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For the basic notions, notations and methods relative to arithmetical
numberings and their Rogers semilattices we will refer to [2] and [3].
In this paper we investigate Rogers semilattices of arithmetical num-
berings from the point of view of computable algebra. We continue
the investigation of the isomorphism types and the elementary types of
Rogers semilattices both for finite and infinite arithmetical families. In
this direction we are interested in the differences between elementary
theories and isomorphism types for different arithmetical levels. For un-
explained terminology and notations relative to computability theory,
our main references are the textbooks of A.I. Mal’tsev [10], H. Rogers
[13] and R. Soare [14]. For the main concepts and notions of the theory
of numberings and computable Boolean algebras we refer to the book of
Yu.L. Ershov [5] and the book of S.S. Goncharov [7].

1. Distinguishing Rogers semilattices of finite
families

Given arithmetical families A and B, the corresponding Rogers semi-
lattices may look very different from each other. The results illustrated
in [3] already enable us to make some comments on this matter. First of
all, we already know that if A and B are finite families such that A has
least element with respect to inclusion and B does not, then R0

n+1(A)
and R0

n+1(B) are not elementarily equivalent, since R0
n+1(A) possesses

a greatest element, whereas R0
n+1(B) does not: See Theorem 3.2, [2].

2. Distinguishing Rogers semilattices of finite
families from Rogers semilattices of infinite
families

It is not difficult to point out elementary differences between Rogers
semilattices of finite families and Rogers semilattices of infinite families.
For instance, we may observe:

Theorem 2.1. If A is a finite family of Σ0
n+1 sets, then R0

n+1(A) has
least element.

Proof. Let A ® {A0, . . . , Ak}. Let {X0, . . . , Xk} be a computable par-
tition of IN into computable sets. For every x ∈ Xi let α(x) ® Ai. It is
easy to see that α 6 β, for all β ∈ Com0

n+1(A).

On the other hand, there exist infinite families of c.e. sets B such
that R0

1(B) has no minimal elements, [1] and [15]. Moreover, if B is an
infinite Σ0

n+2– computable family of sets, then there exists a numbering
α ∈ Com0

n+2(B) such that no minimal numbering of B is reducible to α,
[12], [3].
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Thus R0
n+2(A) is always elementarily different from R0

n+2(B), if A is
finite and B is infinite.

3. Weak distributivity
In this section we show another interesting and natural elementary

difference betweenR0
n+2(A), withA finite, andR0

n+2(B), with B infinite.
In the former case we always get a distributive semilattice, whereas in the
latter case we always get a nondistributive, not even weakly distributive,
semilattice. First we give some definitions.

Definition 3.1. An upper semilattice 〈L,∨,6〉 is called distributive if
for every a1, a2, b ∈ L, if b ≤ a1 ∨a2 then there exist b1, b2 ∈ L such that
b1 ≤ a1, b2 ≤ a2 and b = b1 ∨ b2.

The following proposition states a well known and general fact of the
theory of numberings.

Proposition 3.1. For every numberings α0, α1, β, if β 6 α0 ⊕ α1 then
there exist numberings β0, β1 such that β0 6 α0, β1 6 α1 and β ≡ β0⊕β1.

Proof. Let f be a computable function such that range(f) contains both
even and odd numbers and β(x) = (α0 ⊕ α1)(f(x)) for all x. Let R0 ®
{x | f(x) even} and R1 ® {x | f(x) odd}. The sets R0, R1 are clearly
computable and, therefore, there exist computable functions gi such that
Ri = range(gi), i ≤ 1. For i ≤ 1, define the numbering βi by βi(x) ®
β(gi(x)) for all x. It is now easy to check that β0 6 α0, β1 6 α1 and
β ≡ β0 ⊕ β1.

Remark 3.1. Note that even if α0 and α1 are both numberings of the
same family A then neither β0 nor β1 need be mappings from IN onto
A.

Theorem 3.1. For every n and for every finite family A ⊆ Σ0
n+1,

R0
n+1(A) is a distributive upper semilattice.

Proof. Let α0, α1, β, be arbitrary Σ0
n+1– computable numberings of A

such that β 6 α0 ⊕ α1. By Proposition 3.1, there exist numberings
β0 6 α0, β1 6 α1 such that β ≡ β0 ⊕ β1. Let A = {A0, A1, . . . , Ak}. For
i ≤ k and for all x define

β′i(x) ­
{

Ax if x ≤ k,

βi(x− k − 1) if x > k.

It is easy to verify that β′0 6 α0, β
′
1 6 α1 and that β ≡ β′0 ⊕ β′1. On the

other hand, each β′i is a numbering of the whole family A. Therefore,
R0

n+1(A) is a distributive upper semilattice.
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The situation is different if we consider infinite families. First of all,
we notice:

Remark 3.2. It is easy to see that the three element upper semilattice
L0 = {a, b, c}, where a and b are incomparable and c = a ∨ b, is not
distributive. There exist many Rogers semilattices which contain L0 as
an ideal, [5], and, therefore, are not distributive. However, if we add ⊥
to L0, we do obtain a distributive lattice.

This remark motivates our next definition.

Definition 3.2. An upper semilattice L = 〈L,6〉 is weakly distributive
if L⊥ = 〈L ∪ {⊥}, 6⊥〉 is distributive, where ⊥ /∈ L and

6⊥®6 ∪{(⊥, a) | a ∈ L ∪ {⊥}}.
Proposition 3.2. An upper semilattice 〈L,∨,6〉 is weakly distributive
if and only if for every a1, a2, b ∈ L, if b ≤ a1 ∨ a2 and b � a1, b � a2

then there exist b1, b2 ∈ L such that b1 ≤ a1, b2 ≤ a2 and b = b1 ∨ b2.

Proof. Immediate.

Lemma 3.1. Let A be an infinite Σ0
n+2– computable family. Then there

exists a finite subfamily A0 of A and numberings α, β ∈ Com0
n+2(A) and

γ ∈ Com0
n+2(A0) such that

(1) the ideal α̂ has no minimal elements in R0
n+2(A);

(2) β is a minimal numbering;

(3) γ 
 β.

Proof. Let A be an infinite Σ0
n+2– computable family. Then by [12] (see

also Corollary 1.5.1, [3]) there exists a numbering α ∈ Com0
n+2(A) such

that no minimal numbering of A is reducible to α. Given α, numberings
β and γ with the desired properties can be constructed as follows. Let
M be any maximal set, and let A,B, C be three different sets of A. By
the construction of Theorem 1.3, [2], consider the numbering β ® αM,A.
Now, let A0 ® {B,C}, and let γ be any Σ0

n+2– computable non-solvable
numbering of A0. The existence of such a γ follows for instance from
Theorem 1.3, [3]. Recall that a numbering ν is called solvable if the
predicate ν(x) = ν(y) is computable in x, y.

We claim that γ 
 αM,A. Indeed, if this were not the case, then there
would be a computable function f such that γ = αM,A ◦ f . From the
way A0 and αM,A are defined, we would have range(f) ⊆ M ; but by
maximality of M this implies that range(f) is finite. Therefore γ would
be a decidable numbering, a contradiction.



Isomorphism types and theories 5

Theorem 3.2. For every n, the Rogers semilattice of any infinite Σ0
n+2–

computable family is not weakly distributive.

Proof. Let A be an infinite Σ0
n+2– computable family. Let the num-

berings α, β, γ and let a finite subfamily A0 ® {A0, A1, . . . , Ak} of the
family A satisfy properties (1–3) of Lemma 3.1.

Assume for a contradiction that R0
n+2(A) is weakly distributive. Let

ν0, ν1 stand for the numberings α ⊕ γ and β, respectively. Then, the
numbering µ = γ ⊕ β is reducible to ν0 ⊕ ν1, and clearly µ 
 ν1. On
the other hand we can also argue that µ 
 ν0, as follows. Assume for
a contradiction that γ ⊕ β 6 α ⊕ γ; then β 6 α ⊕ γ and therefore by
Proposition 3.1 there exist β0 6 α and β1 6 γ such that β ≡ β0 ⊕ β1.
Note that range(β0) ⊇ A\A0. We may in fact assume that range(β0) =
A, otherwise define

β′0(i)(x) ®
{

Ax if x ≤ k,

β0(x− k − 1) otherwise.

It is now easy to see that range(β′0) = A, β ≡ β′0 ⊕ β1 and β′0 6 α. But
β0 ≡ β since β is minimal, contradicting that α does not bound any
minimal numbering of Com0

n+2(A).
By the weak distributivity assumption, there exist numberings µ0, µ1

of A such that µ0 6 ν0, µ1 6 ν1, and µ ≡ µ0 ⊕ µ1. Since β is minimal,
it follows that µ1 is equivalent to β.

It follows from µ0 6 α ⊕ γ that µ0 ≡ α0 ⊕ γ0 for some α0 6 α and
γ0 6 γ. Note that range(α0) ⊇ A \A0. As for β0, we may suppose that
range(α0) = A.

On the other hand, µ0 6 γ ⊕ β and, hence, α0 6 γ ⊕ β. Again,
by Proposition 3.1 there exist numberings α1, γ1 (where, again, we may
suppose that α1 is a mapping of IN onto A) such that γ1 6 γ, α1 6 β,
and α0 ≡ γ1 ⊕ α1.

So the numbering α1 of A is reducible to the minimal numbering β.
Therefore, α1 ≡ β. It implies α0 ≡ γ1 ⊕ β and, hence, γ1 ⊕ β 6 α.
Therefore, the minimal numbering β is reducible to α, and this again is
in contradiction with the choice of α. The theorem is proved.

Modulo the existence of suitable α, β and γ the argument above holds
also for Σ0

1– computable families.

Corollary 3.2.1. Let A be a family of c.e. sets such that the Rogers
semilattice R0

1(A) has at least one minimal element deg(β), contains a
principal ideal α̂ without minimal elements, and there is a numbering γ
of a finite subfamily such that γ 
 β. Then R0

1(A) is not weakly distribu-
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tive. In particular, the Rogers semilattice of the computable numberings
of the family of all c.e. sets is not weakly distributive.

The hypotheses of the previous corollary are not trivial. We recall in
fact that for every computable infinite family of computable functions,
every ideal of the corresponding Rogers semilattice contains at least one
minimal element, [5]. On the other hand, there exist families of c.e.
sets A such that R0

1(A) has no minimal elements, [1] and [15] and there
exist also infinite families of c.e. sets with trivial Rogers semilattice. In
view of these well known facts of the classical theory of numberings, the
following question seems to be of some interest.

Question 1. Does there exist a computable infinite family A of c.e.
sets such that R0

1(A) is non-trivial and distributive? Does there exist a
computable infinite family A of c.e. sets such that R0

1(A) is non-trivial
and weakly distributive?

4. Distinguishing Rogers semilattices of infinite
families

Having seen that the Rogers semilattice R0
n+2(A) is always elemen-

tarily different from R0
n+2(B) when A is finite, and B is infinite, what

about elementary differences between Rogers semilattices of distinct in-
finite families?

Theorem 4.1. For every n there exist Σ0
n+1– computable infinite fami-

lies A and B such that their Rogers semilattices R0
n+1(A) and R0

n+1(B)
are not elementary equivalent.

Proof. It is immediate to see that for every n there are infinite Σ0
n+1–

computable families with universal numberings. It suffices to take for
every n the family of all Σ0

n+1 sets. Then the standard numbering ρ(e) =
W 0(n)

e is universal in Com0
n+1(Σ

0
n+1).

On the other hand, there are infinite Σ0
n+1– computable families with-

out universal numberings. This fact follows easily from straightforward
relativizations of known result of S.Marchenkov [11] that every non-
trivial Rogers semilattice of a family of total computable functions has
no greatest element.

In Theorem 4.1, instead of the quoted result by Marchenkov, one
could use also the following fact of the theory of numberings which is an
immediate consequence of the Lachlan’s paper [8]: The family F of all
finite sets has no computable principal numbering.

This family allows also to exhibit Rogers semilattices which are not
elementarily equivalent with respect to 60(i) , for every i ≤ n.
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Theorem 4.2. For every n there exist Σ0
n+1– computable infinite fami-

lies A and B such that their Rogers semilattices R0,0(i)

n+1 (A) and R0,0(i)

n+1 (B)
are not elementary equivalent for every i ≤ n.

Proof. Fix any i ≤ n. Let F ® {F | F is a finite set}. It is imme-
diate to see that F is Σ0

n+1– computable for every n. Assume that
α ∈ Com0

n+1(F). We will show that there exists β ∈ Com0
n+1(F)

such that β 
0(i) α. We begin with building a numbering γ such that
range(γ) ⊆ F and γ 
0(i) α, by stages. For every e, the requirements
for building γ are

Re : ϕ0(i)

e total ⇒ (∃x)(γ(x) 6= α(ϕ0(i)

e (x))).

We will work with a given 0(n)– computable approximation {αs(x)}x,s∈IN

to the numbering α.
If at stage s + 1 we do not explicitly define γs+1(x) for some x then

γs+1(x) = γs(x).

Stage 0) For all e define γ0(e) ® ∅.
Stage s + 1) Consider all e ≤ s such that

ϕ0(i)

e,s (e) ↓ (say ϕ0(i)

e,s (e) = y);

γs(e)) ⊆ αs(y).

For each such e, choose z /∈ αs(y), and define γs+1(e) ® γs(e) ∪ {z}.
Finally let γ(x) ®

⋃
s γs(x). It is now easy to see that the numbering

β ® α⊕γ has the desired properties. First of all β is Σ0
n+1– computable,

since γ is Σ0
n+1– computable by construction; range(β) = F since α 6 β;

and finally β 
0(i) α since γ 
0(i) α.
Thus, as suitable families A and B, we could consider the family F

and the family Σ0
n+1 of all Σ0

n+1– sets, respectively.

Remark 4.1. The Rogers semilattice R0,0(i)

n+1 (A) of any finite family
A ⊆ Σ0

n+1 consists of a single element for every i > n and, therefore, all
such semilattices are elementary equivalent.

5. Isomorphism types
Finally we show that the isomorphism type of Rogers semilattice

R0
n+1(A) of an arbitrary Σ0

n+1– computable family A may be very dif-
ferent from that of R0

m+1(B) of some Σ0
m+1– computable family B, for

distinct n and m.
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The following three lemmas and the notion of an X– computable
Boolean algebra play a key role in establishing this claim. Recall (see
[7]) that a Boolean algebra A is called X– computable if its universe,
operations, and relation are X– computable.

Lemma 5.1. Let γ and δ be Σ0
n+1– computable numberings of a family

A. If [γ, δ] is a Boolean algebra, then it is 0(n+3)– computable.

Proof. Given n, A, γ, and δ as in the hypothesis of the lemma, we first
observe that by (4) and (5) of Lemma 2.2, [3], there exists a c.e. set C
such that γ ≡ δC and

[γ, δ] = {deg(δX) | X c.e. and X ⊇ C}.
For every i, let Ui ® C ∪Wi. This gives an effective listing of all c.e.
supersets of C. By Lemma 2.2, [3], (1b), for every i, j, we have δUi 6 δUj

if and only if

∃p[∀x(x ∈ Ui ⇒ ∃y(ϕp(x) = y & y ∈ Uj))
& ∀x∀y(x ∈ Ui & ϕp(x) = y ⇒ δ(x) = δ(y))]

Since δ ∈ Com0
n+1(A), this implies that δUi 6 δUj is a Σ0

n+3– relation in
i, j.

Let us consider the equivalence η on IN defined by

(i, j) ∈ η ⇔ δUi 6 δUj & δUj 6 δUi .

Let B ® {x | ∀y(y < x ⇒ (x, y) /∈ η)}. Define a bijection ψ1 : B −→
[γ, δ], by letting ψ1(i) = deg(δUi), for all i ∈ B. It is evident that
ψ1 induces in R0

n+1(A) a partially ordered set B which is a Boolean
algebra isomorphic to [γ, δ]. The interval B is a 0(n+3)– computable
partial ordered set. It follows from [7, Theorem 3.3.4] and [4], that
the Boolean algebra B relatively to the Boolean operations is 0(n+3)–
computable too.

Lemma 5.2 (L. Feiner). Let F be a computable atomless Boolean alge-
bra. Then for every X there is an ideal J such that J is X– c.e. and the
quotient F/J is not isomorphic to any X– computable Boolean algebra.

Proof. See [6].

Below, we will use the following notations. For a given c.e. set A,
{Vi | i ∈ IN} denotes an effective listing of all c.e. supersets of the set
A defined, for instance, by Vi ® A ∪Wi, for all i. We will assume for
convenience that V0 = A. As in [3], εA stands for the distributive lattice
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of the c.e. supersets of A. For a given c.e. set V ⊇ A, let V ∗ denote the
image of V under the canonical homomorphism of εA onto ε∗A (i.e. εA

modulo the finite sets), and let ⊆∗ denote the partial ordering relation
of ε∗A. Obviously, if J is an ideal in εA then J∗ ® {V ∗ | V ∈ J} is an
ideal in ε∗A.

As is known (see, for instance, [7]), if A is a Boolean algebra and
J is an ideal of A, then the universe of the quotient Boolean algebra
A/J is given by the set of equivalence classes {[a]J | a ∈ A} under the
equivalence relation ≡J given by

a ≡J b ⇔ ∃c1, c2 ∈ J(a ∨ c1 = b ∨ c2),

and the partial ordering relation is given by

[a]J ≤J [b]J ⇔ a− b ∈ J.

where a− b stands for a ∧ ¬b.

Lemma 5.3. Let B be a Σ0
m+1– computable family, β ∈ Com0

m+1(B),
and let A be any c.e. set such that ε∗A is a Boolean algebra. Let ψ2 :
εA −→ [βA, β] be the mapping given by ψ2(Vi) = deg(βVi) for all i, and
let I be any ideal of εA. Then ψ2 induces an isomorphism of ε∗A/I∗ onto
[βA, β] if and only if for every i, j

(1) Vi ∈ I ⇒ βVi 6 βA;

(2) Vi − Vj /∈ I ⇒ βVi 
 βVj (where Vi − Vj ® (Vi \ Vj) ∪A.)

Proof. Let A,B, β, ψ2 be given. The “only if” direction is immediate.
As to show that the conditions stated in the lemma are also sufficient,
we can argue as follows. By (4–5) of Lemma 2.2, [3], we have that every
γ with βA 6 γ 6 β is of the form γ ≡ βC for some c.e. set C ⊇ A. Then
the mapping induced by ψ2 is clearly onto.

Suppose now that [V ∗
i ]I∗ ⊆∗I∗ [V ∗

j ]I∗ . Then V ∗
i − V ∗

j ∈ I∗. But
V ∗

i − V ∗
j = (Vi − Vj)∗, with Vi − Vj a c.e. superset of A, since ε∗A is a

Boolean algebra. Then Vi − Vj ∈ I. On the other hand,

Vi = (Vi − Vj) ∪ (Vi ∩ Vj).

Now, by (1), βVi−Vj 6 βA, so by (3) of Lemma 2.2, [3], βVi ≡ βVi∩Vj ,
hence βVi 6 βVj by (2) of Lemma 2.2, [3], as Vi ∩ Vj ⊆ Vj .

Finally, if [V ∗
i ]I∗ 6⊆∗I∗ [V ∗

j ]I∗ then Vi − Vj /∈ I, and therefore by (2)
βVi 
 βVj .

Theorem 5.1. For every n there exist m ≥ n and a Σ0
m+2– computable

family B such that no Rogers semilattice R0
n+1(A) of any Σ0

n+1– com-
putable family A is isomorphic to R0

m+2(B).
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Proof. Let n be given. By Lemma 5.1, all Boolean intervals of R0
n+1(A)

are 0(n+3)– computable Boolean algebras. Therefore, to show the theo-
rem it is sufficient:

(1) to find a suitable number m ≥ n + 3;

(2) to consider a computable atomless Boolean algebra F and an ideal
J of F as in Feiner’s Lemma such that J is c.e. in 0(m) and F/J is
not isomorphic to any 0(m)– computable Boolean algebra,

(3) to find a Σ0
m+2– computable family B and Σ0

m+2– computable num-
berings α and β of B such that the interval [α, β] of R0

m+2(B) is a
Boolean algebra isomorphic to F/J .

We will determine the number m later. First, we consider item (2)
above. Let F be a computable atomless Boolean algebra. According to
a famous result of Lachlan, [9], there exists a hyperhypersimple set A
such that ε∗A is isomorphic to F. We fix such a set A.

We refer to the textbook of Soare, [14], for the details of a suitable
isomorphism χ of ε∗A onto F. We only notice that starting from a com-
putable listing {b0, b1, . . .} of the elements of F one can find a listing
{B0, B1, . . .} of a subfamily of the family εA such that ε∗A = {B∗

0 , B∗
1 , . . .},

χ(B∗
i ) = bi, and the relation “x ∈ Bi” is Σ0

3.
We will use the techniques for embedding posets into intervals of

Rogers semilattices which have been developed in [3]. Let J be any
0(m) - c.e. ideal of F. Then I∗ ® χ−1[J ] is an ideal of ε∗A and F/J is
isomorphic to ε∗A/I∗. So, instead of the Boolean algebra F/J we can just
embed ε∗A/I∗.

Let now I ® {Vi | V ∗
i ∈ I∗}. Obviously, I is an ideal of εA, and

I = {Vj | ∃i(Vj =∗ Bi & bi ∈ J)}.
A simple calculation shows that the relation “Vj =∗ Bi”, in i, j, is Σ0

5.
Now, if we take m ® max{4, n + 3} then I is Σ0

m+1, as J is 0(m) -
c.e. Finally, we choose J to be an ideal of F satisfying the conclusions
of Lemma 5.2, and we let I∗ ® χ−1[J ] as above.

It should be mentioned a very useful property of the Boolean algebra
ε∗A which we will use in our construction of B: if Vi /∈ I then Vi − V /∈ I
for every V ∈ I and, in particular, Vi \V is an infinite set. This property
can be easily verified by contradiction using the following equality:

Vi = (Vi − V ) ∪ (Vi ∩ V ).

We will now construct a Σ0
m+2– computable family B, and a numbering

β ∈ Com0
m+2(B) such that the interval [βA, β] is isomorphic to ε∗A/I∗.
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The requirements. First of all, we will construct B and β so that
β[A] = B to guarantee that βA is a numbering of the whole family
B. Then in view of Lemma 5.3 we must satisfy, for every p, i, j, the
requirements:

Pi : Vi ∈ I ⇒ βVi 6 βA

Ri,j,p : Vi − Vj 6∈ I ⇒ βVi 
 βVj via ϕp

where by “βVi 
 βVj via ϕp” we mean that ϕp does not reduce βVi to
βVj in the sense of Lemma 2.2(1b), [3].

The construction. We use the oracle 0(m+1) in our construction to
answer questions such as “Vi ∈ I?” and to verify some properties of c.e.
sets and functions. We fix an infinite computable subset R of the set A
and a computable partition of R into disjoint infinite computable sets
Ri, i ∈ IN.

Initially we define an auxiliary Σ0
m+2– computable numbering β1 of

B and an auxiliary 0(m+1)– computable function r(i, t). If at the end of
any stage t + 1, βt+1

1 (x) or r(x, t + 1) have not been explicitly modified
then they are understood to retain the same value as in the previous
stage.

Stage 0) Let β0
1(x) = ∅, r(i, 0) = 0 for all x, i.

Stage t + 1) Let t = 〈i, j, p〉. Find k such that Vk = Vi − Vj (we can do
it with oracle). Check the following conditions:

(i) Vk 6∈ I;

(ii) Vi ⊆ dom(ϕp) and ϕp[Vi] ⊆ Vj .

If one of (i) or (ii) fails then do nothing. Otherwise let Ut ®
⋃{Vs : s ≤

t & Vs ∈ I}. Notice that A ⊆ Ut since we have chosen V0 = A. Choose
the least element x in the set

{y | Vi \ Ut & ϕp(y) 6= y} \ {y | βt
1(y) 6= ∅}.

(See (3) below for the existence of such an x). Take a new number a
and define βt+1

1 (x) = βt
1(x) ∪ {a}. If ϕp(x) ∈ Rm and m > t then define

r(m, t + 1) = max{r(m, t), ϕp(x)}. Go to the next stage.
Obviously, β1 is a Σ0

m+2– computable numbering of the family B ®
{β1(x) | x ∈ IN}.

Properties of the construction. The construction satisfies the
following properties:
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(1) For every x ∈ R, β1(x) = ∅. Each non-empty set of B has exactly
one index relative to β1.

(2) For every m, i, if i ≥ m then r(m, i) = r(m, m + 1).
Properties (1),(2) are evident.
(3) For every i, j, k, p, t, if Vk = Vi − Vj and conditions (i),(ii) above

hold then the set {x | Vi \ Ut & ϕp(x) 6= x} is infinite.
Indeed, Vi \ Vj is infinite since Vk = (Vi \ Vj) ∪ A and Vk /∈ I by (i).

Condition (ii) implies that ϕp(x) 6= x for all Vi \ Vj .
So, if we assume that the set {x | Vi\Ut & ϕp(x) 6= x} is finite then we

obtain that Vi \ Vj ⊆∗ Ut and, hence, Vk ⊆∗ Ut. This is a contradiction
with (i) since Ut ∈ I.

Let us now define a numbering β ∈ Com0
m+2(B). Let β(x) ® β1(x)

for all x ∈ R. For every i ∈ IN, let ψi be a partial computable one-to-one
function from {x ∈ Ri : x > r(i, i + 1)} onto Vi \ R. For every i and
every x ∈ Ri, let

β(x) ®
{

β1(ψi(x)) if x > r(i, i + 1) and Vi ∈ I ,

∅ otherwise.

For every i if Vi ∈ I then βVi 6 βR via the partial computable function
ϕ such that for every x ∈ Vi

ϕ(x) ®
{

ψ−1
i (x) if x ∈ Vi \R,

x if x ∈ R.

We are using again (1b) of Lemma 2.2, [3], so all requirements Pi are
satisfied.

We have β[A] = β[N] since for every x 6∈ A, one can find i0 such that
Vi0 = A∪{x} ∈ I. The requirement Pi0 is satisfied, therefore, βVi0

6 βA,
and, in particular, β(x) ∈ β[A].

Finally, let us check the requirements Ri,j,p. Let i, j ∈ N and Vi−Vj 6∈
I: we want to show that βVi 66 βVj via ϕp. Let t ® 〈i, j, p〉. Consider
the number x chosen at stage t + 1. Notice that x 6∈ A, ϕp(x) 6= x and
β(x) = β1(x) 6= ∅.

If ϕp(x) 6∈ R then β(x) 6= β(ϕp(x)) by property (1) since β and β1

coincide on R.
Let now ϕp(x) be in Rm for some m. If Vm 6∈ I, or Vm ∈ I but

ϕp(x) ≤ r(m,m + 1), then β(ϕp(x)) = ∅, and, hence, β(x) 6= β(ϕp(x)).
If m > t then by construction ϕp(x) ≤ r(m,m+1) and, again we have

β(x) 6= β(ϕp(x)).
It remains to consider the case when m ≤ t, Vm ∈ I, and ϕp(x) >

r(m,m+1). In this case we have ϕp(x) ∈ dom(ψm) and, by construction
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of β, β(ϕp(x)) = β1(ψm(ϕp(x))). Since range(ψm) ⊆ Vm, x ∈ Vi \ Ut,
and Vm ⊆ Ut, it follows that x 6= ψm(ϕp(x)). Now (1) implies inequality
β(x) 6= β(ϕp(x)).
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