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Describing the elementary theories of Rogers semilattices is one of the main
problems of the theory of numberings. For the classical case of computable fam-
ilies of computably enumerable sets, V.V. V’jugin showed in [1] the existence of
infinitely many families with pairwise elementarily different Rogers semilattices.
Nevertheless, the study of Rogers semilattices undertaken in recent years (see
[2]-[5]) for families of sets at levels greater than one in the Kleene-Mostowsky
hierarchy has shown

e significative differences as regards algebraic and elementary properties of
these semilattices compared with the classical case;

e homogeneity of the structure of their ideals and intervals.

This initially seemed to lead to conjecture that the Rogers semilattices for
infinite families of sets of any fixed high level of the arithmetical hierarchy
have similar properties. But very soon it was noted that, for every level of the
hierarchy, there are at least two families of this level such that their Rogers
semilattices are not elementarily equivalent, [6]. Our aim is to prove that, for
every level of the arithmetical hierarchy, there exist infinitely many families with
pairwise non-elementarily equivalent Rogers semilattices.

We recall some necessary definitions and notations. A numbering a of a
family A C X0, is called X9, computable if

{tw.m) |z € a(m)} € 274,

The set of all £9 , ,— computable numberings of a family A is denoted by Com! +1(A).
A family A is called £, — computable if Com{,,(A) # (. A numbering « is
reducible to a numbering 3 if &« = o f for some computable function f. Re-
ducibility of numberings is a pre-ordering relation on Com? +1(A) which induces
in the usual way a quotient structure R ,(A) which is an upper semilattice
called Rogers semilattice of 9, |~ computable numberings of the family .A. We
refer to [2] and [4] for details on X2 ,—computable numberings and related
topics.

THEOREM 1. For every k € w, there exist infinitely many infinite Eg i1
computable families with pairwise elementarily different Rogers semilattices.

Proof. Let k be an arbitrary natural number. We will construct a sequence
{Be}e>1 of infinite £, ,— computable families such that

Th(RY41(Ber)) # Th(RY, 1 (Ber))
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for all ¢/ £ ¢”.

In fact we will construct a sequence {A,, },>1 of families of sets of which the
desired sequence {B.}, ., is a subsequence.

Let M stand for any arbitrary 0*)— maximal set, and let n be a positive
natural number.

Let EL, E2 ... E" be a computable partition of w into infinite computable
sets. Let f! i € [1,n], denote some computable bijection of w onto E?. Clearly,
M; = E., U fi(M) is a 0%)- maximal set for each i.

Let A%, i € [1,n], stand for the family {M; J{z} | * € M;}. The families
Al are evidently XY~ computable. Finally define A,, = [U ]Afl.
1€(l,n

Lemma 1. For all numbers n > 0 and ¢ € [1,n], for every numbering
a € Comj 1 (Ay), the index set w.r.t. « of the family A? is £9_ - set.

Proof. For every i € [1,n], denote by b? and b} any two distinct numbers
of M;. Since, for every x and i € [1,n],

a(r) ¢ AL <= 1) € a(z) &b} € a(z),

it follows that the index set of the family A, \ A, w.r.t. a is a 0¥)—computably
enumerable set. This immediately implies that, for every i € [1,n], the index set
of Al is a ¥9 41— set since the subfamilies AL A2 .. A" are pairwise disjoint.
Lemma 1 is proved.

Lemma 2. For all numbers n > 1 and 4 € [1,n], and for every numbering
CRS Com2+1(An), if 8 is the join 8 = [y @ B1 of some numberings [y and [;
then all but finitely many sets of A’ are contained in at least one of families
Bow), B (w).

Proof. Let n,i, [, By, 51 satisfy the hypothesis of lemma 2. By lemma 1,
the index set Q@ = {z | B(z) € AL} is a B~ set. The sets Qo = {z | 2z € Q}
and @1 = {z | 2z + 1 € Q} are obviously also 22“, sets. Note that @;,7 <1,
is exactly the set of §;—indices = such that §;(z) € Al,.

For j <1,let B; = (3;(Q;) and let B; = |J A. Then Bj is superset of M;

AEB;
and
BoUBl :Afl and ByUDB; =w.

The numberings [y and 3, are evidently 22 41— computable. This implies
that By, By are infinite Eg_kfsupersets of the 0¥)— maximal set M;. Therefore,
at least one of By \ By and By \ By is finite. Otherwise, the sets B; \ M; and
w\ B;, i < 1, are both infinite, and this is in contradiction with 0(%)— maximality
of M;. Thus, at least one of the families 3;(Q;) = §;(w) N A%, j < 1, contains
all but finitely many elements of A¢. Lemma 2 is proved.

Lemma 3. For all numbers n > 0 and m > n and for all numberings
W 18930 Vg T € Comp g (Ap), i W @9l =@ = =
791 @ b1 then there exist a numbering § € Com{,(A,) and a binary
string 1€ ... &y, such that § <79, and § <A D52 ® - B yor.



Proof. Let the numbers n,m and the numberings 7y, 7, ..., 701, Y41
satisfy the hypothesis of lemma 3. For every 7,1 < i < m, we construct num-
bering ;" of some subfamily of the family A,, such that 6;" <+, 1, 67" <757,
and A, \ 6;(IN) is finite (possibly, empty) as follows. Since 79, ,; <P @~} it
follows that 'yglﬂ = 0Y @ 0} some numberings 69 <9, 4§} <4l

By lemma 2, the family A’ is almost entirely included in 6?(w) or &} (w).
Let ¢; € {0,1} be the least number such that the family A7 \ ¢7*(w) is finite.
Then

0 ® 057 B B < Vs

5?1 @5;2@...@5? <’Yfl @752@...@%?7

and 07" 052 @+ - - PO~ (w) contains all the sets of A,, except the ones belonging
to some finite subfamily B of the family A,,.

Let 3 be some solvable Eg 41— computable numbering of the family B, and
let 4416042 -..€m be an arbitrary binary string. Then the numbering § =
0P @032 @ --- @5 @ B and the binary string €162 . . . &y, satisfy the conclusion
of lemma 3.

Definition. We will say that two X9 41— computable numberings £y and 34
of a family B induce a minimal pair in the Rogers semilattice R, (B) if there
is no numbering G € Comgﬂ(B) such that 6 < fy and 0 < (.

The numberings 79, ,; and 7' © 5% @ - - - & 5 built above in the proof of
lemma 3 do not induce a minimal pair in Rg +1(An). We propose now a regu-
lar way of constructing numberings which induce minimal pairs in the Rogers
semilattice RY,; (AL).

Let us fix two different numbers ag,a; € M and, for every i € [1,n], define
the numberings o, s <1, as follows: for every =z,

o (z) = { M; U{fi(an)}, i € M,
ST My UL fi ()}, otherwise.

It is obvious that af € Comy,  (A%).

Lemma 4. The numberings o and o} induce a minimal pair in R +1(~’4§L_)-

Proof. By contradiction. Assume that some numbering v € Comy, ; (A%)
is reducible to the numberings o, o} by means of computable functions go, g1,
respectively.

First of all, note that, by definition of the numberings af, o}, for every v,

yeM < af(y) = aj(y).

Next, for every z ¢ {ag, a1} we prove the equivalence

o (2) = o (2) <= Ja(go(x) = 2 = g1 (x)).

Let o?(2) = a}(2) and 2 ¢ {ag,a1}. Then the set af(z) has a unique index
w.r.t. the numbering a. Therefore there exists x such that go(z) = 2. Equality



af(2) = al(z) implies that g;(x) = z since a}(z) has also a unique index w.r.t.
the numbering ).

Conversely, if go(x) = 2z = g1(x) for some x then af(z) = a?(go(x)) and
al(gi(z)) = al(z). Therefore, a?(2) = v(z) = a}(2).

Thus we have that, for every z,

z € M\ {ap, a1} <= 2 ¢ {ao,a1} &3z (go(x) = z = g1(2))
and, consequently, M is computably enumerable. This is a contradiction with

the fact that M is 0(*)— maximal. Lemma 4 is thus proved.

Lemma 5. For every m > 0 and n > 22m+1, there exist numberings
B9, 81,89, 8%, B, B € Comgﬂ(An) such that:

1) Raepl=pep=-=p% &bk

(2) for every i € [1,2™], the numberings 3 and 3} induce a minimal pair in
the Rogers semilattice R{,;(An):

(3) for every number | < m, every set I = {i; <iz <...< 1} C[1,2™], every
binary string o103 .. .0y, and for all numbers € € {0,1} and 7 € [1,2™]\ I,
the numberings ; and 37" @ 37 @ --- @ ;' induce a minimal pair in
RY. 1 (An):

Proof. Let m be any positive number, let l+1§ m, and let n be an arbitrary
number which satisfies the inequality n > 22" . Fix any sequence of subsets
X1, Xo, ..., Xom of the set [1,n] such that the inequality

XE ()5 () xan | = 2!

holds for every binary string e1e5...eam. Here, for any set X, the symbol | X]|
denotes the cardinality of X, and X} = X;, X? = [1,n]\ X;, i € [1,2™].
For every i € [1,2™], we define two numberings 3 and 3} by letting

8 = Za;fs@ Za;, s € {0,1}.

peX) qeX}

Statement (1) holds trivially since the following equivalence

n n
0 1 § 0 § 1
=1 =

holds for every i € [1,2™].
Let us prove statement (2) by contradiction. Assume that some numbering
v € Com)_;(A,) is reducible to both 3Y and B} for some i € [1,2™].

Since the families AL, A2, ... A" are pairwise disjoint and
0 _ 1 0
Bl=2 e Y ay
peX) qeX}



the reducibility v < 37 implies that there exist 9 41— computable numberings
5,4 € [1,n], of the families A, such that v =~ @72 & --- @, and 7, < o)
for all p € X} and v, < o, for all ¢ € X?. The reducibility v < 8} implies that,

for every j € [1,n],
< Yato Yol
peX)? qeX}

And we have v, < azl, for all p € Xi1 and v, < 042 for all ¢ € XZO since the
families AL, A2,..., A" are pairwise disjoint. Thus, 7; < ag and y; < a} for
every j € [1,n]. This is in contradiction with lemma 4.

We prove statement (3) by contradiction too. Suppose that some numbering
7 of the family A,, is reducible to the numberings 3 and ]! © 5, ©--- @ f;".
Here, for all j € [1,1], the numbers ¢, and o;,%; are chosen as in statement (3).
Similarly to the proof of statement (2), we use a decomposition v = v; G v2 @
-+ @ Y, where v; € Com)_, (A7) for every j € [1,n].

Due to the choice of the sets X1, Xo,..., Xom and to the inequality [ + 1 <
2m+1 there exists at least one number

jeXe sz'11701 ﬂX;;Uz m e ﬂXill*Ul_

Since j € X;, using the decomposition 3] = ZPGX’?Q;_E @ quxgag it is
easy to check that, in both cases ¢ = 0 and ¢ = 1, a} is an element of this
decomposition, but at the same time 04? is not. Consequently, v; < ajl-.

Analogously, one can check that oz? does enter each decomposition of the
numberings 37", 377, .., Z‘ whereas a} does not. This implies that v; < a?.

Thus, a? and Oz; induce a minimal pair in RY _H(Aﬁll)7 in contradiction with
lemma 4. Therefore lemma 5 is proved.

Using lemmas 1-5 we can now deduce the statement of the theorem as
follows. Define a computable function h by letting h(1) = 16 and h(e + 1) =
22" for every e > 1. Let B, = Ay for every e > 1. Lemmas 3, 5 imply

that Th(R,;(Ber)) # Th(RY, | (Ber)) for every e’ # e’
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