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Abstract
We investigate differences in the isomorphism types of Rogers semilat-
tices of computable numberings of families of sets lying in different levels
of the arithmetical hierarchy.

Among the many possible applications of generalized computable number-
ings, introduced in [10], a particularly interesting and popular one is the study of
arithmetical numberings, i.e. numberings of families of arithmetical sets. When
considering a family A of X0— sets, generalized computable numberings can be
characterized as follows: a numbering « of A is generalized computable if and
only if the set {(z,i) : x € (i)} is B2. Such a numbering a will be simply called
in the following X0 — computable. We recall that if o and 3 are numberings of
the same family of objects, then one says that « is reducible to § (in symbols:
a < () if there exists a computable function f such that « = So f. We write
a=pif a < pand § < a. Since < is a preordering relation, it follows that =
is an equivalence relation. If A is a family of ¥0— sets, then = partitions the
set Com?(A) of all X9 computable numberings of A into equivalence classes,
thus originating a degree structure, denoted by RY(A) and called the Rogers
semilattice of A. The equivalence class of a numbering « (depending of course
on the collection of numberings under study) will be denoted by the symbol
deg(c). In this paper we continue the investigation of the isomorphism types
of these Rogers semilattices, started in [3]. We are interested in differences
between elementary theories and isomorphism types for different arithmetical
levels. In [4] and [5] it was shown that for every fixed level of the arithmetical
hierarchy there exist infinitely many families with pairwise different elementary
theories. In [3] we established that for every n the isomorphism type of the
Rogers semilattice of some ¥j .~ computable family B is different from the
isomorphism type of the Rogers semilattice RY, ,(A) of any arbitrary $9 -
computable family A. In this paper we improve on this result by showing that
for every n the isomorphism type of the Rogers semilattice of any non trivial
0 14— computable family B is different from the isomorphism type of the Rogers
semilattice RY | (A) of any ¥~ computable family A.
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For unexplained terminology and notations relative to computability theory,
our main references are the textbooks of A.I. Mal’tsev [12], H. Rogers [13] and
R. Soare [14]. For the main concepts and notions of the theory of numberings
and computable Boolean algebras we refer to the book of Yu.L. Ershov [7] and
the book of S.S. Goncharov [9]. For the basic notions, notations and methods
relative to arithmetical numberings and their Rogers semilattices we will refer to
[1] and [2]. For the ease of the reader, and to make the paper more self contained,
we only recall here the definition of the Lachlan operator for numberings, and
some of its properties summarized in Lemma 1 below.

Definition 1. If § is a numbering of a family A, and C is a nonempty c.e. set,
with f a computable function such that range(f) = C, then we define fc = [Bof.

The definition does not depend on f: If we define B¢ starting from any other
computable function g such that range(g) = C then we get a numbering which
is equivalent to the one given by f. The assignment C' — (¢ from c.e. sets to
numberings (up to equivalence of numberings) is called Lachlan operator.

Lemma 1 ([2], Lemma 2.2). For every pair A, B of c.e. sets and for every
pair of numberings «, 3, we have:

(1) The following are equivalent:
(a) Ba < BB;

(b) there is a partial computable function ¢ satisfying dom(p) 2 A,
#lA] C B and for all z € A, B(z) = B(p(x));

(2) if AC B then 34 < Bp;
(3) if Ba < BB, then Bp = Baup;
(4) if « < B then a = B¢ for some c.e. set C;

(5) if a < B, and a = B¢, for some c.e. set C, then for every v such that
a < v < [ there exists a c.e. set D with C C D and v = Bp;

(6) Baus = Ba ® PBp;

The following three lemmas (taken from [3]) and the notion of an X-com-
putable Boolean algebra play a key role in establishing our claim. Recall (see
[9]) that a Boolean algebra 2 is called X— computable if its universe, operations,
and relation are X—computable.

In the following lemma, the symbol [y, d] denotes the following interval of
degrees in RY_ | (A):

[v,0] = {deg(B) | v < B < 6}

Lemma 2. Lety and ¢ be E?H_f computable numberings of a family A. If [, d]
is a Boolean algebra, then it is 0" 3) - computable.



Proof. Given n, A, ~, and § as in the hypothesis of the lemma, we first observe
that by (4) and (5) of Lemma 1, there exists a c.e. set C such that v = ¢ and

[v,0] = {deg(dx) | X is c.e. and X D C'}.

For every i, let U; = C U W,;. This gives an effective listing of all c.e.
supersets of C'. By Lemma 1 (1b), for every i, j, we have dy, < 0y, if and only
if

IVe(zr € Ui = Jy(pp(z) =y &y € Uj))
&Vavy(z e U; & pp(z) =y = 6(x) = 6(y))]

Since § € Com), (A), this implies that &y, < dy, is a £, 5~ relation in 4, j.
Let us consider the equivalence relation 1 on w defined by

(’L,]) S 77<:>6Ui < 5Uj &6Uj < 6UL

Let B = {z | Vy(y < = = (z,y) ¢ n)}. Define a bijection 11 : B — [v,4],
by letting 1(i) = deg(dy,), for all i« € B. It is evident that ¢; induces in
RY .1 (A) a partially ordered set B which is a Boolean algebra isomorphic to
[v,6]. The interval 9B is a 0("+3)— computable partially ordered set. It follows
from [9, Theorem 3.3.4] and [6], that the Boolean algebra 9B relatively to the
corresponding Boolean operations is 0("13)— computable too. O

Lemma 3 (L. Feiner). Let § be a computable atomless Boolean algebra. Then
for every X there is an ideal J such that J is X—c.e. and the quotient F/J is
not isomorphic to any X— computable Boolean algebra.

Proof. See [8]. O

Below, we will use the following notations. For a given c.e. set H, {V; | i € w}
denotes an effective listing of all c.e. supersets of the set H defined, for instance,
by V; = HUW;,, for all i. We will assume for convenience that Vo = H. Let ey
stand for the distributive lattice of the c.e. supersets of H. For a given c.e. set
V 2O H, let V* denote the image of V' under the canonical homomorphism of €y
onto €}; (i.e. g modulo the finite sets), and let C* denote the partial ordering
relation of €5;. Obviously, if J is an ideal in ey then J* = {V* |V € J} is an
ideal in €%.

As is known (see, for instance, [9]), if 2 is a Boolean algebra and J is an
ideal of 2, then the universe of the quotient Boolean algebra 24/J is given by
the set of equivalence classes {[a]; | a € A} under the equivalence relation =,
given by

a=5b< e, € J(aVe =bVe),

and the partial ordering relation is given by
laly <j [bly & a—beJ

where a — b stands for a A —b.



Lemma 4. Let B be a 9, computable family, 3 € Com, ., (B), and let
H be any c.e. set such that B(H) = B and €}; is a Boolean algebra. Let
Yo ey — [Bu, O] be the mapping given by ¥2(V;) = deg(By,) for all i, and let
I be any ideal of exr. Then 1o induces an isomorphism of €% /I* onto B, 5]
if and only if for every i,j

(1) Vie I = By, < Bu;
(2) Vi—V; ¢ I = By, £ By, (where Vi = V; = (Vi \ V;) UH.)

Proof. Let H, B, 3,15 be given. The “only if” direction is immediate. As to
show that the conditions stated in the lemma are also sufficient, we can argue
as follows. By (4-5) of Lemma 1, we have that every v with Sy < v < 8 is of
the form v = B¢ for some c.e. set C O H. Then the mapping induced by 19 is
clearly onto.

Suppose now that [V;*];+ C7. [V*]7<. Then V;* — V' € I*. But V7 =V =
(Vi = V;)*, with V; — V; a c.e. superset of H, since ¢}; is a Boolean algebra.
Then V; — V; € I. On the other hand,

Vi=(Vi=V)uVinVy).

Now, by (1), Bv;—v; < Bm, so by (3) of Lemma 1, By, = Bv;qv;, hence By; < Sy,
by (2) of Lemma 1, as V; N V; C V.

Finally, if [V;*];- €7 [V/]1- then V; — Vj ¢ I, and therefore by (2) By, &
Bv; - O

Theorem 1. For every n, every non-trivial Eg+57 computable family B, and ev-
ery X0 | — computable family A, the Rogers semilattices RS, (B) and RY ;(A)
are not isomorphic.

Proof. Let n be given, let B be an arbitrary non-trivial %0 15— computable fam-
ily, and let A be any X0 41— computable family. By Lemma 2, all Boolean
intervals of RO, ;(A) are 0("*%)—computable Boolean algebras. Therefore, to
show the theorem it is sufficient:

(i) to consider a computable atomless Boolean algebra § and an ideal J of
§ as in Feiner’s Lemma such that J is c.e. in 0"t3) and 5/J is not
isomorphic to any 0("13)— computable Boolean algebra,

ii) to find X9, .— computable numberings o and 3 of B such that the interval
n4-5
a, 8] of RY_.(B) is a Boolean algebra isomorphic to §/.J.
n+5

First, we consider item (i) above. Let § be a computable atomless Boolean
algebra. According to a famous result of Lachlan, [11], there exists a hyperhy-
persimple set H such that €}, is isomorphic to §. We fix such a set H.

We refer to the textbook of Soare, [14], for the details of a suitable iso-
morphism x of ¢}; onto §. We only notice that starting from a computable
listing {bo, b1, ...} of the elements of § one can find a ¥9- computable Fried-
berg numbering {By, B1,...} of a subfamily of the family ey such that €} =
{BSa Bi,.. '}7 and X(Bz*) = b;.



We will use the techniques for embedding posets into intervals of Rogers
semilattices which have been developed in [2]. Let J be any 0(**3) - c.e. ideal
of § satisfying the conclusions of Lemma 3, and let J = {j ewlb € J}
Then J is a 0("+3) - ce. set, [* = {Bj|je J} is an ideal of €% and §/J is
isomorphic to €%;/I*. So, instead of the Boolean algebra §/J in item (ii) above
we can consider e}, /I*.

Let [ ={V |V ecey & V*eI*},andlet [ = {i € w |V € I*}. Obviously,
I is an ideal of eg.

Lemma 5. The relations “V; € I”7 (equivalently: “ € f”), ini, and “V;=V; €
I7,in 1,4, are both 0"+3) - c.e.

Proof. First of all note that for every sets A, B the relation “A =* B” is c.e. in
the relation “A = B”. Indeed, if Dy, Dy, ... is the canonical numbering of the
family of finite sets (see [12] or [13]) then

A="B <& 3p3q(AUD, =BUD,).
Since R .
iel<3j(V,="Bj&jeJ) and
Vi-Viel < 3k((VinV;)UH =V, & ke 1),

a simple calculation shows that I € Y9 4 and that the relation “V; —V; € I” is
also c.e. in 0("F3). O

Due to Lemma 4, we can now construct a suitable numbering § of B and
consider the corresponding mapping 1, which will give us an isomorphism e}, /I*
onto the interval [Bp, G].

The requirements. First of all, we need that the numbering (§ satisfy the
requirement:

B:p[H]| =B

to guarantee that Sy is a numbering of the whole family B. Then in view of
Lemma 4 we must satisfy, for every i, j, p, the requirements:

Pi:Viel= pv, <Pu
Rijp:Vi—=V; &1= Py, £ Py, via o,

where by “By, £ Bv; via ¢,” we mean that ¢, does not reduce By, to By, in
the sense of Lemma 1(1b).

We use the oracle 0”4 in our construction to answer questions such as
“Vi € I7” or “V; =V, € I?” and to verify some properties of c.e. sets and partial
computable functions. Since all computations are relative to the oracle 014
we will get that 3 € Com, ;(B).



The strategy for B. We fix a numbering a € Com%+5(8) and build by stages
a 0"*4) _computable function a(z) with range(a) € H. We will “insert” the
numbering « into the numbering 3 by letting f(a(z)) = a(z) for all x. Since we
will never change the values B(a(z)) we will have as a consequence the equality

BlH] = B.

The strategy for R, ; ,. Since B is nontrivial, fix two different sets A, B € B.
To meet R, ;, we will destroy any possible reducibility of the numbering By, to
the numbering fy; via any partial computable function ¢, with V; C dom(¢p,)
and ¢,[V;] C V;. We choose some G-index z € V; \ V; and let f(z) = A and
B(pp(x)) = B or, conversely, 8(z) = B and (p,(x)) = A. Note that x # ¢, (x)
since x ¢ V; and ¢p[V;] C V.

The strategy for P;. Fix an infinite computable set R C H, and fix a
computable partition of R into disjoint infinite computable sets R;, i € w.
Finally fix a computable sequence {r;};c., of injective unary partial computable
functions such that dom(r;) = V; \ R and range(r;) = R;. If i € I then it is
sufficient to keep the equality 8(z) = B(r;(z)) for all z € V; \ R to meet the
requirement P;. Indeed, by Lemma 1, if so then we have fy,\r < Bg,. Since
Bv, = Bvi\r © Br < Br, ® Br = Br, it then follows that By, < fu.
Unfortunately, there could be conflicts of two possible types between P—
strategies and R—strategies. More precisely, the strategy for R, ; , may want
B(x) # B(pp(x)) for some x € V,, with m € I, while the strategy P,, forces us
to have B(z) = B(rm(x)). Since the functions ¢,, ry, are fixed a-priori, it follows
that the equality ¢,(x) = r,(x) is possible and in this case we have a conflict.
Moreover, for every i, j, m, there exist infinitely many numbers p such that
op I (Vi\Vj) =rn [ (Vi\V;), and it may seem impossible to prevent conflicts
at all. Fortunately, this is not so, and the next lemma and its corollary give us a
tool to avoid almost all conflicts between a P,,,— strategy for any fixed m € I, and
all R strategies. For t € w we will denote by U; the set [ J{V,:s5 <t & s I}.

Lemma 6. Let H and I be chosen as above. Let V' and V be arbitrary sets of
the lattice ey such that V' ¢ I and V € I. Then the following properties hold

(a) VI =V €epy
(b) V! =V & 1, and, in particular, V' \'V is an infinite set.
Proof. Property (a) follows from the trivial equality
(V' =V = (V") -V*.
Property (b) can be easily verified by contradiction using the following equal-

ity:
V=WV -vV)uv' nv).



Corollary 1. For everyi,j,t € w, if V; = V; ¢ I then V; \ (V; UU,) is infinite.

We give absolute priority to the R—strategies versus the P—strategies. For
every 4,7,p, we exclude all the conflicts between the strategy for R;;, and
the strategies for P,,, for all m € I and m < (¢,7,p), in the following way. We
choose a (#-index z to satisfy the requirement R; j,, from the set V;\ (V;UU; ;1)
instead of the set V; \ V; as in the above description of the strategy for R, ;.
And we do not pay attention to the conflicts between the strategy for a fixed
R;;, and the P,,—strategies with m € I and m > (i,4,p). Thus, for every
fixed m € I, we will have at most finitely many conflicts of the strategy for P,,
with the R—strategies.

Conflicts of type 2 between R; ; ,—strategies and P,,—strategies may occur
even in the case ¢p(z) # 7y (z), due to the function a which is built by the
strategy for the requirement B. Assume that a number y € H \ R has become
value of the function a and we have defined 3(y) = «(z) for some z. If x is
chosen to meet the requirement R; ; , then we have to let 5(z) and B(pp(x)) be
equal to either A or B, and §(z) # B(vp(x). Suppose also that ¢,(x) € R. It
may occur that ¢,(x) = 7,,(y) for some m € I. The strategy for P,, forces us
to have B(pp(x)) = B(rm(y)) = a(z). We get a conflict if either a(z) ¢ {A, B}
or a(z) € {A, B} and B(pp(z)) # a(z). Unfortunately, we can not see whether
a(z) = A or a(z) = B with the oracle 0"+, Again, for every m € I, we
would get only finitely many instances of conflicts of this type if we restricted
the choice of = by the additional restraint m > (i, j, p).

To describe the construction we still need some auxiliary notions and nota-
tions. For every € R we consider the set {z} U {r,,(z) | m € w}. This set is
called star with center x. Obviously, stars with different centers are disjoint,
and the collection of all stars forms a partition of w. For every z € w, it is easy
to compute the center z* of the star which contains z: namely, z* =z if x ¢ R
and zT = 7,1 (x) if r € R and R,, is the element of the partition {R;};c., which
contains .

In terms of stars, our plan to avoid the conflicts between P—strategies and
R-strategies mentioned above may be described as follows. First of all, given
z, conflicts of the first type do not to appear at all if z # (¢,(x))" as well as
z = (@p(x))T but @,(z) € Ry, for m ¢ I. And for every fixed m we allow
only finitely many strategies R, ; ,, to injure P,,, i.e. to make 8(pp(z)) # B(z)
but B(rm(z)) # B(x). Stars with centers in range(a) are the unique source of
conflicts of the second type. And for every fixed m we allow only finitely many
such stars to injure P,,.

Now we will build, by a stage construction, a numbering 3 of the family B and
an auxiliary function a. If a value (z) or a(z) has not been explicitly modified
by the end of stage t + 1 then by default 3+ (x) = g%(x) or a'*1(z) = a'(x)
respectively. It should be mentioned that in the construction below we never
change already defined values of the functions § and a to undefined ones.

The construction



Stage 0. Let G(x) and a(z) be undefined for all z. Go to the next stage.

Stage t + 1.  Lett = (i,4,p). Carry out the following three procedures starting
from Procedure R; ;) first.

Procedure R; ;,. Check the following conditions (we can do this relatively
to the oracle 0("+4)):

(i) Vi=V; &1
(ii) V; € dom(p,) and ¢,[Vi] CV;.

If one of (i) or (ii) fails then go to Procedure P;.
Otherwise, choose the least element = of the set

X' ={zzeVi\(V;UU) & B'(2) T & B'(¢pp(2)) T}
such that at least one of the following two conditions holds:
(iil) Jy(y # 2 &y € X' & pp(y) = pp(@));
(iv) (p(@))* € range(a!) = Vm(py(7) € Ry = m > 1).

(See (7) below for the existence of such an x).

If (iii) holds then pick the least y satisfying (iii) and let 5(z) = A, B(y) = B
Go to Procedure P;.

If (iii) does not hold (but (iv) does) then denote by z the center (¢, (x))"
and carry out the instructions of the following two cases and after that go to
Procedure P;.

Case 1: p,(z) € R, z # z, and 2z ¢ range(a®). If 5'(z) 1 then let 3(z) =
Denote by C the set 3(z), and denote by D an element of the set {A, B} \ {C}.
Let 8(x) = D and B(pp(z)) = C.

Case 2: Case 1 does not hold. Let 5(z) = A and B(pp(z)) =

Procedure P;. Choose the least number € R; such that g3 ( ) is still un-
defined. If 3(z™) is also undefined then let 8(z™) = B(z) = A. If B(z™) | then
let B(z) = B(x). Go to Procedure B.

Procedure B. Pick the least number y € H \ R such that § is still undefined
in all points of the star with center y, and let a(t) = y and B(y) = a(t). Go to
the next stage.

Obviously, 3 is a %0 15— computable numbering.

Properties of the construction The construction satisfies the following
properties:

(1) For every t, the functions 3' and a’ have finite domains.

(2) For every z, there exists a stage ¢ starting from which §(z) becomes
defined forever. Besides, after this stage ¢ the function § never changes its value
on that index x.

(3) a is total function with range(a) C H \ R. For every z, a(x) = B(a(x)).

(4) For every z, B(x) = A or B(x) = B or 8(z) = a(y) for some y.



(5) For every x,t, if %(x) | then §'(zT) |.

(6) For every z,t, if x € range(a?) then 3t (z) |.

Properties (1)-(6) are evident, (2)—(4) imply that 5 is a numbering of the
family B.

(7) For every 1, j, p, t, if conditions (i),(ii) above hold then there exists x € X*
satisfying (iii) or (iv).

To see this, choose any numbers i, j, p, t such that conditions (i),(ii) hold and
assume that both (iii) and (iv) fail. Then ¢, is injective on X* and

(op(z))T € range(a’) & Im(p,(z) € Ry & m < t).

The set X! is infinite by Lemma 6 and property (1). By property (1), the set
Y = {y | r,}(y) € range(a’) & m < t} is finite since all the functions ry, k € w,
are injective. Therefore, ¢, maps in a one-to-one fashion the infinite set X* into
the finite set Y. A contradiction.

(8) For every i, j,p, if conditions (i),(ii) hold then there exists z € V; such
that 5(2) # B(pp(2)).

Let V; = V; ¢ I, V; C dom(ypp), and ¢p[V;] C V}, and let t = (4, 7, p). If (iii)
holds at stage ¢t + 1 then ¢, maps two different numbers z,y € V; into the same
number ¢,(z) = ¢,(y) and, by the construction, 5(z) # G(y). Therefore, at
least one among the inequalities G(x) # B(pp(x)) and S(y) # B(pp(y)) holds.

Suppose now that (iii) fails at stage ¢+ 1 and let x € X* be a number chosen
by Procedure R, ;, at this stage. By the construction, z € V; \ (V; UU,) and
both B*(z) and B'(¢,(z)) are undefined. It implies that = ¢ V,,, and r,,(z) is
undefined for all m € I, m < t. Note that ¢, (z) ¢ range(a’) because of property
(6). We consider the next four possibilities:

@) rlo) ¢
(b) ¢p(z) € R, (p(x))*
©) o) € R (o) % 2, and (py(x))* € range(a’);

d) p(x) € R, (pp(2))" # z, and (pp(x))" ¢ range(a’).
For (a),(b) (¢) we have ﬁ( ) = A and B(¢p(x)) = B by Case 2 of Procedure

R, ;, at stage t + 1. For (d), by Case 1, we have 8(z) = D, B(pp(z)) = C with
{C,D} ={A, B}.

(9) For every m € I and almost all z € V;, \ R, B(z) = B(rm(2)).

Let m € I. Suppose that v € V;, \ R and (v) # B(rm(v)) and let us prove
that this inequality is caused by a conflict between the strategy for P,, and an
R; j ,—strategy for some 1, j, p.

Let s+1 and t+1 be the stages at which correspondingly G(v) and B(r, (v))
have been defined. By property (2), 3(v) = 3*T1(v) and B(r,,(v)) = B (rp (v)).

Let us consider the star with center v and denote by ¢ + 1 the least stage at
which (8 has been defined on a point of this star for the first time. By property
(5), ¢ = s and s < t since (r,,(v))" = v. We divide now our consideration into
two cases: s =% and s < t.

s = t. This means that 3 is defined exactly in two points of the star with the
center v by the end of stage t + 1, and that one of these points is v. Therefore,
B(v) can not be defined at stage ¢ + 1 by Procedure B, and (iii) does not hold



at stage t + 1. Thus, we have to examine the possibilities (a)—(d) considered
in the proof of property (8). Obviously, 5(v) and 5(r,,(v)) can not be defined
by (a),(c) since in these cases 0 is defined in the centers of two disjoint stars.
Possibility (d) is also impossible because by construction in this case the values
of 3 in the points v and 7., (v) have to be identical.

So we have to check only possibility (b). We will keep the notations in the
description of Procedure R, ;,, and in the proof of property (8). Following
these notations, v = x, ¢p(z) = rn(z), t = (i,4,p). We have a conflict of type
1: B(z) = A, Blep(z)) = B(rm(z)) = B. Moreover, z € V; \ (V; UU;), and,
therefore, m > (i,7,p). This implies that we can have at most finitely many
B-indices v € V,;,\ R for which inequality 5(v) # 8(p,(v)) is caused by a conflict
of type 1.

s < t. Because of property (5), this means that we get to stage t + 1, at
which (8 is defined on the point r,,(v), only after S has been defined on the
center v. As for the case s = t, it is easy to see that, at stage t+1, B8(r,,(v)) can
not be defined by Procedure B, (iii) does not hold, and possibilities (a),(b),(d)
can not cause the inequality 5(v) # B(¢p(v)).

Let us keep our conventions on notations and consider possibility (c¢). Then
op(x) = 1 (2), (pp(x))T =0, v € range(a’), and, hence, (iv) implies inequality
m > (i,7,p). We have f(z) = A, B(rm(z)) = B, and f(v) # B. Thus, we
can have at most finitely many S-indices v € V,,, \ R for which the inequality
B(v) # Bpp(v)) is caused by a conflict of type 2.

Properties (3),(8),(9) imply that all the requirements are satisfied.

O

Theorem 2. For every n, every non-trivial E%_Mf computable family B, and ev-
ery X0, — computable family A, the Rogers semilattices RS, ,(B) and RS, (A)
are not isomorphic.

Proof. We start with a X2, ,—computable family B and a numbering a €
Com),,(B). Instead of working directly with the relation “V; — V; € I” (in
i,7) and the set I, we use enumerations relatively to the oracle 0("*3) of this
relation and set, which are 0"*3) - c.e. by Lemma 5.

Denote the relation “V; —V; € I” by Q(4, ) and let by Q'(7,7),t € w, be a
suitable approximation to the relation, i.e :

Qt(i,7) is 0("*3) _computable relation in i, j, t;

Q!(i, ) — Q'F1(i,j) for every i, j,t;

Q(i, ) « sVt > sQt(i,j) for every i, 7.
Let It,¢ € w, be an enumeration of the set I relatively to 0(*+3) and let U,
and X! be approximations of the sets U; and X, namely,

U= J{Vi [k<t&kel}and
X' ={z|zeV,\(V;UU") & B'(x) 1 & B'(pp(x)) 1} for t = (i, j,p).
Here and in what follows we use the same notations as in the proof of Theorem

1. The construction below is a full approximation of the construction given in
Theorem 1.
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The construction

Stage 0. Let f(x) and a(z) be undefined for all z. Go to the next stage.

Stage t + 1. Lett = (i, j,p). Carry out the following three procedures starting
from Procedure R; ; , first. We execute all instructions at the stage computably
in the oracle 0("*3),

Procedure R; ;,. Check whether condition

(ii) V; C dom(p,) and ¢, [Vi] € V;

holds. If (ii) does not hold then go to Procedure P;. If it does then search for
the least s > ¢ such that Q*®(i,7) or there exists z € X* such that at least one
of the following two conditions holds:

(iil) Jy(y # 2z &y € X* & @p(y) = 0p(@));
(iv) (¢p(z))" € range(a') = Ym(p,(x) € Ry = m > t).

If Q% (i, j) then go to Procedure P;. Otherwise choose the least 2 € X* which
satisfies the conditions above. If (iii)’ holds then pick the least y satistying (iii)’
and let B(z) = A, 5(y) = B. Go to Procedure P;.

If (iii)" does not hold (but (iv) does) then denote by z the center (¢, (z))"
and carry out the instructions of the following two cases and after that go to
Procedure P;.

Case 1: ¢,(z) € R, z # z, and z ¢ range(a®). If 5'(z) 1 then let 3(z) = A.
Denote by C the set 5(z), and denote by D the set {A, B}\C. Now let 5(z) = D
and B, (@) = C.

Case 2: Case 1 does not hold. Let f(z) = A and S(p,(z)) = B.

Procedure P;. Choose the least number x € R; such that S(z) is still un-
defined. If B(x™) is also undefined then let 3(z™) = B(z) = A. If 3(z™) | then
let B(z) = B(x™). Go to Procedure B.

Procedure B. Pick the least number y € H \ R such that (3 is still undefined
on all points of the star with center y, and let a(t) = y and S(y) = a(t). Go to
the next stage.

Properties of the construction Obviously, 8 is a X9 14— computable num-
bering. It is easily seen that the construction is just a modification of the one
in Theorem 1. This is why we omit unnecessary repetitions in the proofs of the
properties of the modified construction. Properties (1)—(6) are exactly the same
as in the proof of Theorem 1. They guarantee that 3 is a X0 44— computable
numbering of the family B. Let now consider the remaining properties.

(7) For every i, j, p, if condition (ii) holds at stage t+ 1 with ¢ = (4, j, p) then
there exists s > t such that Q*(4,j) or there exists # € X* satisfying at least
one of (iii)’ or (iv).

If Vi — V; € I then evidently there exists s such that Q*(¢, j). Suppose now
that V; — V; ¢ I and let s be the least number such that s >t and

{k|k<(i,jp)&kelt={k|k<(ijp) &kel}

11



Then U, = U;, X* = X', and, hence, condition (iii)’ becomes identical to
condition (iii). It follows that now we can argue as we have done in the proof
of property (7) of the previous construction.

(8) For every 4, j,p, if V; — V; ¢ I and condition (ii) holds then there exists
z € V; such that 3(z2) # B(¢p(2)).

Let V; — V; ¢ I. Note that Q°(i, j) fails for all s, and so we can repeat the
proof of property (8) as in Theorem 1.

(9) For every m € I and almost all z € V;, \ R, B(z) = B(rm(2)).

Let m € I and let to be the least number such that m € Ito. Then m € U,
for all s > o, and, hence, V,, N Xt = @ for all ¢ > t. Repeating the arguments
used in the proof of property (9) of Theorem 1 we can show that for every
t > max{tg, m} there is no v € V,, \ R such that

o B(v) # Brm(v));
e at least one of 8(v) or B(r,,(v)) is defined at stage t;
e both G(v) and B(r.,(v)) are defined by the end of stage t.

Property (1) implies that the number of v’s which satisfy these three conditions
at stages t < max{tg, m} is finite.

Again, properties (3),(8),(9) imply that all the requirements are satisfied.
O
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