башня с
каркасом, равным каркасу T , поскольку на шагах 5t мы строим башню
на свободном каркасе с наименьшим модулем. На последующих шагах,
меньших s, эта башня не может быть разрушена, так как тогда разрушилась
бы и S как башня с большим модулем. Значит, эта башня и есть T (либо
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T возникла из этой башни после ряда преобразований). Для финальных
башен этот факт означает, что порядок их постройки совпадает с порядком
по модулю.

Ясно, что любая башня, построенная на плохом каркасе, рано или
поздно будет разрушена. Для хороших каркасов, как показывает следующая
лемма, ситуация иная.

Лемма 4 Для каждого хорошего каркаса F существует финальная башня
с модулем, равным mod(F), построенная на этом каркасе, причем связанное
с ней R-требование удовлетворяется на всех достаточно больших шагах.

Доказажем это утверждение индукцией по значению mod(F).
Пусть для всех каркасов G, таких что mod(G) < mod(F), это верно.

Выберем s настолько большим, что для него выполнены следующие свойства:

s1) для всех G, таких что mod(G) < mod(F), финальная башня, о которой
говорится в лемме, существует на шаге s;

s2) modsF = mod(F);

s3) для всех G, таких что mod(G) > mod(F), modsG > mod(F);

s4) все требования Pe для e < mod(F), которые когда-либо удовлетворяются,
уже удовлетворены;

s5) если основание финальной башни с модулем, меньшим mod(F), является
подмножеством U , то оно является подмножеством U s.

Сначала покажем, что существует финальная башня с каркасом F .
Если после выполнения шага s существует башня с каркасом F , которая

впоследствии не разрушается, то после конечного числа преобразований
она станет финальной. Если же это не так, то либо после шага s нет
башни с каркасом F , либо она есть, но впоследствии будет разрушена. В
любом случае найдется шаг 5r > s, перед выполнением которого не будет
существовать башни с каркасом F ; из s1 — s3 следует, что на этом шаге
будет построена башня именно с этим каркасом, причем впоследствии
она не может быть разрушена на шагах вида 5t + 1 и 5t + 2.

Если эта башня не разрушается, то после конечного числа преобразований
она станет финальной. Если же разрушается, то это возможно только
на шаге 5t + 3 > 5r, однако перед этим ее основание должно быть
перечислено в U . Этого не может произойти на шаге вида 5t + 4 из-
за s4 и, значит, это происходит на шаге вида 5t + 3. Из описания шагов
такого вида следует, что в этом случае для некоторого x ∈ X fex 6∈ U s,
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причем fex лежит в основании башни с меньшим модулем. Однако из
s1 — s3, s5 следует, что после этого R-требование, связанное с нашей
башней, будет всегда удовлетворено, и башня не сможет разрушиться.

Осталось показать, что R-требование, связанное с финальной башней,
построенной на каркасе F , удовлетворяется при всех достаточно больших
s. Пусть F — основание этой башни. Пусть s — настолько большой
шаг, что выполнено s1 – s5, башня, о которой идет речь, существует и
является финальной, δf s

e ∩F = δfe∩F , все числа из fe(F ) использованы
и [F ∪ fe(F )] ∩ U = [F ∪ fe(F )] ∩ U s. Тогда если наше требование не
удовлетворено на шаге s, то оно не удовлетворено и на всех больших
шагах. Однако этого не может быть, так как в этом случае на шаге
5t + 3 > s мы либо разрушим башню, либо удовлетворим требование.

Обозначим через S множество финальных башен, основания которых
не лежат в U . Множество A ⊆ Di назовем i-плотным, если существует
бесконечно много башен (Pn, . . . ,P0; ϕn, . . . , ϕ0) из S, таких что i 6 n и
A ∈ ϕi(Pi). Назовем A i-насыщенным, если существует бесконечно много
башен (Pn, . . . ,P0; ϕn, . . . , ϕ0) из S, таких что i 6 n и для некоторого
P ∈ Pi ϕi(P ) = A и P ∩Wi 6= ∅.

Лемма 5 Если множество A i-насыщенно, то оно i-плотное и для
любых (Pn, . . . ,P0; ϕn, . . . , ϕ0) ∈ S, P ∈ Pi если ϕi(P ) = A, то P∩Wi 6= ∅.
Если A i-насыщенно, B i-плотно и A ⊆ B, то B i-насыщенно.

Плотность насыщенного множества следует из определений. Для всего
остального достаточно доказать, что если A i-насыщенно, B i-плотное,
A ⊆ B и для T = (Pn, . . . ,P0; ϕn, . . . , ϕ0) ∈ S P ∈ Pi и ϕi(P ) = B, то
P ∩Wi 6= ∅.

Пусть это не так. Зафиксируем башню T = (Pn, . . . ,P0; ϕn, . . . , ϕ0)
из S и P ∈ Pi, такие что ϕi(P ) = B и P ∩ Wi = ∅. Так как A i-насы-
щенно, то существуют S = (Qk, . . . ,Q0; ψk, . . . , ψ0) ∈ S и Q ∈ Qi, такие
что ψi(Q) = A, Q ∩ Wi 6= ∅ и mod(T ) < mod(S). Пусть s = 5t + 2 —
настолько большой шаг, что S существует, все башни с модулями, не
превосходящими mod(S), которые существуют на этом шаге, являются
финальными и Q ∩W s

i 6= ∅. Так как T и S — финальные башни, то их
каркасы хорошие и, по лемме 2, T может быть подвергнута на шаге s
преобразованию уровня i посредством P и Q. Однако это противоречит
выбору s.

Для каждого A ⊆ Di, которое не является i-плотным, существует
лишь конечное число башен (Pn, . . . ,P0; ϕn, . . . , ϕ0) ∈ S, таких что для
некоторого P ∈ Pi ϕi(P ) = A. Обозначим множество всех таких башен
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для всех не i-плотных A ⊆ Di через Ni. Так как Di конечно, то Ni тоже
конечно.

Каркас F = (An, . . . ,A0; cn, . . . , c1) назовем i-хорошим, если для
любого j 6 min{i, k} и для любого A ∈ Aj F j

A — хороший каркас.
Ясно, что каркас хороший тогда и только тогда, когда он i-хороший для
любого i. При каждом фиксированном i свойство каркаса "быть i-хоро-
шим"проверяется эффективно. Мы называем башню i-хорошей, если ее
каркас является i-хорошим.

Лемма 6 Для каждого i ∈ N существует лишь конечное число шагов,
на которых i-хорошие башни (Pn, . . . ,P0; ϕn, . . . , ϕ0) с P ∈ Pi, таким
что ϕi(P ) — i-плотное, но не i-насыщенное, подвергаются преобразованиям
уровня i посредством P и Q при некотором Q.

Пусть A ⊆ Di — i-плотное, но не i-насыщенное. Пусть T = (Pn, . . . ,
P0; ϕn, . . . , ϕ0) ∈ S — финальная башня, такая что для некоторого P ∈
Pi ϕi(P ) = A и P ∩ Wi = ∅. Пусть sA — такой шаг, что башня T
существует и все башни, модуль которых на шаге sA не превосходит
модуль T , являются финальными. После шага sA никакая i-хорошая
башня T ′ = (P ′n, . . . ,P ′0; ϕ′n, . . . , ϕ′0) не может быть преобразована на
уровне i посредством P ′ и Q′ при любом Q′, если P ′ таково, что ϕ′i(P

′) =
A, так как если ее модуль не больше mod(T ), то она финальная, а если
больше, то вместо нее преобразованию должна подвергнуться башня T .
После шага si = max{sA : A — i-плотное, но не i-насыщенное} ни одно
из преобразований, о которых говорится в лемме, невозможно.

Для каждого i ∈ N и x ∈ Di определим семейство рекурсивно перечислимых
множеств {V i,x

n }n∈N. Для n, y ∈ N полагаем y ∈ V i,x
n тогда и только тогда,

когда выполнено одно из следующих двух условий:

1. n ∈ U и y ∈ U ;

2. существует финальная башня (Pk, . . . ,P0; ϕk, . . . , ϕ0) ∈ S, такая
что k > i и для некоторого P ∈ Pi x ∈ ϕi(P ) и n, y ∈ P .

Каждое множество из этого семейства действительно рекурсивно перечислимо,
поскольку оно либо равно U , либо конечно. Нетрудно также заметить,
что если V i,x

n 6= ∅, то n ∈ V i,x
n . Следующая лемма показывает, что множества

из этого семейства перечислимы равномерно по n.

Лемма 7 Множество {〈y, n〉 : y ∈ V i,x
n } является рекурсивно перечислимым.
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Определим для каждых n, s ∈ N конечное множество V i,x
n,s так, чтобы

V i,x
n,0 ⊆ V i,x

n,1 ⊆ . . . и V i,x
n =

⋃
s∈N V i,x

n,s .
Пусть для j < i sj — шаг, определенный в доказательстве леммы 6, а

s0 = max{sj : j < i}. Для каждого s ∈ N полагаем V i,x
n,s =

1. U s, если n ∈ U s;

2. P , если n 6∈ U s, s > s0 и на шаге s существует башня T = (Pk, . . . ,
P0; ϕk, . . . , ϕ0) c k > i и P ∈ Pi, такая что x ∈ ϕi(P ), n ∈ P и для
любых j < i и башни S = (Qm, . . . ,Q0; ψm, . . . , ψ0), существующей
на шаге s, для которой modsS < mossT , башня S i-хорошая и либо
base(S) ⊆ U s, либо S ∈ Nj, либо для любого Q ∈ Qj множество
ψj(Q) j-плотное и если ψj(Q) j-насыщенное, то Q ∩W s

j 6= ∅.
3. ∅, если не выполнены случаи 1 и 2.

Ясно, что V i,x
n,s вычисляется эффективно по n и s.

Покажем, что для призвольного s имеет место включение V i,x
n,s ⊆

V i,x
n,s+1. Если V i,x

n,s вычисляются по пунктам 1 или 3 этого определения,
то включение очевидно. Пусть V i,x

n,s вычисляются по пункту 2 и T , P —
такие, как в пункте 2. Если на шаге s с башней T ничего не происходит,
то V i,x

n,s = V i,x
n,s+1. Если s 6= 5t + 2 и на шаге s эта башня разрушается

либо ее основание перечисляется в U , то V i,x
n,s ⊆ U s+1 = V i,x

n,s+1. Наконец,
пусть s = 5t + 2 и с башней T на шаге s что-то происходит. Если T
разрушается на шаге s из-за того, что преобразовывается какая-то башня
за счет башни с меньшим модулем, то, как и в предыдущем случае,
V i,x

n,s ⊆ U s+1 = V i,x
n,s+1. Если мы преобразовываем саму башню T , то, как

следует из P4, V i,x
n,s = P ⊆ P ∗ = V i,x

n,s+1. Остается случай, когда мы
преобразовываем башню с меньшим модулем за счет самой башни T . Из
условий пункта 2, леммы 6, определения Ni и описания шага 5t+2 видно,
что это должно быть преобразование уровня, не меньшего i. Однако
тогда из P2 и P3 видно, что либо опять V i,x

n,s ⊆ U s+1 = V i,x
n,s+1, либо

V i,x
n,s+1 вычисляется по пункту 2 и V i,x

n,s ⊂ V i,x
n,s+1.

Ясно, что если n ∈ U , то для всех достаточно больших s V i,x
n,s = U s.

Остается лишь доказать, что если n 6∈ U , то почти для всех s V i,x
n,s =

V i,x
n . Пусть T = (Pk, . . . ,P0; ϕk, . . . , ϕ0) — финальная башня из S и n ∈

base(T ). Пусть s′ — настолько большой шаг, что T существует, и все
башни, которые существуют на шаге s и модуль которых не превосходит
mod(T ), являются финальными. Обозначим множество этих башен через
F. Если k < i, то V i,x

n = ∅ и для всех s > s′ V i,x
n,s = ∅. Если k > i, то пусть

P ∈ Pi таково, что n ∈ P . Если x 6∈ ϕi(P ), то опять V i,x
n = ∅ и для
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всех s > s′ V i,x
n,s = ∅. Наконец, пусть x ∈ ϕi(P ). Тогда V i,x

n = P . Пусть
F =

⋃{base(S) : S ∈ F} и s′′ > s′ таково, что F ∩ U s′′ = F ∩ U и
для любого j < i F ∩ W s′′

j = F ∩ Wj. Пусть s > max{s′′, s0}, j < i и
S = (Qm, . . . ,Q0; ψm, . . . , ψ0) ∈ F. Так как S финальная, то она i-хоро-
шая. Если base(S) 6⊆ U s и S 6∈ Nj, то S ∈ S и для любого Q ∈ Qj

множество ψj(Q) j-плотное. Из выбора s′′ и леммы 5 следует, что если
ψj(Q) j-насыщенно, то Q ∩W s

j 6= ∅. Значит, V i,x
n,s = P .

Пусть для x ∈ Di Ri,x =
⋃

n∈N V i,x
n . Из замечания, сделанного перед

леммой 7, следует, что Ri,x = {n : n ∈ V i,x
n }. По лемме 7 Ri,x рекурсивно

перечислимо. Мы можем предполагать, что Ri,x непусто для всех i и
x ∈ Di, поскольку U 6= ∅; иначе можно перед началом конструкции
перечислить 0 в U и объявить его использованным. Следующая лемма
дает нам два основных свойства этих множеств (и во многом проясняет
смысл конструкции).

Лемма 8 Для x ∈ Di ψU(Ri,x) = ψU(Ri+1,x). Если Wi 6= ∅, то существует
e ∈ Di, такое что ψU(Wi) = ψU(Ri,e).

Неравенство ψU(Ri,x) 6m ψU(Ri+1,x) следует из того, что множество
Ri,x \ Ri+1,x конечно. Дествительно, из F2, F3 и T5 – T7 следует, что
для любого n V i,x

n ⊆ V i+1,x
n за исключением случаев, когда V i,x

n является
основанием финальной башни высоты i. Чтобы доказать обратное неравенство,
нужно определить частичную вычислимую функцию f , такую что δf =
Ri+1,x, ρf ⊆ Ri,x и n ∈ U ↔ fn ∈ U . Пусть fn равно некоторому y, такому
что y ∈ V i+1,x

n ∩V i,x
y . Из леммы 7 следует, что если такой y существует, то

его можно найти эффективно по n. Из F3 и T5 – T7 следует, что если
n ∈ V i+1,x

n , то такой y найдется. Наконец, так как для каждого n либо
V i+1,x

n ⊆ U , либо V i+1,x
n ∩ U = ∅, то для n ∈ δf n ∈ U ↔ fn ∈ U .

Докажем вторую часть леммы. Если Wi \ U конечно, то ψU(Wi) =
ψU(U) = ψU(Ri,0), так как не один атом в Di не содержит 0. Пусть Wi \U
бесконечно. Тогда множество i-насыщенных подмножеств Di непусто.
Каждое i-насыщенное подмножество является атомом в Di; пусть [a0]i, . . . , [am]i
— атомы в D̃i, определяющие все i-насыщенные подмножества, и [e]i =
[a0]i ∪i . . . ∪i [am]i. Покажем, что e обладает требуемым свойством.

Неравенство ψU(Wi) 6m ψU(Ri,e) следует из того, что Wi\Ri,e конечно.
Действительно, если y ∈ Wi \ Ri,e, то для некоторой финальной башни
(Pk, . . . ,P0; ϕk, . . . , ϕ0) ∈ S и для некоторого P ∈ Pi y ∈ P , причем
e 6∈ ϕi(P ). Последнее, по выбору e, означает, что ϕi(P ) не i-насыщенно, а
так как y ∈ Wi∩P 6= ∅, то существует лишь конечное число возможностей
для P .
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Для обратного неравенства достаточно описать эффективную процедуру,
которая почти для всех n ∈ Ri,e либо определяет, лежит n в U или нет,
либо вычисляет y ∈ Wi, такой что y ∈ U ↔ n ∈ U . Эта процедура такова:
получив на вход n, начинаем параллельно перечислять V i,e

n , U и Wi, и
если на некотором шаге n попадет в U , то даем ответ "n ∈ U", а если
найдется y ∈ V i,e

n ∩ Wi, то даем на выходе этот y. Из определения V i,e
n

следует, что для всех n, для которых процедура дает ответ, она работает
корректно. Осталось показать, что почти для всех n 6∈ U если V i,e

n 6= ∅,
то V i,e

n ∩Wi 6= ∅.
Пусть T = (Pk, . . . ,P0; ϕk, . . . , ϕ0) — финальная башня, P ∈ Pi и

n ∈ P . Тогда V i,e
n = P . Так как n 6∈ U , то T ∈ S. Множество ϕi(P ) —

атом в Di, который содержит e и, значит, содержит aj для некоторого
j 6 m. Тогда, по лемме 5, если ϕi(P ) i-плотно, то оно i-насыщенно и
P ∩Wi 6= ∅, а если ϕi(P ) не i-плотно, то существует лишь конечное число
возможностей для P .

Как показывает лемма 8, для x ∈ Di m-степень ψU(Ri,x) не зависит от
выбора i. Обозначим эту степень через ux. Опять же из леммы 8 следует,
что множество m-степеней {ux : x ∈ N} покрывает весь начальный
сегмент m-степеней, лежащих под степенью U .

Лемма 9 ux 6m uy тогда и только тогда, когда x 6ω y.

Пусть x 6ω y и пусть i ∈ N таково, что x, y ∈ Di и x 6i y. Каждый
атом в Di, содержащий x, содержит также и y; следовательно, для любого
n V i,x

n ⊆ V i,y
n и Ri,x ⊆ Ri,y. Последнее означает, что ψU(Ri,x) 6m ψU(Ri,y)

и ux 6m uy.
Докажем лемму в другую сторону. Пусть x 66ω y. Тогда для каждого i,

такого что x, y ∈ Di, в Di существует атом, содержащий x и не содержащий
y; следовательно, существует бесконечно много хороших каркасов (Ak, . . . ,A0; ck, . . . , c1),
таких что для A ∈ Ak x ∈ A и y 6∈ A.

Покажем, что для каждого e ∈ N требование Rx,y,e окажется связанным
с некоторой финальной башней. Пусть это не верно и пусть Rx,y,e —
наименьшее требование, для которого это не так. Пусть s — такой шаг,
что для всех R-требований, меньших Rx,y,e, которые когда-либо связываются
с финальными башнями, соответствующая башня уже стоит. Пусть на
шаге 5t > s строится башня с каркасом (Ak, . . . ,A0; ck, . . . , c1), таким что
для A ∈ Ak x ∈ A и y 6∈ A, которая впоследствии станет финальной.
Но тогда на этом шаге мы свяжем с ней требование Rx,y,e, так как
все существующие к шагу 5t башни являются финальными (или станут
таковыми после конечного числа преобразований), требование Rx,y,e свободно
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для строящейся башни, а все меньшие требования уже заняты башнями
с меньшим модулем.

Пусть p, q — наименьшие числа, для которых x ∈ Dp, y ∈ Dq соответственно.
Покажем, что ψU(Rp,x) 66m ψU(Rq,y). Если это не так, то для некоторого
e δfe = Rp,x, ρfe ⊆ Rq,y и z ∈ U ↔ fez ∈ U . Пусть T — финальная
башня, с которой связано требование Rx,y,e и X = c(T , x). Ясно, что
X ⊆ Rp,x, так что X ⊆ δfe. По лемме 4 найдется такое s, что башня T
на шаге s существует (и является финальной), X ⊆ δf s

e , все числа из
fe(X) уже использованы, [X ∪fe(X)]∩U s = [X ∪fe(X)]∩U и требование
Rx,y,e удовлетворено. Значит, найдется z ∈ X, такой что либо z ∈ U ↔
fez 6∈ U , либо base(T ) 6⊆ U и fez ∈ base(T ). В обоих случаях мы имеем
противоречие с выбором fe; во втором случае противоречие связано с
тем, что base(T ) ∩Rq,y = ∅.

Таким образом, главный идеал полурешетки m-степеней, порожденный
m-степенью U , изоморфен L. Остается только доказать последнюю лемму.

Лемма 10 Множество U гиперпросто.

U имеет бесконечное дополнение, так как L не одноэлементна и, следовательно,
U не вычислимо. Значит, лемма будет доказана, если мы покажем, что
для каждого e ∈ N, такого что We бесконечно и для любых различных
x, y ∈ We Hx∩Hy = ∅, требование Pe удовлетворится на некотором шаге.

Пусть We бесконечно, для x 6= y ∈ We Hx ∩ Hy = ∅ и требование
Pe не удовлетворяется ни на каком шаге. Выберем наименьшее e с этим
свойством и x ∈ We, такой что элементы Hx не лежат в основаниях
финальных башен, модуль которых меньше либо равен e. Пусть s =
5t + 4 — настолько большой шаг, что e 6 s, все финальные башни с
модулями, не большими e, существуют, модули всех остальных башен на
шаге s больше чем e, x ∈ W s

e , все элементы из Hx уже использованы
и все требования Pd с d < e, которые когда-либо удовлетворяются, уже
удовлетворены. Тогда на шаге s удовлетворится Pe. Противоречие.

Лемма 10 завершает доказательство теоремы 1.

§ 3. Начальные сегменты и интервалы
в полурешетках Роджерса.

В этом параграфе мы получим несколько следствий из теоремы 1,
относящихся к локальному строению полурешеток Роджерса.

До конца параграфа зафиксируем n > 2 и семейство арифметических
множеств F ⊆ Σ0

n, такое что F содержит более одного элемента и полурешетка
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Роджерса R0
n(F) непуста. Известно, что в этом случае R0

n(F) бесконечна
и не является решеткой.

В работе [7] доказано, что для любой нумерации α изR0
n(F) существует

β из R0
n(F), такая что β ≡0′ α и главный идеал в R0

n(F), порожденный
β, изоморфен главному идеалу полурешетки m-степеней, порожденному
U (без наименьшего элемента, если F бесконечно), где U — произвольное
иммунное ∆0

2-множество.
Так как в полурешетке m-степеней существует естественный автоморфизм,

переводящий m-степень произвольного множества в m-степень его дополнения,
то справедливы следующие следствия теоремы 1.

Следствие 2 Для произвольной лахлановской полурешетки L в R0
n(F)

существует главный идеал, изоморфный L, если F конечно, и L без
наименьшего элемента, если F бесконечно.

Следствие 3 Для произвольной лахлановской полурешетки L в R0
n(F)

существует главный идеал, изоморфный L.

Лахлановская полурешетка с присоединенным к ней внешним образом
наименьшим элементов также является лахлановской.

Следствие 4 Если ν ∈ R0
n(F) не является наибольшим элементом

R0
n(F) относительно 0′-сводимости, то для произвольной лахлановской

полурешетки L найдется µ ∈ R0
n(F), такая что интервал [ν, µ] изоморфен

L.

Выберем α ∈ R0
n(F) так, чтобы α 660′ ν. Пусть U — иммунное ∆0

2-мно-
жество, для которого начальный сегмент m-степеней, порожденный m-
степенью U , изоморфен L (например, дополнение к множеству, построенному
в теореме 1). Пусть β — нумерация, построенная по α в работе [7].
Анализируя доказательство из работы [7], можно заметить, что помимо
упомянутого выше свойства нумерация β удовлетворяет также следующим
трем:

c1) если ψU(Wi) = 0, то βWi
— разрешимая нумерация некоторого конечного

подсемейства F ;

c2) если ψU(Wi) 6= 0, то βWi
— нумерация всего семейства F и

α ≡0′ βWi
;

c3) если ψU(Wj) 6= 0, то ψU(Wi) 6m ψU(Wj) ⇔ βWi
6 βWj

.
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Положим µ = ν⊕β и покажем, что µ удовлетворяет требуемым свойствам.
Определим отображение из идеала полурешетки m-степеней, порожденного
U , в интервал [ν, µ], заданное правилом ψU(Wi) 7→ ν ⊕ βWi

. Из c1, c3
следует, что оно определено корректно и является гомоморфизмом верхних
полурешеток.

Это отображение является также эпиморфизмом. Действительно, если
γ ∈ [ν, µ], то γ ≡ µA для некоторого рекурсивно перечислимого A. Так
как ν 6 γ, то можно считать, что 2N ⊆ A. Кроме того, можно считать,
что A содержит хотя бы одно нечетное число, так как добавление к A
произвольного конечного множества ничего не меняет. Значит, γ является
образом ψU(Wi), где Wi = {x : 2x + 1 ∈ A}.

Остается лишь показать, что если ψU(Wi) 66m ψU(Wj), то ν⊕βWi
66 ν⊕

βWj
. Пусть ν⊕βWi

6 ν⊕βWj
. Тогда βWi

6 ν⊕βWj
и существует частичная

вычислимая функция f , такая что δf = Wi, ρf ⊆ 2N ∪ {2x + 1 : x ∈ Wj}
и для x ∈ Wi βx = (ν ⊕ β)(fx). Пусть A = {x : fx четно}. Можно
считать, что A,Wi \ A 6= ∅, при необходимости дополнив Wi конечным
числом элементов и исправив f на конечном множестве аргументов.
Имеем ψU(A) = 0, так как иначе, по c2, α ≡0′ βA 6 ν. Также ясно,
что Wi \A рекурсивно перечислимо и βWi\A 6 βWj

. Если ψU(Wj) 6= 0, то,
по c1, c2 βA 6 βWj

, βWi
≡ βA⊕βWi\A 6 βWj

и, по c3, ψU(Wi) 6m ψU(Wj).
Наконец, пусть ψU(Wj) = 0. Тогда, по c1, βWj

6 ν и опять же, по
c2, ψU(Wi \ A) = 0, так как иначе α ≡0′ βWi\A 6 βWj

6 ν. Но тогда
ψU(Wi) = ψU(A) ∪ ψU(Wi \ A) = 0 и ψU(Wi) 6m ψU(Wj).
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