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For the basic notions, notations and methods relative to arithmetical
numberings and their Rogers semilattices we will refer to [2] and [3].
In this paper we investigate Rogers semilattices of arithmetical num-
berings from the point of view of computable algebra. We continue
the investigation of the isomorphism types and the elementary types of
Rogers semilattices both for finite and infinite arithmetical families. In
this direction we are interested in the differences between elementary
theories and isomorphism types for different arithmetical levels. For un-
explained terminology and notations relative to computability theory,
our main references are the textbooks of A.I. Mal’tsev [10], H. Rogers
[13] and R. Soare [14]. For the main concepts and notions of the theory
of numberings and computable Boolean algebras we refer to the book of
Yu.L. Ershov [5] and the book of S.S. Goncharov [7].

1. Distinguishing Rogers semilattices of finite
families

Given arithmetical families A and B, the corresponding Rogers semi-
lattices may look very different from each other. The results illustrated
in [3] already enable us to make some comments on this matter. First of
all, we already know that if A and B are finite families such that .4 has
least element with respect to inclusion and B does not, then RY,(A)
and RY,(B) are not elementarily equivalent, since RY | (A) possesses
a greatest element, whereas RY_;(B) does not: See Theorem 3.2, [2].

2. Distinguishing Rogers semilattices of finite
families from Rogers semilattices of infinite
families

It is not difficult to point out elementary differences between Rogers
semilattices of finite families and Rogers semilattices of infinite families.
For instance, we may observe:

Theorem 2.1. If A is a finite family of £V, sets, then RY, | (A) has
least element.
Proof. Let A = {Ao,...,Ar}. Let {Xo,...,Xi} be a computable par-

tition of IN into computable sets. For every = € X; let a(x) = A;. It is
easy to see that o < 3, for all 8 € Com%H(A). O

On the other hand, there exist infinite families of c.e. sets B such
that RY(B) has no minimal elements, [1] and [15]. Moreover, if B is an
infinite ¥Y ,— computable family of sets, then there exists a numbering
o € Com) , »(B) such that no minimal numbering of B is reducible to «,
[12], [3].
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Thus RY_,(A) is always elementarily different from RY_,(B), if A is
finite and B is infinite.

3. Weak distributivity

In this section we show another interesting and natural elementary
difference between RY |, (A), with A finite, and RY_,(B), with B infinite.
In the former case we always get a distributive semilattice, whereas in the
latter case we always get a nondistributive, not even weakly distributive,
semilattice. First we give some definitions.

Definition 3.1. An upper semilattice (L, V, <) is called distributive if
for every ai,a9,b € L, if b < a1 V ag then there exist by, by € L such that
b1 <ai,by <as and b=by V bs.

The following proposition states a well known and general fact of the
theory of numberings.

Proposition 3.1. For every numberings g, a1, 3, if B < ag ® a1 then
there exist numberings By, 51 such that By < ag, f1 < aq and B = BoBF1.

Proof. Let f be a computable function such that range(f) contains both
even and odd numbers and §(x) = (ap @ a1)(f(z)) for all x. Let Ry =
{z | f(z) even} and R; = {x | f(z) odd}. The sets Ry, R; are clearly
computable and, therefore, there exist computable functions g; such that
R; = range(g;), i« < 1. For i < 1, define the numbering 3; by 5i(z) =
B(gi(z)) for all x. It is now easy to check that Gy < ap, 1 < ap and

B = Bo® B O

Remark 3.1. Note that even if ag and a; are both numberings of the
same family A then neither Gy nor 8; need be mappings from IN onto

A.

Theorem 3.1. For every n and for every finite family A C Z%H,
RY 1 (A) is a distributive upper semilattice.

Proof. Let ap, a1, 3, be arbitrary £ 41— computable numberings of A
such that 8 < ag & 1. By Proposition 3.1, there exist numberings
Bo < ap, f1 < a; such that = Gy ® f1. Let A= {Ao, A1,...,Ar}. For
7 < k and for all z define

A ife <k
/ N x )
ﬂl(m)ﬁ{ﬁi(x—k—l) itz > k.

It is easy to verify that 3) < ap, 3] < a1 and that 5 = 3 @ ). On the
other hand, each (! is a numbering of the whole family A. Therefore,
RY.1(A) is a distributive upper semilattice. O



The situation is different if we consider infinite families. First of all,
we notice:

Remark 3.2. It is easy to see that the three element upper semilattice
Ly = {a,b,c}, where a and b are incomparable and ¢ = a V b, is not
distributive. There exist many Rogers semilattices which contain Lg as
an ideal, [5], and, therefore, are not distributive. However, if we add L
to Lo, we do obtain a distributive lattice.

This remark motivates our next definition.

Definition 3.2. An upper semilattice £ = (L, <) is weakly distributive
if £ =(LU{L}, <) is distributive, where L ¢ £ and

< =< U{(L,a) lae LU{LY

Proposition 3.2. An upper semilattice (L,V,<) is weakly distributive
if and only if for every ai,az,b € L, if b < a1 Vaz and b £ a1,b % as
then there exist by, bo € L such that by < ay,by < as and b = by V bs.

Proof. Immediate. O

Lemma 3.1. Let A be an infinite 22+27 computable family. Then there
exists a finite subfamily Ay of A and numberings o, 3 € Com? 1+2(A) and
v € Com?, ,(Ag) such that

(1) the ideal & has no minimal elements in RY, o(A);

(2) B is a minimal numbering;

(3) v £ B.

Proof. Let A be an infinite X9 4o~ computable family. Then by [12] (see
also Corollary 1.5.1, [3]) there exists a numbering v € Com?,, 5(A) such
that no minimal numbering of A is reducible to «. Given «, numberings
B and v with the desired properties can be constructed as follows. Let
M be any maximal set, and let A, B, C be three different sets of A. By
the construction of Theorem 1.3, [2], consider the numbering 8 = aps 4.
Now, let Ay = {B,C}, and let v be any ¥ 49— computable non-solvable
numbering of Ay. The existence of such a 7 follows for instance from
Theorem 1.3, [3]. Recall that a numbering v is called solvable if the
predicate v(z) = v(y) is computable in z,y.

We claim that v £ apz 4. Indeed, if this were not the case, then there
would be a computable function f such that v = a4 0 f. From the
way Ap and a4 are defined, we would have range(f) C M; but by
maximality of M this implies that range(f) is finite. Therefore v would
be a decidable numbering, a contradiction. O
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Theorem 3.2. For every n, the Rogers semilattice of any infinite E?H_Zf
computable family is not weakly distributive.

Proof. Let A be an infinite %0 1o~ computable family. Let the num-
berings «, 3,7 and let a finite subfamily Ay = {Ay, 41,..., Ax} of the
family A satisfy properties (1-3) of Lemma 3.1.

Assume for a contradiction that RY, ,(A) is weakly distributive. Let
v, v1 stand for the numberings o @ v and 3, respectively. Then, the
numbering u = v @ 3 is reducible to vy ® vq, and clearly p £ 1. On
the other hand we can also argue that u £ v, as follows. Assume for
a contradiction that v ® § < a ® y; then § < a @ v and therefore by
Proposition 3.1 there exist Gy < a and 51 < v such that § = §y & (.
Note that range(5p) 2 A\ Ap. We may in fact assume that range(5p) =
A, otherwise define

Bh(0) @) = {Aﬂ” .

Bo(z —k — 1) otherwise.
It is now easy to see that range(3)) = A, 5 = () ® (1 and ) < . But
Bo = [ since 3 is minimal, contradicting that « does not bound any
minimal numbering of Com!_,(.A).

By the weak distributivity assumption, there exist numberings pg, (41
of A such that ug < v, u1 < 11, and p = pg @ pq- Since (3 is minimal,
it follows that p is equivalent to .

It follows from pg < o @ v that ug = ag ® o for some oy < o and
Yo < . Note that range(ag) 2 A\ Ap. As for Gy, we may suppose that
range(ag) = A.

On the other hand, pug < v @ § and, hence, oy < v @ (. Again,
by Proposition 3.1 there exist numberings a;,vy; (where, again, we may
suppose that a; is a mapping of IN onto .4) such that v < 7,1 < 3,
and ag =711 D ay.

So the numbering «; of A is reducible to the minimal numbering .
Therefore, oy = B. It implies oy = 1 @ B and, hence, v1 & § < a.
Therefore, the minimal numbering ( is reducible to «, and this again is
in contradiction with the choice of . The theorem is proved. O

Modulo the existence of suitable «, 5 and v the argument above holds
also for X§— computable families.

Corollary 3.2.1. Let A be a family of c.e. sets such that the Rogers
semilattice RY(A) has at least one minimal element deg(f3), contains a
principal ideal & without minimal elements, and there is a numbering
of a finite subfamily such that v % 3. Then RY(A) is not weakly distribu-
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tive. In particular, the Rogers semilattice of the computable numberings
of the family of all c.e. sets is not weakly distributive.

The hypotheses of the previous corollary are not trivial. We recall in
fact that for every computable infinite family of computable functions,
every ideal of the corresponding Rogers semilattice contains at least one
minimal element, [5]. On the other hand, there exist families of c.e.
sets A such that RY(.A) has no minimal elements, [1] and [15] and there
exist also infinite families of c.e. sets with trivial Rogers semilattice. In
view of these well known facts of the classical theory of numberings, the
following question seems to be of some interest.

Question 1. Does there exist a computable infinite family A of c.e.
sets such that RY(A) is non-trivial and distributive? Does there exist a
computable infinite family A of c.e. sets such that RY(A) is non-trivial
and weakly distributive?

4. Distinguishing Rogers semilattices of infinite
families

Having seen that the Rogers semilattice R 1o(A) is always elemen-
tarily different from R? 4o(B) when A is finite, and B is infinite, what
about elementary differences between Rogers semilattices of distinct in-
finite families?

Theorem 4.1. For every n there exist E?H_lf computable infinite fami-
lies A and B such that their Rogers semilattices RS, 1(A) and RS, (B)
are not elementary equivalent.

Proof. Tt is immediate to see that for every n there are infinite %0 i1
computable families with universal numberings. It suffices to take for
every n the family of all XY 41 sets. Then the standard numbering p(e) =

Weo(n) is universal in Com? (29 ;).

On the other hand, there are infinite X% ;~ computable families with-
out universal numberings. This fact follows easily from straightforward
relativizations of known result of S.Marchenkov [11] that every non-
trivial Rogers semilattice of a family of total computable functions has

no greatest element. O

In Theorem 4.1, instead of the quoted result by Marchenkov, one
could use also the following fact of the theory of numberings which is an
immediate consequence of the Lachlan’s paper [8]: The family F of all
finite sets has no computable principal numbering.

This family allows also to exhibit Rogers semilattices which are not
elementarily equivalent with respect to <g, for every i < n.
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Theorem 4.2. For every n there exist E?L_Hf computable infinite fami-

. . . . (%) (%)
lies A and B such that their Rogers semilattices 7'\’,2’_21 (A) and R?{El (B)
are not elementary equivalent for every i < n.

Proof. Fix any i < n. Let F = {F | Fis a finite set}. It is imme-
diate to see that F is X9, computable for every n. Assume that
o € Com? ((F). We will show that there exists 8 € Com! (F)
such that 3 £ . We begin with building a numbering + such that
range(y) C F and v Lo «, by stages. For every e, the requirements
for building v are

Re: ™" total = (32)(7(x) # a(p2" (2))).

We will work with a given 0")— computable approximation {a®(z) }. sew
to the numbering a.
If at stage s + 1 we do not explicitly define y**1(z) for some x then

v (x) =%(x).
Stage 0) For all e define 7%(e) = 0.
Stage s + 1) Consider all e < s such that

(i) (2)
w00 (e) | (say 02 (e) =y);

= °(e)) C a’(y).

For each such e, choose z ¢ a®(y), and define v¥71(e) = ~%(e) U {z}.
Finally let v(z) = |, v*(x). It is now easy to see that the numbering
= a @ has the desired properties. First of all 3 is ¥.0 41— computable,

since v is ¥ 41— computable by construction; range(3) = F since o < f3;

and finally 8 £ « since v Lo .

Thus, as suitable families A and B, we could consider the family F

and the family $9 ;| of all £9_,—sets, respectively. O
i)
Remark 4.1. The Rogers semilattice Rg’g(l (A) of any finite family

ACY? 41 consists of a single element for every ¢ > n and, therefore, all
such semilattices are elementary equivalent.

5. Isomorphism types

Finally we show that the isomorphism type of Rogers semilattice
RY.1(A) of an arbitrary ¥Y . ,—computable family .4 may be very dif-
ferent from that of RY,, (B) of some X2 . ,—computable family B, for
distinct n and m.



The following three lemmas and the notion of an X-—computable
Boolean algebra play a key role in establishing this claim. Recall (see
[7]) that a Boolean algebra 2 is called X-computable if its universe,
operations, and relation are X—computable.

Lemma 5.1. Let v and § be E%H—computable numberings of a family
A. If [v,0] is a Boolean algebra, then it is 00"+3) - computable.

Proof. Given n, A, v, and J as in the hypothesis of the lemma, we first
observe that by (4) and (5) of Lemma 2.2, [3], there exists a c.e. set C
such that v = §¢ and

[7,0] = {deg(dx) | X c.e. and X D C}.

For every i, let U; = C U W,. This gives an effective listing of all c.e.
supersets of C. By Lemma 2.2, [3], (1b), for every i, j, we have dy, < dy;,
if and only if

Fp[Va(z € Ui = 3y(pp(z) =y & y € Uj))
& VaVy(z € U; & pp(z) =y = d(z) = 6(y))]

Since § € Com?_(A), this implies that oy, < Sy, is a X | 3~ relation in
i,7.
Let us consider the equivalence n on IN defined by

(4,7) € n & du, < du; & dy; < du,-

Let B = {z | Vy(y < x = (z,y) ¢ n)}. Define a bijection ¢ : B —
[7,6], by letting ¥1(i) = deg(dy,), for all i« € B. It is evident that
11 induces in R? 4+1(A) a partially ordered set B which is a Boolean
algebra isomorphic to [y,0]. The interval 9B is a 0("+3)— computable
partial ordered set. It follows from [7, Theorem 3.3.4] and [4], that
the Boolean algebra 9B relatively to the Boolean operations is 0(+3)—
computable too. O

Lemma 5.2 (L. Feiner). Let § be a computable atomless Boolean alge-
bra. Then for every X there is an ideal J such that J is X—c.e. and the
quotient §/J is not isomorphic to any X— computable Boolean algebra.

Proof. See [6]. O

Below, we will use the following notations. For a given c.e. set A,
{Vi | i € IN} denotes an effective listing of all c.e. supersets of the set
A defined, for instance, by V; = AU W;, for all i. We will assume for
convenience that Vy = A. As in [3], e4 stands for the distributive lattice
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of the c.e. supersets of A. For a given c.e. set V D A, let V* denote the
image of V' under the canonical homomorphism of 4 onto €% (i.e. €4
modulo the finite sets), and let C* denote the partial ordering relation
of €. Obviously, if J is an ideal in €4 then J* = {V* | V € J} is an
ideal in €7%.

As is known (see, for instance, [7]), if 2 is a Boolean algebra and
J is an ideal of 2, then the universe of the quotient Boolean algebra
20/J is given by the set of equivalence classes {[a]; | a € A} under the
equivalence relation =; given by

a=5b< 3o, € J(aVer=bVe),
and the partial ordering relation is given by
[al; <j[bl; < a—beJ
where a — b stands for a A —b.

Lemma 5.3. Let B be a E?nﬂfcomputable family, B € Com9n+1(8),
and let A be any c.e. set such that €% is a Boolean algebra. Let 1o :
a4 — [Ba, f] be the mapping given by 1¥2(V;) = deg(By;) for all i, and
let I be any ideal of 4. Then ) induces an isomorphism of €% /1* onto
[Ba, O] if and only if for every i, j

(1) VleIiﬁVzgﬁA:
(2) Vi~V ¢ T= By, & By, (where Vi~ Vj = (Vi \ V;) U A)

Proof. Let A, B, 3,19 be given. The “only if” direction is immediate.
As to show that the conditions stated in the lemma are also sufficient,
we can argue as follows. By (4-5) of Lemma 2.2, [3], we have that every
~v with B4 < v < 3 is of the form v = (¢ for some c.e. set C O A. Then
the mapping induced by 19 is clearly onto.

Suppose now that [V*];« C7. [V/]r+. Then V¥ — V¥ € I*. But
V=V = (Vi = V;)*, with V; — V; a c.e. superset of A, since €% is a
Boolean algebra. Then V; —V; € I. On the other hand,

Vi= (V= V) U(Vin V).
Now, by (1), Bv;—v; < Ba, so by (3) of Lemma 2.2, [3], By, = Bvinv;,

hence By, < By, by (2) of Lemma 2.2, [3], as V; N V; C V.
Finally, if [V;*]r« €7« [V]']1+ then Vi — V; ¢ I, and therefore by (2)

B, & By;. O
Theorem 5.1. For every n there exist m > n and a X9, , ,— computable

family B such that no Rogers semilattice R%H(A) of any Zgﬂfcom—
putable family A is isomorphic to R9n+2(8).
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Proof. Let n be given. By Lemma 5.1, all Boolean intervals of RY_; (A)

are 0"3)— computable Boolean algebras. Therefore, to show the theo-
rem it is sufficient:

(1) to find a suitable number m > n + 3;

(2) to consider a computable atomless Boolean algebra § and an ideal
J of § as in Feiner’s Lemma such that .J is c.e. in 0™ and §/J is
not isomorphic to any 0™ —computable Boolean algebra,

(3) to find a X9, , ,— computable family B and X9, | ,— computable num-
berings a and 8 of B such that the interval [, 3] of RY,, o(B) is a
Boolean algebra isomorphic to §/J.

We will determine the number m later. First, we consider item (2)
above. Let § be a computable atomless Boolean algebra. According to
a famous result of Lachlan, [9], there exists a hyperhypersimple set A
such that €% is isomorphic to §. We fix such a set A.

We refer to the textbook of Soare, [14], for the details of a suitable
isomorphism x of €% onto §. We only notice that starting from a com-
putable listing {bg, b1, ...} of the elements of § one can find a listing
{Bo, By, ...} of a subfamily of the family € 4 such that e, = {Bg, B, ...},
x(B}) = b;, and the relation “x € B;” is 2.

We will use the techniques for embedding posets into intervals of
Rogers semilattices which have been developed in [3]. Let J be any
0™ - c.e. ideal of §. Then I* = x~![J] is an ideal of &% and §/J is
isomorphic to €% /I*. So, instead of the Boolean algebra §/J we can just
embed €% /I*.

Let now I = {V; | V;* € I*}. Obviously, I is an ideal of €4, and

I={V;|3i(V; =" Bi & b; € J)}.

A simple calculation shows that the relation “V; =* B;”, in i, j, is Eg.

Now, if we take m = max{4,n + 3} then I is X0, as J is 0™ -
c.e. Finally, we choose J to be an ideal of § satisfying the conclusions
of Lemma 5.2, and we let I* = x~1[J] as above.

It should be mentioned a very useful property of the Boolean algebra
€% which we will use in our construction of B: if V; ¢ I then V; =V ¢ I
for every V' € I and, in particular, V;\ V is an infinite set. This property
can be easily verified by contradiction using the following equality:

Vi=(Vi-vV)uvinv).

We will now construct a %2, 49— computable family B, and a numbering
B € Com),, »(B) such that the interval [84, 3] is isomorphic to &% /I*.
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The requirements.  First of all, we will construct B and (§ so that
B[A] = B to guarantee that (4 is a numbering of the whole family
B. Then in view of Lemma 5.3 we must satisfy, for every p,i,7, the
requirements:

Pi:Viel= fv, <Ba
Rijp:Vi=Vi & 1= Py, £ By, via ¢,

)

where by “By, % ﬁvj via ¢,” we mean that ¢, does not reduce By, to
By, in the sense of Lemma 2.2(1b), [3].

The construction.  We use the oracle 0™*1) in our construction to
answer questions such as “V; € I?” and to verify some properties of c.e.
sets and functions. We fix an infinite computable subset R of the set A
and a computable partition of R into disjoint infinite computable sets
R;, 7€ IN.

Initially we define an auxiliary X9 19— computable numbering 3 of

m+1)

B and an auxiliary 0( — computable function r(i,t). If at the end of
t

any stage t + 1, 377 (x) or r(z,t + 1) have not been explicitly modified
then they are understood to retain the same value as in the previous
stage.

Stage 0) Let 37(z) =0, r(i,0) = 0 for all z,i.
Stage t + 1) Let t = (i,4,p). Find k such that V, = V; — V; (we can do
it with oracle). Check the following conditions:
(i) Vi € I;
(i) Vi € dom(ypp) and pp[Vi] C V.
If one of (i) or (ii) fails then do nothing. Otherwise let U; = (J{V;s: s <

t & Vi € I'}. Notice that A C U, since we have chosen Vj = A. Choose
the least element z in the set

{y | Vi\Us & op(y) # y} \ {y | Bi(y) # 0}.

(See (3) below for the existence of such an x). Take a new number a
and define 81 (2) = B (x) U {a}. If p,(2) € Ry, and m > ¢ then define
r(m,t+ 1) = max{r(m,t), ¢,(x)}. Go to the next stage.

Obviously, 3 is a ¥ 49— computable numbering of the family B =

{Pi(x) | z € N}.

Properties of the construction. The construction satisfies the
following properties:
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(1) For every x € R, 31(x) = (). Each non-empty set of B has exactly
one index relative to ;.

(2) For every m, 1, if i > m then r(m,i) = r(m,m+ 1).

Properties (1),(2) are evident.

(3) For every i,j,k,p,t, if V = V; — V; and conditions (i),(ii) above
hold then the set {x | V; \ U; & ¢p(x) # x} is infinite.

Indeed, V; \ Vj is infinite since Vi, = (V; \ V;) U A and Vj, ¢ I by (i).
Condition (ii) implies that ¢, (z) # « for all V; \ V.

So, if we assume that the set {z | V;\U; & @p(z) # «} is finite then we
obtain that V; \ V; C* U; and, hence, Vj, C* U;. This is a contradiction
with (i) since Uy € 1.

Let us now define a numbering 3 € Com!, ,(B). Let B(z) = Bi(z)
for all z € R. For every i € IN, let ¢; be a partial computable one-to-one
function from {x € R; : * > r(i,i+ 1)} onto V; \ R. For every i and
every € R;, let

ﬁ@%:{ﬂmmmn ifz>r(,i+1)and Vel ,

0 otherwise.

For every ¢ if V; € I then By, < (g via the partial computable function
 such that for every z € V;

) ifz f ,
¢@y—{%() fzeVi\R

)z if x € R.

We are using again (1b) of Lemma 2.2, [3], so all requirements P; are
satisfied.

We have ([A] = B[N] since for every = ¢ A, one can find ip such that
Vie = AU{z} € I. The requirement P, is satisfied, therefore, By, < fa,
and, in particular, 5(z) € S[A].

Finally, let us check the requirements R; j ,. Let ¢, € Nand V; -V} ¢
I: we want to show that By, £ By, via ¢p. Let t = (i,j,p). Consider
the number z chosen at stage ¢t + 1. Notice that z ¢ A, ¢,(x) # = and
B(z) = Br(x) # 0.

If () ¢ R then B(x) # B(pp(x)) by property (1) since § and
coincide on R.

Let now ¢p(z) be in R, for some m. If V,,, € I, or V,,, € I but
op(x) < r(m,m+ 1), then B(pp(x)) =0, and, hence, 5(z) # B(ep(x)).

If m > t then by construction ¢, (z) < r(m,m+1) and, again we have
B(z) # Blgp()).

It remains to consider the case when m < t, V,, € I, and ¢p(z) >
r(m, m+1). In this case we have pp(z) € dom(¢,,) and, by construction
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of 8, B(ep(x)) = Br(¢Ym(pp(x))). Since range(tpy) € Vi, © € Vi \ Uy,
and Vj,, C Uy, it follows that & # ¢, (¢p(x)). Now (1) implies inequality

B(x) # Blep(x)). O
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