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Abstract

We investigate differences in the isomorphism types of Rogers semilat-
tices of computable numberings of families of sets lying in different levels
of the arithmetical hierarchy.

Among the many possible applications of generalized computable number-
ings, introduced in [10], a particularly interesting and popular one is the study of
arithmetical numberings, i.e. numberings of families of arithmetical sets. When
considering a family A of Σ0

n– sets, generalized computable numberings can be
characterized as follows: a numbering α of A is generalized computable if and
only if the set {〈x, i〉 : x ∈ α(i)} is Σ0

n. Such a numbering α will be simply called
in the following Σ0

n– computable. We recall that if α and β are numberings of
the same family of objects, then one says that α is reducible to β (in symbols:
α ≤ β) if there exists a computable function f such that α = β ◦ f . We write
α ≡ β if α ≤ β and β ≤ α. Since ≤ is a preordering relation, it follows that ≡
is an equivalence relation. If A is a family of Σ0

n– sets, then ≡ partitions the
set Com0

n(A) of all Σ0
n– computable numberings of A into equivalence classes,

thus originating a degree structure, denoted by R0
n(A) and called the Rogers

semilattice of A. The equivalence class of a numbering α (depending of course
on the collection of numberings under study) will be denoted by the symbol
deg(α). In this paper we continue the investigation of the isomorphism types
of these Rogers semilattices, started in [3]. We are interested in differences
between elementary theories and isomorphism types for different arithmetical
levels. In [4] and [5] it was shown that for every fixed level of the arithmetical
hierarchy there exist infinitely many families with pairwise different elementary
theories. In [3] we established that for every n the isomorphism type of the
Rogers semilattice of some Σ0

n+5– computable family B is different from the
isomorphism type of the Rogers semilattice R0

n+1(A) of any arbitrary Σ0
n+1–

computable family A. In this paper we improve on this result by showing that
for every n the isomorphism type of the Rogers semilattice of any non trivial
Σ0

n+4– computable family B is different from the isomorphism type of the Rogers
semilattice R0

n+1(A) of any Σ0
n+1– computable family A.
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For unexplained terminology and notations relative to computability theory,
our main references are the textbooks of A.I. Mal’tsev [12], H. Rogers [13] and
R. Soare [14]. For the main concepts and notions of the theory of numberings
and computable Boolean algebras we refer to the book of Yu.L. Ershov [7] and
the book of S.S. Goncharov [9]. For the basic notions, notations and methods
relative to arithmetical numberings and their Rogers semilattices we will refer to
[1] and [2]. For the ease of the reader, and to make the paper more self contained,
we only recall here the definition of the Lachlan operator for numberings, and
some of its properties summarized in Lemma 1 below.

Definition 1. If β is a numbering of a family A, and C is a nonempty c.e. set,
with f a computable function such that range(f) = C, then we define βC ® β◦f .

The definition does not depend on f : If we define βC starting from any other
computable function g such that range(g) = C then we get a numbering which
is equivalent to the one given by f . The assignment C 7→ βC from c.e. sets to
numberings (up to equivalence of numberings) is called Lachlan operator.

Lemma 1 ([2], Lemma 2.2). For every pair A, B of c.e. sets and for every
pair of numberings α, β, we have:

(1) The following are equivalent:

(a) βA 6 βB;

(b) there is a partial computable function ϕ satisfying dom(ϕ) ⊇ A,
ϕ[A] ⊆ B and for all x ∈ A, β(x) = β(ϕ(x));

(2) if A ⊆ B then βA 6 βB;

(3) if βA 6 βB, then βB ≡ βA∪B;

(4) if α 6 β then α ≡ βC for some c.e. set C;

(5) if α 6 β, and α ≡ βC , for some c.e. set C, then for every γ such that
α 6 γ 6 β there exists a c.e. set D with C ⊆ D and γ ≡ βD;

(6) βA∪B ≡ βA ⊕ βB;

The following three lemmas (taken from [3]) and the notion of an X– com-
putable Boolean algebra play a key role in establishing our claim. Recall (see
[9]) that a Boolean algebra A is called X– computable if its universe, operations,
and relation are X– computable.

In the following lemma, the symbol [γ, δ] denotes the following interval of
degrees in R0

n+1(A):

[γ, δ] ® {deg(β) | γ ≤ β ≤ δ}.

Lemma 2. Let γ and δ be Σ0
n+1– computable numberings of a family A. If [γ, δ]

is a Boolean algebra, then it is 0(n+3)– computable.
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Proof. Given n, A, γ, and δ as in the hypothesis of the lemma, we first observe
that by (4) and (5) of Lemma 1, there exists a c.e. set C such that γ ≡ δC and

[γ, δ] = {deg(δX) | X is c.e. and X ⊇ C}.
For every i, let Ui ® C ∪ Wi. This gives an effective listing of all c.e.

supersets of C. By Lemma 1 (1b), for every i, j, we have δUi 6 δUj if and only
if

∃p[∀x(x ∈ Ui ⇒ ∃y(ϕp(x) = y & y ∈ Uj))
& ∀x∀y(x ∈ Ui & ϕp(x) = y ⇒ δ(x) = δ(y))]

Since δ ∈ Com0
n+1(A), this implies that δUi

6 δUj
is a Σ0

n+3– relation in i, j.
Let us consider the equivalence relation η on ω defined by

(i, j) ∈ η ⇔ δUi 6 δUj & δUj 6 δUi .

Let B ® {x | ∀y(y < x ⇒ (x, y) /∈ η)}. Define a bijection ψ1 : B −→ [γ, δ],
by letting ψ1(i) = deg(δUi), for all i ∈ B. It is evident that ψ1 induces in
R0

n+1(A) a partially ordered set B which is a Boolean algebra isomorphic to
[γ, δ]. The interval B is a 0(n+3)– computable partially ordered set. It follows
from [9, Theorem 3.3.4] and [6], that the Boolean algebra B relatively to the
corresponding Boolean operations is 0(n+3)– computable too.

Lemma 3 (L. Feiner). Let F be a computable atomless Boolean algebra. Then
for every X there is an ideal J such that J is X– c.e. and the quotient F/J is
not isomorphic to any X– computable Boolean algebra.

Proof. See [8].

Below, we will use the following notations. For a given c.e. set H, {Vi | i ∈ ω}
denotes an effective listing of all c.e. supersets of the set H defined, for instance,
by Vi ® H ∪Wi, for all i. We will assume for convenience that V0 = H. Let εH

stand for the distributive lattice of the c.e. supersets of H. For a given c.e. set
V ⊇ H, let V ∗ denote the image of V under the canonical homomorphism of εH

onto ε∗H (i.e. εH modulo the finite sets), and let ⊆∗ denote the partial ordering
relation of ε∗H . Obviously, if J is an ideal in εH then J∗ ® {V ∗ | V ∈ J} is an
ideal in ε∗H .

As is known (see, for instance, [9]), if A is a Boolean algebra and J is an
ideal of A, then the universe of the quotient Boolean algebra A/J is given by
the set of equivalence classes {[a]J | a ∈ A} under the equivalence relation ≡J

given by
a ≡J b ⇔ ∃c1, c2 ∈ J(a ∨ c1 = b ∨ c2),

and the partial ordering relation is given by

[a]J ≤J [b]J ⇔ a− b ∈ J.

where a− b stands for a ∧ ¬b.
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Lemma 4. Let B be a Σ0
m+1– computable family, β ∈ Com0

m+1(B), and let
H be any c.e. set such that β(H) = B and ε∗H is a Boolean algebra. Let
ψ2 : εH −→ [βH , β] be the mapping given by ψ2(Vi) = deg(βVi

) for all i, and let
I be any ideal of εH . Then ψ2 induces an isomorphism of ε∗H/I∗ onto [βH , β]
if and only if for every i, j

(1) Vi ∈ I ⇒ βVi
6 βH ;

(2) Vi − Vj /∈ I ⇒ βVi

 βVj

(where Vi − Vj ® (Vi \ Vj) ∪H.)

Proof. Let H,B, β, ψ2 be given. The “only if” direction is immediate. As to
show that the conditions stated in the lemma are also sufficient, we can argue
as follows. By (4–5) of Lemma 1, we have that every γ with βH 6 γ 6 β is of
the form γ ≡ βC for some c.e. set C ⊇ H. Then the mapping induced by ψ2 is
clearly onto.

Suppose now that [V ∗
i ]I∗ ⊆∗I∗ [V ∗

j ]I∗ . Then V ∗
i − V ∗

j ∈ I∗. But V ∗
i − V ∗

j =
(Vi − Vj)∗, with Vi − Vj a c.e. superset of H, since ε∗H is a Boolean algebra.
Then Vi − Vj ∈ I. On the other hand,

Vi = (Vi − Vj) ∪ (Vi ∩ Vj).

Now, by (1), βVi−Vj 6 βH , so by (3) of Lemma 1, βVi ≡ βVi∩Vj , hence βVi 6 βVj

by (2) of Lemma 1, as Vi ∩ Vj ⊆ Vj .
Finally, if [V ∗

i ]I∗ 6⊆∗I∗ [V ∗
j ]I∗ then Vi − Vj /∈ I, and therefore by (2) βVi 


βVj .

Theorem 1. For every n, every non-trivial Σ0
n+5– computable family B, and ev-

ery Σ0
n+1– computable family A, the Rogers semilattices R0

n+5(B) and R0
n+1(A)

are not isomorphic.

Proof. Let n be given, let B be an arbitrary non-trivial Σ0
n+5– computable fam-

ily, and let A be any Σ0
n+1– computable family. By Lemma 2, all Boolean

intervals of R0
n+1(A) are 0(n+3)– computable Boolean algebras. Therefore, to

show the theorem it is sufficient:

(i) to consider a computable atomless Boolean algebra F and an ideal J of
F as in Feiner’s Lemma such that J is c.e. in 0(n+3) and F/J is not
isomorphic to any 0(n+3)– computable Boolean algebra,

(ii) to find Σ0
n+5– computable numberings α and β of B such that the interval

[α, β] of R0
n+5(B) is a Boolean algebra isomorphic to F/J .

First, we consider item (i) above. Let F be a computable atomless Boolean
algebra. According to a famous result of Lachlan, [11], there exists a hyperhy-
persimple set H such that ε∗H is isomorphic to F. We fix such a set H.

We refer to the textbook of Soare, [14], for the details of a suitable iso-
morphism χ of ε∗H onto F. We only notice that starting from a computable
listing {b0, b1, . . .} of the elements of F one can find a Σ0

3– computable Fried-
berg numbering {B0, B1, . . .} of a subfamily of the family εH such that ε∗H =
{B∗

0 , B∗
1 , . . .}, and χ(B∗

i ) = bi.
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We will use the techniques for embedding posets into intervals of Rogers
semilattices which have been developed in [2]. Let J be any 0(n+3) - c.e. ideal
of F satisfying the conclusions of Lemma 3, and let Ĵ = {j ∈ ω | bj ∈ J}.
Then Ĵ is a 0(n+3) - c.e. set, I∗ ® {B∗

j | j ∈ Ĵ} is an ideal of ε∗H and F/J is
isomorphic to ε∗H/I∗. So, instead of the Boolean algebra F/J in item (ii) above
we can consider ε∗H/I∗.

Let I ® {V | V ∈ εH & V ∗ ∈ I∗}, and let Î = {i ∈ ω | V ∗
i ∈ I∗}. Obviously,

I is an ideal of εH .

Lemma 5. The relations “Vi ∈ I” (equivalently: “i ∈ Î”), in i, and “Vi−Vj ∈
I”, in i, j, are both 0(n+3) - c.e.

Proof. First of all note that for every sets A,B the relation “A =∗ B” is c.e. in
the relation “A = B”. Indeed, if D0, D1, . . . is the canonical numbering of the
family of finite sets (see [12] or [13]) then

A =∗ B ⇔ ∃p∃q(A ∪Dp = B ∪Dq).

Since
i ∈ Î ⇔ ∃j(Vi =∗ Bj & j ∈ Ĵ) and

Vi − Vj ∈ I ⇔ ∃k((Vi ∩ Vj) ∪H = Vk & k ∈ Î),

a simple calculation shows that Î ∈ Σ0
n+4 and that the relation “Vi − Vj ∈ I” is

also c.e. in 0(n+3).

Due to Lemma 4, we can now construct a suitable numbering β of B and
consider the corresponding mapping ψ2 which will give us an isomorphism ε∗H/I∗

onto the interval [βH , β].

The requirements. First of all, we need that the numbering β satisfy the
requirement:

B : β[H] = B

to guarantee that βH is a numbering of the whole family B. Then in view of
Lemma 4 we must satisfy, for every i, j, p, the requirements:

Pi : Vi ∈ I ⇒ βVi 6 βH

Ri,j,p : Vi − Vj 6∈ I ⇒ βVi 
 βVj via ϕp

where by “βVi 
 βVj via ϕp” we mean that ϕp does not reduce βVi to βVj in
the sense of Lemma 1(1b).

We use the oracle 0(n+4) in our construction to answer questions such as
“Vi ∈ I?” or “Vi−Vj ∈ I?” and to verify some properties of c.e. sets and partial
computable functions. Since all computations are relative to the oracle 0(n+4),
we will get that β ∈ Com0

n+5(B).
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The strategy for B. We fix a numbering α ∈ Com0
n+5(B) and build by stages

a 0(n+4) -computable function a(x) with range(a) ⊆ H. We will “insert” the
numbering α into the numbering β by letting β(a(x)) = α(x) for all x. Since we
will never change the values β(a(x)) we will have as a consequence the equality
β[H] = B.

The strategy for Ri,j,p. Since B is nontrivial, fix two different sets A,B ∈ B.
To meet Ri,j,p we will destroy any possible reducibility of the numbering βVi

to
the numbering βVj via any partial computable function ϕp with Vi ⊆ dom(ϕp)
and ϕp[Vi] ⊆ Vj . We choose some β -index x ∈ Vi \ Vj and let β(x) = A and
β(ϕp(x)) = B or, conversely, β(x) = B and β(ϕp(x)) = A. Note that x 6= ϕp(x)
since x /∈ Vj and ϕp[Vi] ⊆ Vj .

The strategy for Pi. Fix an infinite computable set R ⊆ H, and fix a
computable partition of R into disjoint infinite computable sets Ri, i ∈ ω.
Finally fix a computable sequence {ri}i∈ω of injective unary partial computable
functions such that dom(ri) = Vi \ R and range(ri) = Ri. If i ∈ Î then it is
sufficient to keep the equality β(x) = β(ri(x)) for all x ∈ Vi \ R to meet the
requirement Pi. Indeed, by Lemma 1, if so then we have βVi\R 6 βRi . Since
βVi ≡ βVi\R ⊕ βR 6 βRi ⊕ βR ≡ βR, it then follows that βVi 6 βH .

Unfortunately, there could be conflicts of two possible types between P–
strategies and R– strategies. More precisely, the strategy for Ri,j,p may want
β(x) 6= β(ϕp(x)) for some x ∈ Vm with m ∈ Î, while the strategy Pm forces us
to have β(x) = β(rm(x)). Since the functions ϕp, rm are fixed a-priori, it follows
that the equality ϕp(x) = rm(x) is possible and in this case we have a conflict.

Moreover, for every i, j, m, there exist infinitely many numbers p such that
ϕp ¹ (Vi \ Vj) = rm ¹ (Vi \ Vj), and it may seem impossible to prevent conflicts
at all. Fortunately, this is not so, and the next lemma and its corollary give us a
tool to avoid almost all conflicts between a Pm– strategy for any fixed m ∈ Î, and
all R– strategies. For t ∈ ω we will denote by Ut the set

⋃{Vs : s ≤ t & s ∈ Î}.
Lemma 6. Let H and I be chosen as above. Let V ′ and V be arbitrary sets of
the lattice εH such that V ′ /∈ I and V ∈ I. Then the following properties hold

(a) V ′ − V ∈ εH

(b) V ′ − V /∈ I, and, in particular, V ′ \ V is an infinite set.

Proof. Property (a) follows from the trivial equality

(V ′ − V )∗ = (V ′)∗ − V ∗.

Property (b) can be easily verified by contradiction using the following equal-
ity:

V ′ = (V ′ − V ) ∪ (V ′ ∩ V ).
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Corollary 1. For every i, j, t ∈ ω, if Vi − Vj /∈ I then Vi \ (Vj ∪Ut) is infinite.

We give absolute priority to the R– strategies versus the P– strategies. For
every i, j, p, we exclude all the conflicts between the strategy for Ri,j,p and
the strategies for Pm, for all m ∈ Î and m ≤ 〈i, j, p〉, in the following way. We
choose a β–index x to satisfy the requirement Ri,j,p from the set Vi\(Vj∪U〈i,j,p〉)
instead of the set Vi \ Vj as in the above description of the strategy for Ri,j,p.
And we do not pay attention to the conflicts between the strategy for a fixed
Ri,j,p and the Pm– strategies with m ∈ Î and m > 〈i, j, p〉. Thus, for every
fixed m ∈ Î, we will have at most finitely many conflicts of the strategy for Pm

with the R– strategies.
Conflicts of type 2 between Ri,j,p– strategies and Pm– strategies may occur

even in the case ϕp(x) 6= rm(x), due to the function a which is built by the
strategy for the requirement B. Assume that a number y ∈ H \ R has become
value of the function a and we have defined β(y) = α(z) for some z. If x is
chosen to meet the requirement Ri,j,p then we have to let β(x) and β(ϕp(x)) be
equal to either A or B, and β(x) 6= β(ϕp(x). Suppose also that ϕp(x) ∈ R. It
may occur that ϕp(x) = rm(y) for some m ∈ Î. The strategy for Pm forces us
to have β(ϕp(x)) = β(rm(y)) = α(z). We get a conflict if either α(z) /∈ {A,B}
or α(z) ∈ {A,B} and β(ϕp(x)) 6= α(z). Unfortunately, we can not see whether
α(z) = A or α(z) = B with the oracle 0(n+4). Again, for every m ∈ Î, we
would get only finitely many instances of conflicts of this type if we restricted
the choice of x by the additional restraint m > 〈i, j, p〉.

To describe the construction we still need some auxiliary notions and nota-
tions. For every x ∈ R we consider the set {x} ∪ {rm(x) | m ∈ ω}. This set is
called star with center x. Obviously, stars with different centers are disjoint,
and the collection of all stars forms a partition of ω. For every x ∈ ω, it is easy
to compute the center x+ of the star which contains x: namely, x+ = x if x /∈ R
and x+ = r−1

m (x) if x ∈ R and Rm is the element of the partition {Ri}i∈ω which
contains x.

In terms of stars, our plan to avoid the conflicts between P– strategies and
R– strategies mentioned above may be described as follows. First of all, given
x, conflicts of the first type do not to appear at all if x 6= (ϕp(x))+ as well as
x = (ϕp(x))+ but ϕp(x) ∈ Rm for m /∈ Î. And for every fixed m we allow
only finitely many strategies Ri,j,p to injure Pm, i.e. to make β(ϕp(x)) 6= β(x)
but β(rm(x)) 6= β(x). Stars with centers in range(a) are the unique source of
conflicts of the second type. And for every fixed m we allow only finitely many
such stars to injure Pm.

Now we will build, by a stage construction, a numbering β of the family B and
an auxiliary function a. If a value β(x) or a(x) has not been explicitly modified
by the end of stage t + 1 then by default βt+1(x) = βt(x) or at+1(x) = at(x)
respectively. It should be mentioned that in the construction below we never
change already defined values of the functions β and a to undefined ones.

The construction
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Stage 0 . Let β(x) and a(x) be undefined for all x. Go to the next stage.
Stage t + 1 . Let t = 〈i, j, p〉. Carry out the following three procedures starting
from Procedure Ri,j,p first.
Procedure Ri,j,p. Check the following conditions (we can do this relatively
to the oracle 0(n+4)):

(i) Vi − Vj /∈ I;

(ii) Vi ⊆ dom(ϕp) and ϕp[Vi] ⊆ Vj .

If one of (i) or (ii) fails then go to Procedure Pi.
Otherwise, choose the least element x of the set

Xt ® {x | x ∈ Vi \ (Vj ∪ Ut) & βt(x) ↑ & βt(ϕp(x)) ↑}

such that at least one of the following two conditions holds:

(iii) ∃y(y 6= x & y ∈ Xt & ϕp(y) = ϕp(x));

(iv) (ϕp(x))+ ∈ range(at) ⇒ ∀m(ϕp(x) ∈ Rm ⇒ m > t).

(See (7) below for the existence of such an x).
If (iii) holds then pick the least y satisfying (iii) and let β(x) = A, β(y) = B.

Go to Procedure Pi.
If (iii) does not hold (but (iv) does) then denote by z the center (ϕp(x))+

and carry out the instructions of the following two cases and after that go to
Procedure Pi.
Case 1: ϕp(x) ∈ R, z 6= x, and z /∈ range(at). If βt(z) ↑ then let β(z) = A.
Denote by C the set β(z), and denote by D an element of the set {A,B} \ {C}.
Let β(x) = D and β(ϕp(x)) = C.
Case 2: Case 1 does not hold. Let β(x) = A and β(ϕp(x)) = B.
Procedure Pi. Choose the least number x ∈ Ri such that β(x) is still un-
defined. If β(x+) is also undefined then let β(x+) = β(x) = A. If β(x+) ↓ then
let β(x) = β(x+). Go to Procedure B.
Procedure B. Pick the least number y ∈ H \R such that β is still undefined
in all points of the star with center y, and let a(t) = y and β(y) = α(t). Go to
the next stage.

Obviously, β is a Σ0
n+5– computable numbering.

Properties of the construction The construction satisfies the following
properties:

(1) For every t, the functions βt and at have finite domains.
(2) For every x, there exists a stage t starting from which β(x) becomes

defined forever. Besides, after this stage t the function β never changes its value
on that index x.

(3) a is total function with range(a) ⊆ H \R. For every x, α(x) = β(a(x)).
(4) For every x, β(x) = A or β(x) = B or β(x) = α(y) for some y.
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(5) For every x, t, if βt(x) ↓ then βt(x+) ↓.
(6) For every x, t, if x ∈ range(at) then βt(x) ↓.
Properties (1)–(6) are evident, (2)–(4) imply that β is a numbering of the

family B.
(7) For every i, j, p, t, if conditions (i),(ii) above hold then there exists x ∈ Xt

satisfying (iii) or (iv).
To see this, choose any numbers i, j, p, t such that conditions (i),(ii) hold and

assume that both (iii) and (iv) fail. Then ϕp is injective on Xt and

(ϕp(x))+ ∈ range(at) & ∃m(ϕp(x) ∈ Rm & m ≤ t).

The set Xt is infinite by Lemma 6 and property (1). By property (1), the set
Y ® {y | r−1

m (y) ∈ range(at) & m ≤ t} is finite since all the functions rk, k ∈ ω,
are injective. Therefore, ϕp maps in a one-to-one fashion the infinite set Xt into
the finite set Y . A contradiction.

(8) For every i, j, p, if conditions (i),(ii) hold then there exists z ∈ Vi such
that β(z) 6= β(ϕp(z)).

Let Vi − Vj /∈ I, Vi ⊆ dom(ϕp), and ϕp[Vi] ⊆ Vj , and let t = 〈i, j, p〉. If (iii)
holds at stage t +1 then ϕp maps two different numbers x, y ∈ Vi into the same
number ϕp(x) = ϕp(y) and, by the construction, β(x) 6= β(y). Therefore, at
least one among the inequalities β(x) 6= β(ϕp(x)) and β(y) 6= β(ϕp(y)) holds.

Suppose now that (iii) fails at stage t+1 and let x ∈ Xt be a number chosen
by Procedure Ri,j,p at this stage. By the construction, x ∈ Vi \ (Vj ∪ Ut) and
both βt(x) and βt(ϕp(x)) are undefined. It implies that x /∈ Vm and rm(x) is
undefined for all m ∈ Î , m ≤ t. Note that ϕp(x) /∈ range(at) because of property
(6). We consider the next four possibilities:
(a) ϕp(x) /∈ R;
(b) ϕp(x) ∈ R, (ϕp(x))+ = x;
(c) ϕp(x) ∈ R, (ϕp(x))+ 6= x, and (ϕp(x))+ ∈ range(at);
(d) ϕp(x) ∈ R, (ϕp(x))+ 6= x, and (ϕp(x))+ /∈ range(at).

For (a),(b),(c) we have β(x) = A and β(ϕp(x)) = B by Case 2 of Procedure
Ri,j,p at stage t + 1. For (d), by Case 1, we have β(x) = D, β(ϕp(x)) = C with
{C,D} = {A,B}.

(9) For every m ∈ Î and almost all x ∈ Vm \R, β(x) = β(rm(x)).
Let m ∈ Î. Suppose that v ∈ Vm \R and β(v) 6= β(rm(v)) and let us prove

that this inequality is caused by a conflict between the strategy for Pm and an
Ri,j,p– strategy for some i, j, p.

Let s+1 and t+1 be the stages at which correspondingly β(v) and β(rm(v))
have been defined. By property (2), β(v) = βs+1(v) and β(rm(v)) = βt+1(rm(v)).

Let us consider the star with center v and denote by q + 1 the least stage at
which β has been defined on a point of this star for the first time. By property
(5), q = s and s ≤ t since (rm(v))+ = v. We divide now our consideration into
two cases: s = t and s < t.

s = t. This means that β is defined exactly in two points of the star with the
center v by the end of stage t + 1, and that one of these points is v. Therefore,
β(v) can not be defined at stage t + 1 by Procedure B, and (iii) does not hold
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at stage t + 1. Thus, we have to examine the possibilities (a)–(d) considered
in the proof of property (8). Obviously, β(v) and β(rm(v)) can not be defined
by (a),(c) since in these cases β is defined in the centers of two disjoint stars.
Possibility (d) is also impossible because by construction in this case the values
of β in the points v and rm(v) have to be identical.

So we have to check only possibility (b). We will keep the notations in the
description of Procedure Ri,j,p, and in the proof of property (8). Following
these notations, v = x, ϕp(x) = rm(x), t = 〈i, j, p〉. We have a conflict of type
1: β(x) = A, β(ϕp(x)) = β(rm(x)) = B. Moreover, x ∈ Vi \ (Vj ∪ Ut), and,
therefore, m > 〈i, j, p〉. This implies that we can have at most finitely many
β–indices v ∈ Vm\R for which inequality β(v) 6= β(ϕp(v)) is caused by a conflict
of type 1.

s < t. Because of property (5), this means that we get to stage t + 1, at
which β is defined on the point rm(v), only after β has been defined on the
center v. As for the case s = t, it is easy to see that, at stage t+1, β(rm(v)) can
not be defined by Procedure B, (iii) does not hold, and possibilities (a),(b),(d)
can not cause the inequality β(v) 6= β(ϕp(v)).

Let us keep our conventions on notations and consider possibility (c). Then
ϕp(x) = rm(x), (ϕp(x))+ = v, v ∈ range(at), and, hence, (iv) implies inequality
m > 〈i, j, p〉. We have β(x) = A, β(rm(x)) = B, and β(v) 6= B. Thus, we
can have at most finitely many β–indices v ∈ Vm \ R for which the inequality
β(v) 6= β(ϕp(v)) is caused by a conflict of type 2.

Properties (3),(8),(9) imply that all the requirements are satisfied.

Theorem 2. For every n, every non-trivial Σ0
n+4– computable family B, and ev-

ery Σ0
n+1– computable family A, the Rogers semilattices R0

n+4(B) and R0
n+1(A)

are not isomorphic.

Proof. We start with a Σ0
n+4– computable family B and a numbering α ∈

Com0
n+4(B). Instead of working directly with the relation “Vi − Vj ∈ I” (in

i, j) and the set Î, we use enumerations relatively to the oracle 0(n+3) of this
relation and set, which are 0(n+3) - c.e. by Lemma 5.

Denote the relation “Vi − Vj ∈ I” by Q(i, j) and let by Qt(i, j), t ∈ ω, be a
suitable approximation to the relation, i.e :

Qt(i, j) is 0(n+3) –computable relation in i, j, t;
Qt(i, j) → Qt+1(i, j) for every i, j, t;
Q(i, j) ↔ ∃s∀t ≥ sQt(i, j) for every i, j.

Let Ît, t ∈ ω, be an enumeration of the set Î relatively to 0(n+3) , and let Ût

and X̂t be approximations of the sets Ut and Xt, namely,

Ût =
⋃
{Vk | k ≤ t & k ∈ Ît} and

X̂t = {x | x ∈ Vi \ (Vj ∪ Û t) & βt(x) ↑ & βt(ϕp(x)) ↑} for t = 〈i, j, p〉.
Here and in what follows we use the same notations as in the proof of Theorem
1. The construction below is a full approximation of the construction given in
Theorem 1.
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The construction

Stage 0 . Let β(x) and a(x) be undefined for all x. Go to the next stage.
Stage t + 1 . Let t = 〈i, j, p〉. Carry out the following three procedures starting
from Procedure Ri,j,p first. We execute all instructions at the stage computably
in the oracle 0(n+3).
Procedure Ri,j,p. Check whether condition

(ii) Vi ⊆ dom(ϕp) and ϕp[Vi] ⊆ Vj

holds. If (ii) does not hold then go to Procedure Pi. If it does then search for
the least s > t such that Qs(i, j) or there exists x ∈ X̂s such that at least one
of the following two conditions holds:

(iii)′ ∃y(y 6= x & y ∈ X̂s & ϕp(y) = ϕp(x));

(iv) (ϕp(x))+ ∈ range(at) ⇒ ∀m(ϕp(x) ∈ Rm ⇒ m > t).

If Qs(i, j) then go to Procedure Pi. Otherwise choose the least x ∈ X̂s which
satisfies the conditions above. If (iii)′ holds then pick the least y satisfying (iii)′

and let β(x) = A, β(y) = B. Go to Procedure Pi.
If (iii)′ does not hold (but (iv) does) then denote by z the center (ϕp(x))+

and carry out the instructions of the following two cases and after that go to
Procedure Pi.
Case 1: ϕp(x) ∈ R, z 6= x, and z /∈ range(at). If βt(z) ↑ then let β(z) = A.
Denote by C the set β(z), and denote by D the set {A, B}\C. Now let β(x) = D
and β(ϕp(x)) = C.
Case 2: Case 1 does not hold. Let β(x) = A and β(ϕp(x)) = B.
Procedure Pi. Choose the least number x ∈ Ri such that β(x) is still un-
defined. If β(x+) is also undefined then let β(x+) = β(x) = A. If β(x+) ↓ then
let β(x) = β(x+). Go to Procedure B.
Procedure B. Pick the least number y ∈ H \R such that β is still undefined
on all points of the star with center y, and let a(t) = y and β(y) = α(t). Go to
the next stage.

Properties of the construction Obviously, β is a Σ0
n+4– computable num-

bering. It is easily seen that the construction is just a modification of the one
in Theorem 1. This is why we omit unnecessary repetitions in the proofs of the
properties of the modified construction. Properties (1)–(6) are exactly the same
as in the proof of Theorem 1. They guarantee that β is a Σ0

n+4– computable
numbering of the family B. Let now consider the remaining properties.

(7) For every i, j, p, if condition (ii) holds at stage t+1 with t = 〈i, j, p〉 then
there exists s > t such that Qs(i, j) or there exists x ∈ X̂s satisfying at least
one of (iii)′ or (iv).

If Vi − Vj ∈ I then evidently there exists s such that Qs(i, j). Suppose now
that Vi − Vj /∈ I and let s be the least number such that s > t and

{k | k ≤ 〈i, j, p〉 & k ∈ Î} = {k | k ≤ 〈i, j, p〉 & k ∈ Îs}.
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Then Ûs = Ut, X̂s = Xt, and, hence, condition (iii)′ becomes identical to
condition (iii). It follows that now we can argue as we have done in the proof
of property (7) of the previous construction.

(8) For every i, j, p, if Vi − Vj /∈ I and condition (ii) holds then there exists
z ∈ Vi such that β(z) 6= β(ϕp(z)).

Let Vi − Vj /∈ I. Note that Qs(i, j) fails for all s, and so we can repeat the
proof of property (8) as in Theorem 1.

(9) For every m ∈ Î and almost all x ∈ Vm \R, β(x) = β(rm(x)).
Let m ∈ Î and let t0 be the least number such that m ∈ Ît0 . Then m ∈ Ûs

for all s ≥ t0, and, hence, Vm ∩ X̂t = ∅ for all t ≥ t0. Repeating the arguments
used in the proof of property (9) of Theorem 1 we can show that for every
t > max{t0,m} there is no v ∈ Vm \R such that

• β(v) 6= β(rm(v));

• at least one of β(v) or β(rm(v)) is defined at stage t;

• both β(v) and β(rm(v)) are defined by the end of stage t.

Property (1) implies that the number of v’s which satisfy these three conditions
at stages t ≤ max{t0,m} is finite.

Again, properties (3),(8),(9) imply that all the requirements are satisfied.
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