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Describing the elementary theories of Rogers semilattices is one of the main
problems of the theory of numberings. For the classical case of computable fam-
ilies of computably enumerable sets, V.V. V’jugin showed in [1] the existence of
infinitely many families with pairwise elementarily different Rogers semilattices.
Nevertheless, the study of Rogers semilattices undertaken in recent years (see
[2]–[5]) for families of sets at levels greater than one in the Kleene-Mostowsky
hierarchy has shown

• significative differences as regards algebraic and elementary properties of
these semilattices compared with the classical case;

• homogeneity of the structure of their ideals and intervals.

This initially seemed to lead to conjecture that the Rogers semilattices for
infinite families of sets of any fixed high level of the arithmetical hierarchy
have similar properties. But very soon it was noted that, for every level of the
hierarchy, there are at least two families of this level such that their Rogers
semilattices are not elementarily equivalent, [6]. Our aim is to prove that, for
every level of the arithmetical hierarchy, there exist infinitely many families with
pairwise non-elementarily equivalent Rogers semilattices.

We recall some necessary definitions and notations. A numbering α of a
family A ⊆ Σ0

n+1 is called Σ0
n+1– computable if

{〈x,m〉 | x ∈ α(m)} ∈ Σ0
n+1.

The set of all Σ0
n+1– computable numberings of a familyA is denoted by Com0

n+1(A).
A family A is called Σ0

n+1– computable if Com0
n+1(A) 6= ∅. A numbering α is

reducible to a numbering β if α = β ◦ f for some computable function f . Re-
ducibility of numberings is a pre-ordering relation on Com0

n+1(A) which induces
in the usual way a quotient structure R0

n+1(A) which is an upper semilattice
called Rogers semilattice of Σ0

n+1– computable numberings of the family A. We
refer to [2] and [4] for details on Σ0

n+1– computable numberings and related
topics.

THEOREM 1. For every k ∈ ω, there exist infinitely many infinite Σ0
k+1–

computable families with pairwise elementarily different Rogers semilattices.
Proof. Let k be an arbitrary natural number. We will construct a sequence

{Be}e≥1 of infinite Σ0
k+1– computable families such that

Th(R0
k+1(Be′)) 6= Th(R0

k+1(Be′′))
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for all e′ 6= e′′.
In fact we will construct a sequence {An}n≥1 of families of sets of which the

desired sequence {Be}e≥1 is a subsequence.
Let M stand for any arbitrary 0(k)– maximal set, and let n be a positive

natural number.
Let E1

n, E2
n, . . . , En

n be a computable partition of ω into infinite computable
sets. Let f i

n, i ∈ [1, n], denote some computable bijection of ω onto Ei
n. Clearly,

Mi ­ E
i

n

⋃
f i

n(M) is a 0(k)– maximal set for each i.
Let Ai

n, i ∈ [1, n], stand for the family {Mi

⋃{x} | x ∈ M i}. The families
Ai

n are evidently Σ0
k+1– computable. Finally define An ­

⋃
i∈[1,n]

Ai
n.

Lemma 1. For all numbers n > 0 and i ∈ [1, n], for every numbering
α ∈ Com0

k+1(An), the index set w.r.t. α of the family Ai
n is Σ0

k+1– set.
Proof. For every i ∈ [1, n], denote by b0

i and b1
i any two distinct numbers

of M i. Since, for every x and i ∈ [1, n],

α(x) /∈ Ai
n ⇐⇒ b0

i ∈ α(x)& b1
i ∈ α(x),

it follows that the index set of the family An \Ai
n w.r.t. α is a 0(k)– computably

enumerable set. This immediately implies that, for every i ∈ [1, n], the index set
of Ai

n is a Σ0
k+1– set since the subfamilies A1

n,A2
n, . . . ,An

n are pairwise disjoint.
Lemma 1 is proved.

Lemma 2. For all numbers n ≥ 1 and i ∈ [1, n], and for every numbering
β ∈ Com0

k+1(An), if β is the join β = β0 ⊕ β1 of some numberings β0 and β1

then all but finitely many sets of Ai
n are contained in at least one of families

β0(ω), β1(ω).
Proof. Let n, i, β, β0, β1 satisfy the hypothesis of lemma 2. By lemma 1,

the index set Q ­ {x | β(x) ∈ Ai
n} is a Σ0

k+1– set. The sets Q0 ­ {x | 2x ∈ Q}
and Q1 ­ {x | 2x + 1 ∈ Q} are obviously also Σ0

k+1– sets. Note that Qj , j ≤ 1,
is exactly the set of βj– indices x such that βj(x) ∈ Ai

n.
For j ≤ 1, let Bj ­ βj(Qj) and let Bj ­

⋃
A∈Bj

A. Then Bj is superset of Mi

and
B0

⋃
B1 = Ai

n and B0 ∪B1 = ω.

The numberings β0 and β1 are evidently Σ0
k+1– computable. This implies

that B0, B1 are infinite Σ0
k+1– supersets of the 0(k)– maximal set Mi. Therefore,

at least one of B0 \ B1 and B1 \ B0 is finite. Otherwise, the sets Bi \ Mi and
ω\Bi, i ≤ 1, are both infinite, and this is in contradiction with 0(k)– maximality
of Mi. Thus, at least one of the families βj(Qj) = βj(ω) ∩ Ai

n, j ≤ 1, contains
all but finitely many elements of Ai

n. Lemma 2 is proved.
Lemma 3. For all numbers n > 0 and m ≥ n and for all numberings

γ0
1 , γ1

1 , γ0
2 , γ1

2 , . . . , γ0
m+1, γ

1
m+1 ∈ Com0

k+1(An), if γ0
1 ⊕ γ1

1 ≡ γ0
2 ⊕ γ1

2 ≡ · · · ≡
γ0

m+1 ⊕ γ1
m+1 then there exist a numbering δ ∈ Com0

k+1(An) and a binary
string ε1ε2 . . . εm such that δ 6 γ0

m+1 and δ 6 γε1
1 ⊕ γε2

2 ⊕ · · · ⊕ γεm
m .
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Proof. Let the numbers n,m and the numberings γ0
1 , γ1

1 , . . . , γ0
m+1, γ

1
m+1

satisfy the hypothesis of lemma 3. For every i, 1 ≤ i ≤ m, we construct num-
bering γεi

i of some subfamily of the family An such that δεi
i 6 γ0

m+1, δεi
i 6 γεi

i ,
and Ai

n \ δεi
i (N) is finite (possibly, empty) as follows. Since γ0

m+1 6 γ0
i ⊕ γ1

i it
follows that γ0

m+1 = δ0
i ⊕ δ1

i some numberings δ0
i 6 γ0

i , δ1
i 6 γ1

i .
By lemma 2, the family Ai

n is almost entirely included in δ0
i (ω) or δ1

i (ω).
Let εi ∈ {0, 1} be the least number such that the family An

i \ δεi
i (ω) is finite.

Then
δε1
1 ⊕ δε2

2 ⊕ · · · ⊕ δεn
n 6 γ0

m+1,

δε1
1 ⊕ δε2

2 ⊕ · · · ⊕ δεn
n 6 γε1

1 ⊕ γε2
2 ⊕ · · · ⊕ γεn

n ,

and δε1
1 ⊕δε2

2 ⊕· · ·⊕δεn
n (ω) contains all the sets of An except the ones belonging

to some finite subfamily B of the family An.
Let β be some solvable Σ0

k+1– computable numbering of the family B, and
let εn+1εn+2 . . . εm be an arbitrary binary string. Then the numbering δ ­
δε1
1 ⊕ δε2

2 ⊕ · · · ⊕ δεn
n ⊕ β and the binary string ε1ε2 . . . εm satisfy the conclusion

of lemma 3.
Definition. We will say that two Σ0

k+1– computable numberings β0 and β1

of a family B induce a minimal pair in the Rogers semilattice R0
k+1(B) if there

is no numbering β ∈ Com0
k+1(B) such that β 6 β0 and β 6 β1.

The numberings γ0
m+1 and γε1

1 ⊕ γε2
2 ⊕ · · · ⊕ γεm

m built above in the proof of
lemma 3 do not induce a minimal pair in R0

k+1(An). We propose now a regu-
lar way of constructing numberings which induce minimal pairs in the Rogers
semilattice R0

k+1(Ai
n).

Let us fix two different numbers a0, a1 ∈ M and, for every i ∈ [1, n], define
the numberings αs

i , s ≤ 1, as follows: for every x,

αs
i (x) ­

{
Mi

⋃{f i
n(as)}, if x ∈ M,

Mi

⋃{f i
n(x)}, otherwise.

It is obvious that αs
i ∈ Com0

k+1(Ai
n).

Lemma 4. The numberings α0
i and α1

i induce a minimal pair in R0
k+1(Ai

n).
Proof. By contradiction. Assume that some numbering γ ∈ Com0

k+1(Ai
n)

is reducible to the numberings α0
i , α1

i by means of computable functions g0, g1,
respectively.

First of all, note that, by definition of the numberings α0
i , α1

i , for every y,

y ∈ M ⇐⇒ α0
i (y) = α1

i (y).

Next, for every z /∈ {a0, a1} we prove the equivalence

α0
i (z) = α1

i (z) ⇐⇒ ∃x(g0(x) = z = g1(x)).

Let α0
i (z) = α1

i (z) and z /∈ {a0, a1}. Then the set α0
i (z) has a unique index

w.r.t. the numbering α0
i . Therefore there exists x such that g0(x) = z. Equality
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α0
i (z) = α1

i (z) implies that g1(x) = z since α1
i (z) has also a unique index w.r.t.

the numbering α1
i .

Conversely, if g0(x) = z = g1(x) for some x then α0
i (z) = α0

i (g0(x)) and
α1

i (g1(x)) = α1
i (z). Therefore, α0

i (z) = γ(x) = α1
i (z).

Thus we have that, for every z,

z ∈ M \ {a0, a1} ⇐⇒ z /∈ {a0, a1}&∃x(g0(x) = z = g1(x))

and, consequently, M is computably enumerable. This is a contradiction with
the fact that M is 0(k)– maximal. Lemma 4 is thus proved.

Lemma 5. For every m > 0 and n ≥ 22m+1
, there exist numberings

β0
1 , β1

1 , β0
2 , β1

2 , . . . , β0
2m , β1

2m ∈ Com0
k+1(An) such that:

(1) β0
1 ⊕ β1

1 ≡ β0
2 ⊕ β1

2 ≡ · · · ≡ β0
2m ⊕ β1

2m ;

(2) for every i ∈ [1, 2m], the numberings β0
i and β1

i induce a minimal pair in
the Rogers semilattice R0

k+1(An);

(3) for every number l ≤ m, every set I = {i1 < i2 < . . . < il} ⊆ [1, 2m], every
binary string σ1σ2 . . . σl, and for all numbers ε ∈ {0, 1} and i ∈ [1, 2m] \ I,
the numberings βε

i and βσ1
i1
⊕ βσ2

i2
⊕ · · · ⊕ βσl

il
induce a minimal pair in

R0
k+1(An).

Proof. Let m be any positive number, let l ≤ m, and let n be an arbitrary
number which satisfies the inequality n ≥ 22m+1

. Fix any sequence of subsets
X1, X2, . . . , X2m of the set [1, n] such that the inequality

|Xε1
1

⋂
Xε2

2

⋂
· · ·

⋂
Xε2m

2m | ≥ 2m+1

holds for every binary string ε1ε2 . . . ε2m . Here, for any set X, the symbol |X|
denotes the cardinality of X, and X1

i ® Xi, X0
i ® [1, n] \Xi, i ∈ [1, 2m].

For every i ∈ [1, 2m], we define two numberings β0
i and β1

i by letting

βs
i ­

∑

p∈X0
i

α1−s
p ⊕

∑

q∈X1
i

αs
q, s ∈ {0, 1}.

Statement (1) holds trivially since the following equivalence

β0
i ⊕ β1

i ≡
n∑

j=1

α0
j ⊕

n∑

j=1

α1
j

holds for every i ∈ [1, 2m].
Let us prove statement (2) by contradiction. Assume that some numbering

γ ∈ Com0
k+1(An) is reducible to both β0

i and β1
i for some i ∈ [1, 2m].

Since the families A1
n,A2

n, . . . ,An
n are pairwise disjoint and

β0
i =

∑

p∈X0
i

α1
p ⊕

∑

q∈X1
i

α0
q ,
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the reducibility γ 6 β0
i implies that there exist Σ0

k+1– computable numberings
γj , j ∈ [1, n], of the families Aj

n such that γ ≡ γ1 ⊕ γ2 ⊕ · · · ⊕ γn and γp 6 α0
p

for all p ∈ X1
i and γq 6 α1

q for all q ∈ X0
i . The reducibility γ 6 β1

i implies that,
for every j ∈ [1, n],

γj 6
∑

p∈X0
i

α0
p ⊕

∑

q∈X1
i

α1
q .

And we have γp 6 α1
p for all p ∈ X1

i and γq 6 α0
q for all q ∈ X0

i since the
families A1

n,A2
n, . . . ,An

n are pairwise disjoint. Thus, γj 6 α0
j and γj 6 α1

j for
every j ∈ [1, n]. This is in contradiction with lemma 4.

We prove statement (3) by contradiction too. Suppose that some numbering
γ of the family An is reducible to the numberings βε

i and βσ1
i1
⊕ βσ2

i2
⊕ · · · ⊕ βσl

il
.

Here, for all j ∈ [1, l], the numbers ε, i and σj , ij are chosen as in statement (3).
Similarly to the proof of statement (2), we use a decomposition γ ≡ γ1 ⊕ γ2 ⊕
· · · ⊕ γn, where γj ∈ Com0

k+1(Aj
n) for every j ∈ [1, n].

Due to the choice of the sets X1, X2, . . . , X2m and to the inequality l + 1 <
2m+1, there exists at least one number

j ∈ Xε
i

⋂
X1−σ1

i1

⋂
X1−σ2

i2

⋂
· · ·

⋂
X1−σl

il
.

Since j ∈ Xε
i , using the decomposition βε

i =
∑

p∈X0
i
α1−ε

p ⊕∑
q∈X1

i
αε

q it is
easy to check that, in both cases ε = 0 and ε = 1, α1

j is an element of this
decomposition, but at the same time α0

j is not. Consequently, γj 6 α1
j .

Analogously, one can check that α0
j does enter each decomposition of the

numberings βσ1
i1

, βσ2
i2

, . . . , βσl
il

whereas α1
j does not. This implies that γj 6 α0

j .
Thus, α0

j and α1
j induce a minimal pair in R0

k+1(Aj
n), in contradiction with

lemma 4. Therefore lemma 5 is proved.
Using lemmas 1–5 we can now deduce the statement of the theorem as

follows. Define a computable function h by letting h(1) = 16 and h(e + 1) =
22h(e)+1

for every e ≥ 1. Let Be ­ Ah(e) for every e ≥ 1. Lemmas 3, 5 imply
that Th(R0

k+1(Be′)) 6= Th(R0
k+1(Be′′)) for every e′ 6= e′′.
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