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Abstract

In this paper we study the automorphism groups of two very important
predicates in computability theory: the predicate z € W, and the graph
of the universal partial recursive function.

We prove that the automorphisms of those predicates are always com-
putable. We also study the way those groups act on several index sets
and obtain some results about the structure of the groups.

1 Introduction

We fix an acceptable system of indices of the partial computable functions (as
done, for instance, in [3] or in [6]) and denote ¢, the n-th such function and
W, its domain. We will study the groups of automorphisms of the predicates

P(eaxay) — Qoe(x) =Yy

and
W(z,y) <= zeWW,

We will denote by AutP and AutW the group of automorphisms of P and
W, while Aut,. P and Aut,.W will denote the groups of recursive automorphisms
of those predicates. That is, a member of AutP is permutation f of the set of
natural numbers (which we will denote as w) such that for all e, z,y € w

Ple,z,y) < P(f(e), f(x), f(y))

and a member of AutW is permutation g of w such that for all x,y € w

W(z,y) <= Wi(g(x),9(y))

If f or g are computable then they will be, respectively, in Aut, P or in Aut,W.
It is clear that all they are groups under the operation of composition of func-
tions.



Of course, the actual members of these groups depend on the chosen coding
of partial computable functions. However, the results by Blum (see [2] and [6])
show that, for acceptable systems of indices, the corresponding groups are re-
cursively isomorphic.
Notice that
zeW, <= Iz (v.(y) =2)

so AutP < AutW and Aut,.P < Aut,W.
If f is a computable function we will denote Iy the set of its indices, i.e.

It={necw: f=p,}

In particular we will denote I;4 the set of indices of the identity function and I}
the set of indices of the nowhere defined function. If g = ¢,, then we will simply
denote I, = I,.

If Ais ar.e. set we will denote

Hy={xew: W, =A}

If A=W, we will simply denote H,, = H4.
If A is a set we will denote its cardinality by |A|.

2 Complexity of the automorphisms

In this section we study the degree of computability of the automorphisms of
P and W. First, we show that the groups AutP and AutW are countable and
then we prove that, in fact, AutP = Aut, P and AutW = Aut,W.

First, we state some lemmas that will be used once and again in the proofs
of our main results.

Lemma 1 Let f be an automorphism of W. Then for every natural number n
FWn) =Wy

and
f(Hn) = Hf(n)

Proof. First note that if z,y € w then
reW, < f(x) e Wy
implies, since f is one-to-one and onto, that
FWy) =Wy
If W, = W,, we will have
Wiy = f(Wa) = fF(Wa) = W(a)



SO
f(Hn) C Hipn)
The other inclusion follows when we apply this property to f~ and H tn)- N

Lemma 2 Let f be an automorphism of P. Then for every natural number n

f"Pn'f71 = Pf(n)

and

Proof. Notice that for e,z,y € w
Pe(7) =y = 9y (f(2)) = f(y)
implies, since f is bijective, that
frve =05
The second part of the lemma can be proved in way similar to what we did in

the previous one. ]

Remark 1 Notice that a permutation f satisfying

FWn) = Wi

for every natural number n is, in fact, an automorphism of W. Also, if f
satisfies

foen- fh=0pm)
for all m, then it is in AutP.

Theorem 1 There exists e < w such that for all h € AutW

Wh(e) =W, <= h=1id

Proof.
Consider a total and computable function g such that

[0 ifzed0,...,n}
Pg(n) (2) _{ T otherwise

Then, Wy, ={0,...,n}.



Choose e so that W, = Range g = {9(0),g(1),...}. Let h be an automor-
phism of W such that h(e) = e. Then, from lemma 1

{h(g(())), h(g(l))a e } = h(We) = Wh(e) =W, = {g<0)79(1)’ - }’
It is clear that if 4 # j then
(Whganl = 1MW)l = Wy | =i+ 1# j+1 =Wy
so h(g(i)) # g(j) if ¢ # j. Tt follows that h(g(é)) = g(i) for every i in w. Then
{r(0),...,h())} = h(Wy()) = Whgay) = Woy) = {0, i}
and it follows (by induction on 4) that k(i) = i for every i in w. [ ]
Remark 2 Notice that the values of any automorphism f of W are determined
by the value f(e) (in fact, by Hy()).

The previous theorem is important in the view of the results of Krueker
(see [1] and [5]). These results make trivial the proof of the following corollary.

Corollary 1 There is only a countable number of automorphisms of W (and,
therefore, of P).

Theorem 2 If f is an automorphism of W then it is computable.

Proof. Let ey be an index of the empty set, e; and index of {e;} and es an
index of {eg,e1}. We consider the set

S={ng,...,ng,...}

where .
Wa, = {bi,b3}
Wy = {k}
Wb’f = {mlg’ 60}
W = {mf}
Wy = {e}
It is clear that S is r.e. since, given k we can compute, in turn, m’,z, ... ,mlg, b’f, b’;

and ng. Then, we can fix an index a of S as r.e. set.
Consider the r.e. set

Wiy =1{f(no),..., f(nx),...}



It is clear that
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and that

Wf(eo) =0
Wf(e1) = {f(e())}
{f

Note that |[Wy ()| = 0 but [We,)| = 1. Then we have f(eo) # f(e1) and
|W(es)| = 2. Note also that f(n;) # f(ny) if i # j.
To enumerate the set A = {(z,y) : f(z) = y} we repeat the following steps:

Enumerate a new element m of the set Wy ).
Enumerate W, till you obtain two values r and s.

Enumerate W,. and W,. One of them will have two members and the other
only one. Suppose that

W, = {ia .7}

W, = {y}

Enumerate W; and W;. One of them will be empty and the other will
have one member. Suppose that

Wi = {a}
W, = 0
Enumerate W, till you obtain a value, say ca; dovetail the enumeration of
W,, with the enumeration of W,,; when you find that c3 € W,,, dovetail
the enumerations of W,,,W,, and W,,; ... and so on. Eventually in one
of these sets, say W,,,, there will appear two elements. From the structure
of the set W, (and of Wy () it follows that

y=[f(n-1)

Then we add to A the value (n — 1,y).

It is clear that the process enumerates the set A, so it is r.e. and, then, f is
computable. ]

Remark 3 Note that then Aut,W = AutW and Aut,P = AutP.



Remark 4 Though, for sake of clarity, we won’t include the results in this
paper, Theorem 2 can be generalized to prove that all functions verifying

FWn) = Wi

for every natural number n, are computable. It is also possible to prove that an
isomorphic embedding of W is computable if its range is r.e.

3 Action of the automorphisms

In this section we show that, despite of the fact of all their members being
computable, the groups AutP and AutW are rather complicated. The natural
question after theorem 2 is if the groups AutW and AutP form a computable
family. Near the end of this section we prove that it is not the case. We study, in
turn, the actions of those groups over various sets of indices of computable func-
tions and r.e. sets respectively. For definitions and group-theoretical notions,
consult [8].

First, we show that the action on w of any automorphism of W (respectively,
of P) is determined by its action on the sets of indices H,, (respectively on the
sets I,).

Lemma 3 If f is an automorphism of W such that for every n
f(Hn) = H,
then f is the identity function.

Proof. Suppose that f is not the identity. Then, there exists n € w such that
f(n) # n. Let m such that W,,, = {n}. Then

Wf(m) = f(Wn) ={f(n)} # {n} =W,
S0 f(Hm> 7& Hy,. [ ]

Lemma 4 If f is an automorphism of P such that
fIn) =1In
for all n in w then f is the identity function.

Proof. Every automorphism of P is an automorphism of W. Each set H, is
union of sets I,,,. The result follows from previous lemma. |

To prove the main results of this section, we will use the well-known notion
of recursive inseparability of sets (see [7] for details).

Definition 1 If A and B are subsets of w we say that they are recursively
separable if there exist recursive sets U and V' such that



e ACU

e BCV
e UUV =w
e UNV =90

The proof of the following result can be found in [4].

Lemma 5 If f and g are two different computable functions then Iy and I, are
not recursively separable. If W,, # Wy, then H, and H,, are not recursively
separable.

Now we prove the main results of this section.

Theorem 3 For each n < w the group AutW acts n-transitively and faithfully
on the set H,, and on the set Hy.

Proof. The action is faithfull, because if f is an automorphism of W such that
f(z) =z for all x € H,, then H, CU ={z € w: z = f(x)}, which is recursive
(we proved that f is computable in theorem 2). From lemma 5 we see that f
fixes at least one element of each set H,,. From lemmas 1 and 3 it follows that
f is the identity function. The proof for Hy is similar.

Now we prove that the action is also n-transitive. Take A = {ay,...,a,}
and B = {by,...,b,} two finite subsets of H,, with n elements each. We will
construct an automorphism of W taking a; into b; for i =1,...,n.

Given a computable function ¢, we will denote by ¢z the function which is
computed in the following way:

Given a natural number z dovetail computations of ¢.. Then ¢z(x) is the
first input which gives x as output.

Note that if ¢, is a permutation, then @z is its inverse.

We will show how to construct a total and computable function h such that
for every z € w

e The function ¢y(;) is a recursive permutation
® On)(a;) =bifori=1,...,n.

e For every m ¢ A we have either

9:(Win) = Wo, .y (m)

or
W = (‘OE(WQOh,(z)(m))

Given z the function ¢y, is computed as follows:

Step 0 Let @2y (ai;) = b; for i =1,...,n.



Step 2t + 1 We choose m, the minimum element on which ¢ .) is not yet
defined. We effectively generate indices (using padding lemma, see [7]) of
the set

(W)

until we find a which is not yet in the range of ¢j(,). Then, we let
Pn(z)(m) =a

Step 2t + 2 We choose b the minimum element which is not yet in the range of
©n(z)- We effectively generate indices of the set

o=(Wp)

until we find m on which ¢,y in not yet defined and let
Sph(Z)(m) =b

Let z a natural number such that ¢, = ¢,y (recursion theorem assures that
such a number exists). Then we will have

e (p, is a recursive permutation
e p.(a;))=0b;fori=1,...,n.

e For every m ¢ A we have either

(W) = W (m)

or
W = QOE(WL,@Z (m) )

Since ¢, is a permutation we have ¢z = . ! and then for every m ¢ A
pz(Wi) = W, (m)

On the other hand, since ¢, is a permutation and A, B C H,,, for every a; € A
it is true that
0:(Wo,) = p-(w) =w=W,;, = Wgoz(ai,)

Then ¢, is the desired automorphism (see remark 1).

Note that in we have only used that A and B are subsets of H,, in this last
step. If we take A and B to be contained in Hp we could replace the argument
there with the following:

For every a; in A

‘PZ(Wai) = ‘PZ([Z)) =0=W, = sz(ai)

7

and the proof of the theorem is complete [ ]



Theorem 4 For each n < w the group AutP acts faithfully and n-transitively
and on the set I;q and on the set Iy.

Proof. The proof is similar to the one of the previous theorem. We can replace
steps 2t + 1 and 2t + 2 with the following

Step 2t + 1 We choose e, the minimum element on which ¢j,(.) is not yet
defined. We effectively generate indices of the function

Pz Pe Pz
until we find a which is not yet in the range of ¢j(,). Then, we let
Ph(z) (6) =a

Step 2t + 2 We choose b the minimum element which is not yet in the range of
©n(z)- We effectively generate indices of the function

Pz Pb Pz
until we find e on which ;) in not yet defined and let
Pn(z)(€) =b
Reasoning as we did in the previous theorem, we obtain an automorphism of P

with the required action. |

Remark 5 Notice that, both in theorem & and 4, we can obtain an infinite
number of automorphisms with the desired action over aq,...,a,. Just choose
another element a,y1 and apply the theorem to ai,...,an4+1 varying byy1.

Now, we can easily prove the following

Corollary 2 There is no computable family of functions including all and only
automorphisms of W.

Proof. Counsider that {f,}necw is such a family. Then, from theorem 3 we
conclude

H, ={fn(z) :n€w}
but the set on the right is r.e. while H,, is not. |

Similarly we obtain

Corollary 3 There is no computable family of functions including all and only
automorphisms of P.



After these results is obviously interesting to study the sets

Cw = {new:yp, € AutW}
Cp = {new:yp, € AutP}

Adding a kind of diagonalization to the proofs of theorems 3 and 4 we can
prove the following

Proposition 1 Both Cy and Cp are productive.

Proof. We prove it only for Cy, the case of Cp being similar. Suppose
Wy C Cyw . In the proof of theorem 3 subsitute step 2t + 1 with the following

e Step 2t +1 We choose m, the minimum element on which ¢, (. is not yet
defined. We enumerate a new element k of W;,. We effectively generate
indices of the set

(W)

until we find @ which is not yet in the range of ¢;,(.) and such that o, (m) #
a. Then, we let

Ph(z) (m) =a

Clearly, the obtained automorphism will be different from all with indices in W}
and, since, the process is uniform, we can effectively generate and index of it. H

We can still say something else about the complexity of those sets.
Theorem 5 Both Cy and Cp are T13-complete.

Proof. Again both cases are similar, so we concentrate only in Cyy .
First we show that Cy, € I19:

meCy <= ¢ AutP
— VnVz (ac €Wy, = om(x) € Wsom(n))

Applying Tarski-Kuratowski algorithm (see [7]) we get the result. Now, consider
B € TI3. Tt is a well-known fact (see [7]) that in this conditions, there exists a
recursive predicate A(z,t) such that

B = {x € w: There exist infinitely many ¢’s such that A(x,t)}

We have already proved that Cyy is productive, so it contains an infinite r.e.
subset D (see [6]). Let f be a total and computable function enumerating D
without repetitions.

We construct a computable function g, such that given n, the value g(n) is
an index of the function computed in the following way:

Given k, look for elements ¢ (beginning from 0) such that A(n,t). When and
only when & such elements are found, return ¢y ,)(k).

10



We will have

g(n) e Cy <= Pg(n) € AutW
<= There are infinitely many ¢’s s.t. A(z,t)
< neBmB

with ¢ clearly 1-1. Then, B <; Cw and the theorem is proved. |

4 Properties of the groups AutW and AutP

In this section we modify the proof of theorems 3 and 4 in several ways to obtain
results about the structure of the groups AutP and AutW. Most of the results
and proved only for AutP and automatically inherited by AutW.

Lemma 6 For each m > 0 there is an automorphism f of P such that it has
exactly one finite cycle, and that cycle has length m.

Proof. In the proof theorem 4 choose n = m and b; = a;_1 for i = 2,...,n
and by = a,, (it gives the finite cycle of the desired length). Replace steps 2t + 1
and 2t 4+ 2 with the following:

Step 2t + 1 We choose e, the minimum element on which ¢j,(.) is not yet
defined. We effectively generate indices of the function

Pz Pe Pz

until we find @ which is not yet in the range of ¢y,(.), neither in its domain.
Then, we let

On(z)(e) =a

Step 2t + 2 We choose b the minimum element which is not yet in the range of
©n(z)- We effectively generate indices of the function

Pz Pb Pz

until we find e on which ¢, (. is not yet defined and is not yet in its range
and let

<ph(z)(e) =b

In this way, no more cycles will close and an automorphism with the announced
properties is obtained. ]

Next results follow now easily:

Proposition 2 The group AutP (and so AutW) has an infinite number of
elements of infinite order

11



Proposition 3 The group AutP (and so AutW ) has an infinite number of
conjugacy classes

Proof. Clearly if we vary m in the previous lemma the automorphisms that
we obtain are not conjugated |

A more complicated modification of the proof of theorem 4 is needed to
prove the following embedding theorem.

Theorem 6 The group AutP (and so AutW ) has a free subgroup of infinite
rank.

Proof. Since AutP has elements of infinite order, it is enough to prove that,
given fi1,..., fn € AutP with only trivial relations we can effectively find an
automorphism f of P such that f1,..., f, and f have only trivial relations.

Modify the proof of theorem 4 in the following way:

Before defining ¢y,(;) for a given z fix an effective enumeration {w;}¢c,, of
all the reduced words in fi,..., fn, ¥n(-) and their inverses with at least one
occurrence of @y, or its inverse.

Eliminate step 0. Rename steps 2t+1 and 2t+2 to 3t and 3t+1 respectively.
Add the following

Step 3t + 2 At this step we care for warranting that w; # 1. Suppose that
wy = uowizl(z)ulw;f(z) T @;?Z)un
where the u; are in fi,..., f, and their inverses only and ¢; € {1, —1} for

i=1,...,n.

We choose m such that W, = W, with e as in theorem 1 and u,(m) is
yet neither in the domain of ¢y,(;) nor in its range. Clearly this is possible
since we can effectively generate an infinite number indices of W, and, at
this step, ¢p(.) is only defined on a finite number of elements.

Now, we proceed to define @Z’EZ) on u,(m) as we would do in steps 3k (if
€n, = 1) or steps 3k + 1 (if €, = —1) taking care that

[

un_lgoz'zz)un(m) #m
2. Un—l@i?z)un(m) # W;?Z)(m)
3. If n>1ande¢,_1 =1 then un,lgo;’zz)un(m) is not yet in the domain
of vn(z)
4. If n > 1 and €¢,_1 = —1 then un,lgpzrfz)un(m) is not yet in the range
of Yn(z)
It is clear that we can always satisfy conditions 1,3 and 4, since for the

definition of ‘P;{Ez) on un(m) we can choose from an infinite number of
values and each condition only eliminates a finite number of elements.

12



Condition number 2 is different. If, while generating indices to define ‘P;sz)

on u,(m), we find one of them, say b, such that w,_1(b) = b then we stop
the process.

€n—1

If we are able to satisfy the four conditions, Ph(z) will not be defined on
un_lcpmz)un (m) and we proceed to define it satisfying conditions similar
to 1-4 above.

We iterate this process till the value w;(m) is defined (and, thus, satisfying

wi(m) # m) or till the it must be stopped because of the impossibility of
satisfying one of the conditions with number 2.

Now, as in theorem 4 we use recursion theorem to get 2 so that v, = p(,)-
We have already proved that ¢, is an automorphism of P. Suppose there exists
t such that wy; = 1. It is only possible if at step 3t + 2 of the definition of ¢, one
of the conditions with number 2 could not be satisfied. Then, we have found an
index m of W, and a number k such that

uk—lwzk(z)uk Tt ‘P;?Z)un(m) = Wzk(z)uk T @;Tzz)un(m)

Denote g = <p2’“(z)uk e wi’zz)un which is an automorphism of P (and so of W).
Then

up-19(m) = g(m)
and

9 ug—1g(m) =m

We can apply theorem 1 to conclude g~ 'ug_1g = 1 and, consequently, uz_; = 1.

But wug_1 is a reduced word on f1,..., f, and their inverses and they generate
a free group. We have reached a contradiction and, then, w; # 1. |

Finally, we turn to the study of the centers of the groups AutP and AutW.
Again we use a modification of the main construction in section 3. In the next
result Symm,w will denote the group of computable permutations of w.

Lemma 7 Any group G such that AutP < G < Symm,w is centerless.

Proof. Take f # id in G. Find (effectively) x such that f(z) # z. Modify
steps 2t + 1 and 2t + 2 in the proof theorem 4 so they include the following:

Step 2t +1 We don’t allow to define ¢,y on f(z) till it is defined on #. When
we define @p(.)(f(2)) we choose a value different from f(¢p,(;)(x)) (which
is already defined).

Step 2t 4+ 2 We don’t allow f(z) to be included in the domain of y,() in this
step.

Clealy we will have

On(z) (f(@) # f(pn ()

13



for every z and f will not commute with the automorphism of P given by the
recursion theorem. [ |

In particular we have

Theorem 7 The groups AutP and AutW are centerless.
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