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University of Oviedo (Spain)

e-mail: elias@orion.ciencias.uniovi.es

Abstract

In this paper we study the automorphism groups of two very important
predicates in computability theory: the predicate x ∈ Wy and the graph
of the universal partial recursive function.

We prove that the automorphisms of those predicates are always com-
putable. We also study the way those groups act on several index sets
and obtain some results about the structure of the groups.

1 Introduction

We fix an acceptable system of indices of the partial computable functions (as
done, for instance, in [3] or in [6]) and denote ϕn the n-th such function and
Wn its domain. We will study the groups of automorphisms of the predicates

P (e, x, y) ⇐⇒ ϕe(x) = y

and
W (x, y) ⇐⇒ x ∈ Wy

We will denote by AutP and AutW the group of automorphisms of P and
W , while AutrP and AutrW will denote the groups of recursive automorphisms
of those predicates. That is, a member of AutP is permutation f of the set of
natural numbers (which we will denote as ω) such that for all e, x, y ∈ ω

P (e, x, y) ⇐⇒ P (f(e), f(x), f(y))

and a member of AutW is permutation g of ω such that for all x, y ∈ ω

W (x, y) ⇐⇒ W (g(x), g(y))

If f or g are computable then they will be, respectively, in AutrP or in AutrW .
It is clear that all they are groups under the operation of composition of func-
tions.
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Of course, the actual members of these groups depend on the chosen coding
of partial computable functions. However, the results by Blum (see [2] and [6])
show that, for acceptable systems of indices, the corresponding groups are re-
cursively isomorphic.

Notice that
x ∈ Wy ⇐⇒ ∃z (ϕx(y) = z)

so AutP ≤ AutW and AutrP ≤ AutrW .
If f is a computable function we will denote If the set of its indices, i.e.

If = {n ∈ ω : f = ϕn}
In particular we will denote Iid the set of indices of the identity function and I↑
the set of indices of the nowhere defined function. If g = ϕn then we will simply
denote In = Ig.

If A is a r.e. set we will denote

HA = {x ∈ ω : Wx = A}
If A = Wn we will simply denote Hn = HA.

If A is a set we will denote its cardinality by |A|.

2 Complexity of the automorphisms

In this section we study the degree of computability of the automorphisms of
P and W . First, we show that the groups AutP and AutW are countable and
then we prove that, in fact, AutP = AutrP and AutW = AutrW .

First, we state some lemmas that will be used once and again in the proofs
of our main results.

Lemma 1 Let f be an automorphism of W . Then for every natural number n

f(Wn) = Wf(n)

and
f(Hn) = Hf(n)

Proof. First note that if x, y ∈ ω then

x ∈ Wy ⇐⇒ f(x) ∈ Wf(y)

implies, since f is one-to-one and onto, that

f(Wy) = Wf(y)

If Wa = Wn we will have

Wf(n) = f(Wn) = f(Wa) = Wf(a)
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so
f(Hn) ⊆ Hf(n)

The other inclusion follows when we apply this property to f−1 and Hf(n).

Lemma 2 Let f be an automorphism of P . Then for every natural number n

f · ϕn · f−1 = ϕf(n)

and
f(In) = If(n)

Proof. Notice that for e, x, y ∈ ω

ϕe(x) = y ⇐⇒ ϕf(e)(f(x)) = f(y)

implies, since f is bijective, that

f · ϕe · f−1 = ϕf(e)

The second part of the lemma can be proved in way similar to what we did in
the previous one.

Remark 1 Notice that a permutation f satisfying

f(Wn) = Wf(n)

for every natural number n is, in fact, an automorphism of W . Also, if f
satisfies

f · ϕn · f−1 = ϕf(n)

for all n, then it is in AutP .

Theorem 1 There exists e < ω such that for all h ∈ AutW

Wh(e) = We ⇐⇒ h = id

Proof.
Consider a total and computable function g such that

ϕg(n)(x) =
{

0 if x ∈ {0, . . . , n}
↑ otherwise

Then, Wg(n) = {0, . . . , n}.
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Choose e so that We = Range g = {g(0), g(1), . . .}. Let h be an automor-
phism of W such that h(e) = e. Then, from lemma 1

{h(g(0)), h(g(1)), . . .} = h(We) = Wh(e) = We = {g(0), g(1), . . .}

It is clear that if i 6= j then

|Wh(g(i))| = |h(Wg(i))| = |Wg(i)| = i + 1 6= j + 1 = |Wg(j)|

so h(g(i)) 6= g(j) if i 6= j. It follows that h(g(i)) = g(i) for every i in ω. Then

{h(0), . . . , h(i)} = h(Wg(i)) = Wh(g(i)) = Wg(i) = {0, . . . , i}

and it follows (by induction on i) that h(i) = i for every i in ω.

Remark 2 Notice that the values of any automorphism f of W are determined
by the value f(e) (in fact, by Hf(e)).

The previous theorem is important in the view of the results of Krueker
(see [1] and [5]). These results make trivial the proof of the following corollary.

Corollary 1 There is only a countable number of automorphisms of W (and,
therefore, of P ).

Theorem 2 If f is an automorphism of W then it is computable.

Proof. Let e0 be an index of the empty set, e1 and index of {e1} and e2 an
index of {e0, e1}. We consider the set

S = {n0, . . . , nk, . . .}

where
Wnk

= {bk
1 , bk

2}
Wbk

2
= {k}

Wbk
1

= {mk
0 , e0}

Wmk
0

= {mk
1}

...
Wmk

k
= {e2}

It is clear that S is r.e. since, given k we can compute, in turn, mk
k, . . . , mk

0 , bk
1 , bk

2

and nk. Then, we can fix an index a of S as r.e. set.
Consider the r.e. set

Wf(a) = {f(n0), . . . , f(nk), . . .}
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It is clear that
Wf(nk) = {f(bk

1), f(bk
2)}

Wf(bk
2 ) = {f(k)}

Wf(bk
1 ) = {f(mk

0), f(e0)}
Wf(mk

0 ) = {f(mk
1)}

...
Wf(mk

k
) = {f(e2)}

and that
Wf(e0) = ∅
Wf(e1) = {f(e0)}
Wf(e2) = {f(e0), f(e1)}

Note that |Wf(e0)| = 0 but |Wf(e1)| = 1. Then we have f(e0) 6= f(e1) and
|Wf(e2)| = 2. Note also that f(ni) 6= f(nj) if i 6= j.

To enumerate the set A = {(x, y) : f(x) = y} we repeat the following steps:

• Enumerate a new element m of the set Wf(a).

• Enumerate Wm till you obtain two values r and s.

• Enumerate Wr and Ws. One of them will have two members and the other
only one. Suppose that

Wr = {i, j}
Ws = {y}

• Enumerate Wi and Wj . One of them will be empty and the other will
have one member. Suppose that

Wi = {c1}
Ws = ∅

• Enumerate Wc1 till you obtain a value, say c2; dovetail the enumeration of
Wc1 with the enumeration of Wc2 ; when you find that c3 ∈ Wc2 , dovetail
the enumerations of Wc1 ,Wc2 and Wc3 ; . . . and so on. Eventually in one
of these sets, say Wcn , there will appear two elements. From the structure
of the set Wa (and of Wf(a)) it follows that

y = f(n− 1)

Then we add to A the value (n− 1, y).

It is clear that the process enumerates the set A, so it is r.e. and, then, f is
computable.

Remark 3 Note that then AutrW = AutW and AutrP = AutP .
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Remark 4 Though, for sake of clarity, we won’t include the results in this
paper, Theorem 2 can be generalized to prove that all functions verifying

f(Wn) = Wf(n)

for every natural number n, are computable. It is also possible to prove that an
isomorphic embedding of W is computable if its range is r.e.

3 Action of the automorphisms

In this section we show that, despite of the fact of all their members being
computable, the groups AutP and AutW are rather complicated. The natural
question after theorem 2 is if the groups AutW and AutP form a computable
family. Near the end of this section we prove that it is not the case. We study, in
turn, the actions of those groups over various sets of indices of computable func-
tions and r.e. sets respectively. For definitions and group-theoretical notions,
consult [8].

First, we show that the action on ω of any automorphism of W (respectively,
of P ) is determined by its action on the sets of indices Hn (respectively on the
sets In).

Lemma 3 If f is an automorphism of W such that for every n

f(Hn) = Hn

then f is the identity function.

Proof. Suppose that f is not the identity. Then, there exists n ∈ ω such that
f(n) 6= n. Let m such that Wm = {n}. Then

Wf(m) = f(Wm) = {f(n)} 6= {n} = Wm

so f(Hm) 6= Hm.

Lemma 4 If f is an automorphism of P such that

f(In) = In

for all n in ω then f is the identity function.

Proof. Every automorphism of P is an automorphism of W . Each set Hn is
union of sets Im. The result follows from previous lemma.

To prove the main results of this section, we will use the well-known notion
of recursive inseparability of sets (see [7] for details).

Definition 1 If A and B are subsets of ω we say that they are recursively
separable if there exist recursive sets U and V such that
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• A ⊆ U

• B ⊆ V

• U ∪ V = ω

• U ∩ V = ∅

The proof of the following result can be found in [4].

Lemma 5 If f and g are two different computable functions then If and Ig are
not recursively separable. If Wn 6= Wm then Hn and Hm are not recursively
separable.

Now we prove the main results of this section.

Theorem 3 For each n < ω the group AutW acts n-transitively and faithfully
on the set Hω and on the set H∅.

Proof. The action is faithfull, because if f is an automorphism of W such that
f(x) = x for all x ∈ Hω then Hω ⊆ U = {x ∈ ω : x = f(x)}, which is recursive
(we proved that f is computable in theorem 2). From lemma 5 we see that f
fixes at least one element of each set Hn. From lemmas 1 and 3 it follows that
f is the identity function. The proof for H∅ is similar.

Now we prove that the action is also n-transitive. Take A = {a1, . . . , an}
and B = {b1, . . . , bn} two finite subsets of Hω with n elements each. We will
construct an automorphism of W taking ai into bi for i = 1, . . . , n.

Given a computable function ϕz we will denote by ϕz the function which is
computed in the following way:

Given a natural number x dovetail computations of ϕz. Then ϕz(x) is the
first input which gives x as output.

Note that if ϕz is a permutation, then ϕz is its inverse.
We will show how to construct a total and computable function h such that

for every z ∈ ω

• The function ϕh(z) is a recursive permutation

• ϕh(z)(ai) = bi for i = 1, . . . , n.

• For every m 6∈ A we have either

ϕz(Wm) = Wϕh(z)(m)

or
Wm = ϕz(Wϕh(z)(m))

Given z the function ϕh(z) is computed as follows:

Step 0 Let ϕh(z)(ai) = bi for i = 1, . . . , n.
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Step 2t + 1 We choose m, the minimum element on which ϕh(z) is not yet
defined. We effectively generate indices (using padding lemma, see [7]) of
the set

ϕz(Wm)

until we find a which is not yet in the range of ϕh(z). Then, we let

ϕh(z)(m) = a

Step 2t + 2 We choose b the minimum element which is not yet in the range of
ϕh(z). We effectively generate indices of the set

ϕz(Wb)

until we find m on which ϕh(z) in not yet defined and let

ϕh(z)(m) = b

Let z a natural number such that ϕz = ϕh(z) (recursion theorem assures that
such a number exists). Then we will have

• ϕz is a recursive permutation

• ϕz(ai) = bi for i = 1, . . . , n.

• For every m 6∈ A we have either

ϕz(Wm) = Wϕz(m)

or
Wm = ϕz(Wϕz(m))

Since ϕz is a permutation we have ϕz = ϕ−1
z and then for every m 6∈ A

ϕz(Wm) = Wϕz (m)

On the other hand, since ϕz is a permutation and A,B ⊆ Hω, for every ai ∈ A
it is true that

ϕz(Wai) = ϕz(ω) = ω = Wbi = Wϕz(ai)

Then ϕz is the desired automorphism (see remark 1).
Note that in we have only used that A and B are subsets of Hω in this last

step. If we take A and B to be contained in H∅ we could replace the argument
there with the following:

For every ai in A

ϕz(Wai) = ϕz(∅) = ∅ = Wbi = Wϕz(ai)

and the proof of the theorem is complete
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Theorem 4 For each n < ω the group AutP acts faithfully and n-transitively
and on the set Iid and on the set I↑.

Proof. The proof is similar to the one of the previous theorem. We can replace
steps 2t + 1 and 2t + 2 with the following

Step 2t + 1 We choose e, the minimum element on which ϕh(z) is not yet
defined. We effectively generate indices of the function

ϕz · ϕe · ϕz

until we find a which is not yet in the range of ϕh(z). Then, we let

ϕh(z)(e) = a

Step 2t + 2 We choose b the minimum element which is not yet in the range of
ϕh(z). We effectively generate indices of the function

ϕz · ϕb · ϕz

until we find e on which ϕh(z) in not yet defined and let

ϕh(z)(e) = b

Reasoning as we did in the previous theorem, we obtain an automorphism of P
with the required action.

Remark 5 Notice that, both in theorem 3 and 4, we can obtain an infinite
number of automorphisms with the desired action over a1, . . . , an. Just choose
another element an+1 and apply the theorem to a1, . . . , an+1 varying bn+1.

Now, we can easily prove the following

Corollary 2 There is no computable family of functions including all and only
automorphisms of W .

Proof. Consider that {fn}n∈ω is such a family. Then, from theorem 3 we
conclude

Hω = {fn(x) : n ∈ ω}
but the set on the right is r.e. while Hω is not.

Similarly we obtain

Corollary 3 There is no computable family of functions including all and only
automorphisms of P .
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After these results is obviously interesting to study the sets

CW = {n ∈ ω : ϕn ∈ AutW}
CP = {n ∈ ω : ϕn ∈ AutP}

Adding a kind of diagonalization to the proofs of theorems 3 and 4 we can
prove the following

Proposition 1 Both CW and CP are productive.

Proof. We prove it only for CW , the case of CP being similar. Suppose
Wb ⊆ CW . In the proof of theorem 3 subsitute step 2t + 1 with the following

• Step 2t + 1 We choose m, the minimum element on which ϕh(z) is not yet
defined. We enumerate a new element k of Wb. We effectively generate
indices of the set

ϕz(Wm)

until we find a which is not yet in the range of ϕh(z) and such that ϕb(m) 6=
a. Then, we let

ϕh(z)(m) = a

Clearly, the obtained automorphism will be different from all with indices in Wb

and, since, the process is uniform, we can effectively generate and index of it.

We can still say something else about the complexity of those sets.

Theorem 5 Both CW and CP are Π0
2-complete.

Proof. Again both cases are similar, so we concentrate only in CW .
First we show that CW ∈ Π0

2:

m ∈ CW ⇐⇒ ϕm ∈ AutP
⇐⇒ ∀n∀x (

x ∈ Wn ↔ ϕm(x) ∈ Wϕm(n)

)

Applying Tarski-Kuratowski algorithm (see [7]) we get the result. Now, consider
B ∈ Π0

2. It is a well-known fact (see [7]) that in this conditions, there exists a
recursive predicate A(x, t) such that

B = {x ∈ ω : There exist infinitely many t’s such that A(x, t)}

We have already proved that CW is productive, so it contains an infinite r.e.
subset D (see [6]). Let f be a total and computable function enumerating D
without repetitions.

We construct a computable function g, such that given n, the value g(n) is
an index of the function computed in the following way:

Given k, look for elements t (beginning from 0) such that A(n, t). When and
only when k such elements are found, return ϕf(n)(k).

10



We will have

g(n) ∈ CW ⇐⇒ ϕg(n) ∈ AutW
⇐⇒ There are infinitely many t’s s.t. A(x, t)
⇐⇒ n ∈ B

with g clearly 1-1. Then, B ≤1 CW and the theorem is proved.

4 Properties of the groups AutW and AutP

In this section we modify the proof of theorems 3 and 4 in several ways to obtain
results about the structure of the groups AutP and AutW . Most of the results
and proved only for AutP and automatically inherited by AutW .

Lemma 6 For each m > 0 there is an automorphism f of P such that it has
exactly one finite cycle, and that cycle has length m.

Proof. In the proof theorem 4 choose n = m and bi = ai−1 for i = 2, . . . , n
and b1 = an (it gives the finite cycle of the desired length). Replace steps 2t+1
and 2t + 2 with the following:

Step 2t + 1 We choose e, the minimum element on which ϕh(z) is not yet
defined. We effectively generate indices of the function

ϕz · ϕe · ϕz

until we find a which is not yet in the range of ϕh(z), neither in its domain.
Then, we let

ϕh(z)(e) = a

Step 2t + 2 We choose b the minimum element which is not yet in the range of
ϕh(z). We effectively generate indices of the function

ϕz · ϕb · ϕz

until we find e on which ϕh(z) is not yet defined and is not yet in its range
and let

ϕh(z)(e) = b

In this way, no more cycles will close and an automorphism with the announced
properties is obtained.

Next results follow now easily:

Proposition 2 The group AutP (and so AutW ) has an infinite number of
elements of infinite order
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Proposition 3 The group AutP (and so AutW ) has an infinite number of
conjugacy classes

Proof. Clearly if we vary m in the previous lemma the automorphisms that
we obtain are not conjugated

A more complicated modification of the proof of theorem 4 is needed to
prove the following embedding theorem.

Theorem 6 The group AutP (and so AutW ) has a free subgroup of infinite
rank.

Proof. Since AutP has elements of infinite order, it is enough to prove that,
given f1, . . . , fn ∈ AutP with only trivial relations we can effectively find an
automorphism f of P such that f1, . . . , fn and f have only trivial relations.

Modify the proof of theorem 4 in the following way:
Before defining ϕh(z) for a given z fix an effective enumeration {wt}t∈ω of

all the reduced words in f1, . . . , fn, ϕh(z) and their inverses with at least one
occurrence of ϕh(z) or its inverse.

Eliminate step 0. Rename steps 2t+1 and 2t+2 to 3t and 3t+1 respectively.
Add the following

Step 3t + 2 At this step we care for warranting that wt 6= 1. Suppose that

wt = u0ϕ
ε1
h(z)u1ϕ

ε2
h(z) · · ·ϕεn

h(z)un

where the ui are in f1, . . . , fn and their inverses only and εi ∈ {1,−1} for
i = 1, . . . , n.

We choose m such that Wm = We with e as in theorem 1 and un(m) is
yet neither in the domain of ϕh(z) nor in its range. Clearly this is possible
since we can effectively generate an infinite number indices of We and, at
this step, ϕh(z) is only defined on a finite number of elements.

Now, we proceed to define ϕεn

h(z) on un(m) as we would do in steps 3k (if
εn = 1) or steps 3k + 1 (if εn = −1) taking care that

1. un−1ϕ
εn

h(z)un(m) 6= m

2. un−1ϕ
εn

h(z)un(m) 6= ϕεn

h(z)(m)

3. If n > 1 and εn−1 = 1 then un−1ϕ
εn

h(z)un(m) is not yet in the domain
of ϕh(z)

4. If n > 1 and εn−1 = −1 then un−1ϕ
εn

h(z)un(m) is not yet in the range
of ϕh(z)

It is clear that we can always satisfy conditions 1, 3 and 4, since for the
definition of ϕεn

h(z) on un(m) we can choose from an infinite number of
values and each condition only eliminates a finite number of elements.
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Condition number 2 is different. If, while generating indices to define ϕεn

h(z)

on un(m), we find one of them, say b, such that un−1(b) = b then we stop
the process.

If we are able to satisfy the four conditions, ϕ
εn−1

h(z) will not be defined on
un−1ϕ

εn

h(z)un(m) and we proceed to define it satisfying conditions similar
to 1-4 above.

We iterate this process till the value wt(m) is defined (and, thus, satisfying
wt(m) 6= m) or till the it must be stopped because of the impossibility of
satisfying one of the conditions with number 2.

Now, as in theorem 4 we use recursion theorem to get z so that ϕz = ϕh(z).
We have already proved that ϕz is an automorphism of P . Suppose there exists
t such that wt = 1. It is only possible if at step 3t+2 of the definition of ϕz one
of the conditions with number 2 could not be satisfied. Then, we have found an
index m of We and a number k such that

uk−1ϕ
εk

h(z)uk · · ·ϕεn

h(z)un(m) = ϕεk

h(z)uk · · ·ϕεn

h(z)un(m)

Denote g = ϕεk

h(z)uk · · ·ϕεn

h(z)un which is an automorphism of P (and so of W ).
Then

uk−1g(m) = g(m)

and
g−1uk−1g(m) = m

We can apply theorem 1 to conclude g−1uk−1g = 1 and, consequently, uk−1 = 1.
But uk−1 is a reduced word on f1, . . . , fn and their inverses and they generate
a free group. We have reached a contradiction and, then, wt 6= 1.

Finally, we turn to the study of the centers of the groups AutP and AutW .
Again we use a modification of the main construction in section 3. In the next
result Symmrω will denote the group of computable permutations of ω.

Lemma 7 Any group G such that AutP ≤ G ≤ Symmrω is centerless.

Proof. Take f 6= id in G. Find (effectively) x such that f(x) 6= x. Modify
steps 2t + 1 and 2t + 2 in the proof theorem 4 so they include the following:

Step 2t+1 We don’t allow to define ϕh(z) on f(x) till it is defined on x. When
we define ϕh(z)(f(x)) we choose a value different from f(ϕh(z)(x)) (which
is already defined).

Step 2t + 2 We don’t allow f(x) to be included in the domain of ϕh(z) in this
step.

Clealy we will have
ϕh(z)(f(x)) 6= f(ϕh(z)(x))
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for every z and f will not commute with the automorphism of P given by the
recursion theorem.

In particular we have

Theorem 7 The groups AutP and AutW are centerless.
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