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We investigate differences in the elementary theories of Rogers semilattices of arith-
metical numberings, depending on structural invariants of the given families of
arithmetical sets. It is shown that at any fixed level of the arithmetical hierar-
chy there exist infinitely many families with pairwise elementary different Rogers
semilattices.

1. Preliminaries and Background

For unexplained terminology and notations relative to computability the-
ory, our main references are the textbooks of A.I. Mal’tsev [1], H. Rogers
[2] and R. Soare [3]. For the main concepts and notions of the theory of
numberings we refer to the book of Yu.L. Ershov [4].
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Definition 1.1. Any surjective mapping α of the set ω of natural num-
bers onto a nonempty set A is called a numbering of A. Let α and β be
numberings of A. We say that a numbering α is reducible to a numbering
β (in symbols, α 6 β) if there exists a computable function f such that
α(n) = β(f(n)) for any n ∈ ω. We say that the numberings α and β are
equivalent (in symbols, α ≡ β) if α 6 β and β 6 α.

S. S. Goncharov and A. Sorbi suggested in [5] a general approach for
studying classes of objects which admit constructive descriptions in formal
languages. This approach allows to unify in a very natural way various
notions of computability and relative computability for different classes of
constructive objects. Throughout this paper we will confine ourselves to
families of arithmetical subsets of ω. We take in this case a Gdel numbering
{Φi}i∈ω of the first-order arithmetical formulas, and apply this approach
as follows, see [5]:

Definition 1.2. A numbering α of a family A of Σ0
n+1– sets, with n ≥ 0, is

called Σ0
n+1– computable if there exists a computable function f such that,

for every m, Φf(m) is a Σn+1– formula of Peano arithmetic and α(m) =
{x ∈ ω | N |= Φf(m)(x)} (where the symbol x stands for the numeral for x

and N denotes the standard model of Peano arithmetic). The set of Σ0
n+1–

computable numberings of A will be denoted by Com0
n+1(A).

Computable numberings of families of sets which are first-order defin-
able in the standard model of Peano arithmetic are called arithmetical num-
berings. A family A for which Com0

n+1(A) 6= ∅ will be called Σ0
n+1– com-

putable. If n = 0 then Σ0
1– computable numberings and classical computable

numberings of families of c.e. sets coincide.
The relation ≡ is an equivalence relation on Com0

n+1(A) and the re-
ducibility 6 induces a partial order on the equivalence classes of this re-
lation. The equivalence class of a numbering α is called the degree of α,
denoted by deg(α). The partially ordered set 〈Com0

n+1(A)/≡,6〉 of the de-
grees of Σ0

n+1– computable numberings of A will be denoted by R0
n+1(A).

If α and β are in Com0
n+1(A), then a new numbering α⊕ β of A is defined

as follows: α ⊕ β(2n) = α(n) and α ⊕ β(2n + 1) = β(n), and deg(α ⊕ β)
determines the least upper bound of the pair deg(α), deg(β) in R0

n+1(A).
Thus, R0

n+1(A) can be regarded as an upper semilattice.

Definition 1.3. The upper semilattice R0
n+1(A) is called the Rogers semi-

lattice of the class of arithmetical numberings of A.
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The Rogers semilattice R0
n+1(A) can be viewed as a tool for measuring

the algorithmic complexity of computations of the family A as a whole, and
the problems of the theory of computable numberings concern mainly the
algebraic and elementary properties of the Rogers semilattices.

We continue the investigation of the elementary types of Rogers semi-
lattices for infinite arithmetical families started in [6], [7] and [8]. We are
interested in differences between the elementary theories of Rogers semilat-
tices of families of any fixed level of the arithmetical hierarchy.

Everyone who has ever dealt with the classical theory of computable
numberings is well aware that general facts about Rogers semilattices of
families of c.e. sets are very rare, and at the same time it is very difficult
to establish elementary properties that distinguish given structures. Oppo-
site to the classical case, the elementary theories of Rogers semilattices of
arithmetical numberings for the level two and higher seem more exciting. In
what follows, we briefly examine some algebraic and elementary properties
of the Rogers semilattices R0

n+2(A) for various A.

1.1. Cardinality, Lattice Properties, Undecidability

The following two theorems are well-known facts of the theory of com-
putable numberings in the classical case.

Theorem 1.1. (A. B. Khutoretsky, [9]) For every family A of c.e.
sets, if the Rogers semilattice R0

1(A) contains at least two elements then it
is infinite.

Theorem 1.2. (V. L. Selivanov, [10]) For every family A of c.e. sets, if
the Rogers semilattice R0

1(A) contains at least two elements then it is not
a lattice.

For Σ0
1– families, Theorems 1.1,1.2 answer questions posed by Yu. L.

Ershov. The corresponding questions for the case of Σ0
n+2– computable

families have been answered by Goncharov and Sorbi, [5].

Theorem 1.3. If a Σ0
n+2– computable family A contains at least two

elements then the Rogers semilattice R0
n+2(A) is infinite and is not a lattice.

Theorem 1.3 gives us a complete description of the families A ⊆ Σ0
n+2

since if A consists of a single element then all numberings of A are evidently
equivalent. For details relative to the classical case, we refer to [11], and
we recall the following well-known problem raised by Yu. L. Ershov.
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Question 1.1. Under what conditions the Rogers semilattice R0
1(A) of a

family of c.e. sets is non-trivial?

It should be noted that the elementary theory of R0
n+2(A) of every non-

trivial family A is a quite complicated. We give evidence to this statement
as follows.

Let ε∗ denote the bounded distributive lattice obtained by dividing the
lattice ε of all c.e. subsets of ω modulo the ideal of all finite sets. We will
denote by β̂ the principal ideal of R0

n+1(A),

β̂ ® {deg(γ) | deg(γ) 6 deg(β)}.
Theorem 1.4. (S. Yu. Podzorov, [12], see also [7]) Let A be any Σ0

n+2–
computable family. There exists a numbering α ∈ Com0

n+2(A) such that

(1) α̂ is isomorphic to ε∗\{⊥} if the family A is infinite;
(2) α̂ is isomorphic to ε∗ if the family A is finite.

Theorem 1.4 and the fact that the elementary theory of ε∗ is hereditarily
undecidable, [13], immediately yield:

Corollary 1.1. The elementary theory of every non-trivial Rogers semi-
lattice R0

n+2(A) is hereditarily undecidable.

Theorem 1.4 and Corollary 1.1 give us a deep insight into the complex-
ity of Rogers semilattices of Σ0

n+2– computable families. The case of Σ0
1–

computable families is still open:

Question 1.2. Is the elementary theory of any non-trivial Rogers semi-
lattice of a Σ0

1 – computable family hereditarily undecidable, or at least
undecidable?

1.2. Extremal Elements

What kind of computable numberings should be thought of as the most
natural ones? A partial answer to this question, as well as a motivation for
introducing the notion of a universal numbering, is given by next proposi-
tion [6].

Proposition 1.1. Let α be a numbering of a family A ⊆ Σ0
n+1. Then the

following statements are equivalent:
(i) α is Σ0

n+1– computable;
(ii) α is reducible to the numbering W 0(n)

of the family of all Σ0
n+1– sets;

(iii) α is 0(n)– reducible to W 0(n)
.
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Definition 1.4. A numbering α of A ⊆ Σ0
n+1 is called principal or uni-

versal in Com0
n+1(A) if

(i) α ∈ Com0
n+1(A),

(ii) β 6 α for all numberings β ∈ Com0
n+1(A).

It is obvious that the greatest element, if any, of the Rogers semilattice
of any family A is exactly the degree of some universal numbering of A.
Proposition 1.1 implies also that many essential facts and notions relative
to universal numberings are easily lifted from principal computable num-
berings of families of c.e. sets to arithmetical numberings. For instance,

• Ershov’s classification of principal subsets, see [4];
• the closure condition of Lachlan [14] for families of sets to have

computable principal numberings;
• existence of universal numberings in Com0

n+1(A) with respect to
0(n)– reducibility, for every finite family A ⊆ Σ0

n+1.

In particular, we should mention the following two examples which show
a difference between the Rogers semilattices of some infinite families.

Example 1.1. The family Σ0
n+1 of all Σ0

n+1– subsets of ω has a univer-
sal numbering in Com0

n+1(Σ
0
n+1), namely the relativization W 0(n)

of the
classical Post numbering W of the family of all c.e. sets.

Example 1.2. For every n, the set F of all finite sets is obviously Σ0
n+1–

computable and has no universal numbering in Com0
n+1(F). The latter

holds by the relativized version of Lachlan’s condition, [14]: if any Σ0
n+1–

computable family has a universal numbering then it is closed under unions
of increasing Σ0

n+1– computable sequences of its members.

These examples show an elementary difference between R0
n+1(Σ

0
n+1)

and R0
n+1(F) with regard to the existence/non-existence of the greatest

element in these semilattices.
As regards finite families, examples of elementary differences between

Rogers semilattices of finite families are provided by the following result of
S. A. Badaev, S. S. Goncharov, and A. Sorbi, [6].

Theorem 1.5. Let A ⊆ Σ0
n+2 be a finite family. Then A has an universal

numbering in Com0
n+2(A) if and only if A contains a least element under

inclusion.
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Again, as in the examples above, existence/non-existence of the greatest
element provides an elementary property which allows us to distinguish
some Rogers semilattices.

To compare elementary properties of Rogers semilattices of finite fam-
ilies versus Rogers semilattices of infinite families, we can use a different
type of extremal elements, namely minimal elements of the semilattices. It
is a well-known fact of the theory of numberings that any finite family has
a numbering which is reducible to all the numberings of that family, see
[4]. And this fact does not depend on either the nature of the family or
the computability of the considered numberings. Thus, the Rogers semilat-
tice R0

n+1(A) of any finite family A of Σ0
n+1– sets has a least element. On

the other hand, we have the following theorem of S. A. Badaev and S. S.
Goncharov, [15].

Theorem 1.6. For every n, if A is an infinite Σ0
n+2– computable family,

then R0
n+2(A) has infinitely many minimal elements.

Remark 1.1. Theorem 1.6 does not hold for some infinite families of c.e.
sets and does hold for other infinite families of c.e. set. Furthermore, the
following question is a problem of Yu. L. Ershov known since the 60’s. We
refer to [11] for details on this problem.

Question 1.3. What is the possible number of minimal elements in the
Rogers semilattice R0

1(A) of a family of c.e. sets?

1.3. The Weak Distributivity Property

In this subsection we are concerned with an interesting and natural elemen-
tary property of Rogers semilattices which establishes one more difference
between R0

n+2(A), with A finite, and R0
n+2(B), with B infinite. We refer

to [8] for details and proofs. First we recall some definitions.

Definition 1.5. An upper semilattice 〈L,∨, 6〉 is called distributive if for
every a1, a2, b ∈ L, if b ≤ a1 ∨ a2 then there exist b1, b2 ∈ L such that
b1 ≤ a1, b2 ≤ a2 and b = b1 ∨ b2.

Theorem 1.7. For every n and for every finite family A ⊆ Σ0
n+1, R0

n+1(A)
is a distributive upper semilattice.

The situation is different if we consider infinite families. First of all, we
notice:
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Remark 1.2. It is easy to see that the three element upper semilattice
L0 = {a, b, c}, where a and b are incomparable and c = a ∨ b, is not
distributive. There exist many Rogers semilattices which contain L0 as an
ideal, [4], and, therefore, are not distributive. However, if we add ⊥ to L0,
we do obtain a distributive lattice.

This remark motivates our next definition.

Definition 1.6. An upper semilattice L = 〈L, 6〉 is weakly distributive if
L⊥ = 〈L ∪ {⊥}, 6⊥〉 is distributive, where ⊥ /∈ L and

6⊥®6 ∪{(⊥, a) | a ∈ L ∪ {⊥}}.

Proposition 1.2. An upper semilattice 〈L,∨,6〉 is weakly distributive if
and only if for every a1, a2, b ∈ L, if b ≤ a1 ∨ a2 and b � a1, b � a2 then
there exist b1, b2 ∈ L such that b1 ≤ a1, b2 ≤ a2 and b = b1 ∨ b2.

Theorem 1.8. For every n, the Rogers semilattice of any infinite Σ0
n+2–

computable family is not weakly distributive.

Question 1.4. Does there exist a computable infinite family A of c.e. sets
such that R0

1(A) is distributive? Does there exist a computable infinite
family A of c.e. sets such that R0

1(A) is weakly distributive?

2. The Main Result

It should be noted that Rogers semilattices of families from different levels
of arithmetical hierarchy can be surprisingly different, as can be seen from
the following theorem of S. A. Badaev, S. S. Goncharov and A. Sorbi, [8].

Theorem 2.1. For every n there exist m ≥ n and a Σ0
m+2– computable

family B such that no Rogers semilattice R0
n+1(A) of any Σ0

n+1– computable
family A is isomorphic to R0

m+2(B).

The differences between Rogers semilattices established in Theorem 2.1
are based on the fact that ideals of Rogers semilattices of families chosen
from different levels of the arithmetical hierarchy have different algorithmic
complexities. Unfortunately, these differences are not elementary. So The-
orem 2.1 provides a natural motivation for searching elementary properties
between Rogers semilattices of families lying in the same level of the arith-
metical hierarchy. Some fruitful ideas from the paper of V. V. V’jugin, [16]
were very useful for our research.
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Theorem 2.2. For every k ∈ ω, there exist infinitely many Σ0
k+1– com-

putable families with elementary pairwise different Rogers semilattices.

Sketch of proof. Let k be an arbitrary natural number. We will construct
a sequence {Be}e≥1 of infinite Σ0

k+1– computable families such that

Th(R0
k+1(Be′)) 6= Th(R0

k+1(Be′′))

for all e′ 6= e′′.
Indeed we will construct a sequence {An}n≥1 of families of sets of which

{Be}e≥1 is subsequence.
Let M stands for any 0(k)– maximal set, and let n be a natural number.
Let E1

n, E2
n, . . . , En

n be a computable partition of ω into infinite com-
putable sets. Let f i

n denote some arbitrary computable bijection of ω onto
Ei

n, i ∈ [1, n]. Clearly, Mi ­ E
i

n

⋃
f i

n(M) is a 0(k)– maximal set for each
i ∈ [1, n].

Let Ai
n, i ∈ [1, n], stand for the family {Mi

⋃{x} | x ∈ M i}. The
families Ai

n are evidently Σ0
k+1– computable. Define An ­

⋃
i∈[1,n]

Ai
n.

Lemma 2.1. For all numbers n > 0 and i ∈ [1, n], every numbering
α ∈ Com0

k+1(An), and every set A ∈ Ai
n, the index sets with respect to α

of the subfamilies Ai
n and {A} are Σ0

k+1– sets.

Lemma 2.2. For all numbers n > 1, i ∈ [1, n] and every numbering
ν ∈ Com0

k+1(An), if ν is join ν = ν0 ⊕ ν1 of some numberings ν0, ν1 then
all but finitely many sets of Ai

n are contained either in ν0(ω) or ν1(ω).

Lemma 2.3. For all numbers n > 0 and m ≥ n and all numberings
γ0
1 , γ1

1 , γ0
2 , γ1

2 , . . . , γ0
m+1, γ

1
m+1 ∈ Com0

k+1(An), if γ0
1 ⊕ γ1

1 ≡ γ0
2 ⊕ γ1

2 ≡ . . . ≡
γ0

m+1 ⊕ γ1
m+1 then there exist a numbering δ ∈ Com0

k+1(An) and a binary
sequence ε1, ε2, . . . , εm such that δ 6 γ0

m+1 and δ 6 γε1
1 ⊕ γε2

2 ⊕ . . .⊕ γεm
m .

Definition 2.1. We will say that any two Σ0
k+1– computable number-

ings ν0, ν1 of a family A induce a minimal pair in the Rogers semilattice
R0

k+1(A) if there is no numbering ν ∈ Com0
k+1(A) such that ν 6 ν0 and

ν 6 ν1.

In the proof of Lemma 2.3 we construct two numberings which do not
induce a minimal pair in R0

k+1(An). On the other hand we consider now
some regular way of constructing numberings which induce minimal pairs
in Rogers semilattice R0

k+1(An).
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For every i ∈ [1, n], we fix two different numbers a0
i , a

1
i ∈ M i and define

numberings αs
i , s ≤ 1 as follows: for every x, we let

αs
i (x) ­

{
Mi

⋃{as
i}, if x ∈ M,

Mi

⋃{f i
n(x)} otherwise.

It is obvious that αs
i ∈ Com0

k+1(Ai
n).

Lemma 2.4. The numberings α0
i and α1

i induce a minimal pair in
R0

k+1(Ai
n).

Lemma 2.5. For every m > 0 and n ≥ 22m+1
, there exist numberings

β0
1 , β1

1 , β0
2 , β1

2 , . . . , β0
2m , β1

2m ∈ Com0
k+1(An) such that

• β0
1 ⊕ β1

1 ≡ β0
2 ⊕ β1

2 ≡ . . . ≡ β0
2m ⊕ β1

2m ;
• for every i ∈ [1, 2m], the numberings β0

i and β1
i induce a minimal

pair in R0
k+1(An);

• for every l ≤ m, every set I = {i1 < i2 < . . . < il} ⊆ [1, 2m],
every binary sequence σ1, σ2, . . . , σl, and every ε ∈ {0, 1} and i ∈
[1, 2m] \ I, the numberings βε

i and βσ1
i1
⊕ βσ2

i2
⊕, . . . ,⊕βσl

il
induce a

minimal pair in R0
k+1(An).

Using Lemmas 2.1–2.5 we can now deduce the statement of the theorem
as follows. Define a computable function h by letting h(1) = 16 and h(e +
1) = 22h(e)+1

for every e ≥ 1. Let Be ­ Ah(e) for every e ≥ 1. Lemmas 2.3,
2.5 imply that Th(R0

k+1(Be′)) 6= Th(R0
k+1(Be′′)) for every e′ 6= e′′.
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