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One of the main tasks of the theory of numberings is the study and
the characterization of algebraic and elementary properties of the Rogers
semilattices of the families of numberings under investigation. The study
of Rogers semilattices was started by H. Rogers, [20]. In the theory of
numberings, see [9], the notion of a Rogers semilattice plays a fundamen-
tal role. Rogers semilattices are used to classify properties of computable
numberings for different families.

For the basic notions and notations relative to arithmetical number-
ings the reader is referred to [4]. For unexplained terminology and no-
tations relative to computability theory, our main references are the
textbooks of A.I. Mal'tsev [18], H. Rogers [21] and R. Soare [23]. For
the main concepts and notions of the theory of numberings we refer to
the book of Yu.L. Ershov [9].

This paper intends to continue the program of research initiated by
S. Badaev and S. Goncharov in [2]. In particular we address some of the
possible questions on how complicated the Rogers semilattice Rg 1(4),
of a given XV 11— computable family, can be.

1. The cardinality of Rogers semilattices

The question of the cardinality of the Rogers semilattices of X{—fam-
ilies was settled by Khutoretsky, [14].

Theorem 1.1 (A. Khutoretsky). Let A be a 39— computable family.
If the Rogers semilattice R(A) contains at least two distinct elements
then it is infinite.

Proof. See [14]. O

Indeed, Khutoretsky shows that it is possible to embed a linear or-
dering of type w into R{(A) above any non-greatest element of RY(A).
Subsequently Badaev, [1], was able to prove that in every nontrivial
Rogers semilattice RY(A), for every non-greatest element one can em-
bed a chain with no endpoints containing that element, and for every
non-minimal element one can embed a chain with no endpoints contain-
ing that element.

The following result, [22], shows that R{(.A) is never a lattice, if R{(A)
is not trivial.

Theorem 1.2 (V. Selivanov). Let A be a XV computable family of
c.e. sets. If RV(A) contains at least two elements then it is not a lattice.
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Proof. See [22]. O

For Y9 families, both Theorem 1.1 and Theorem 1.2 answer questions
posed by Ershov, [6]. The corresponding questions for X0, ,— computable
families have been answered by Goncharov and Sorbi, [12].

Theorem 1.3 (S. Goncharov, A. Sorbi). If a 30, ,— computable fam-
ily A contains at least two elements then the Rogers semilattice R ,(A)
is infinite and is not a lattice.

Proof. See [12]. The proof consists of two cases, distinguishing whether
we deal with a finite family or an infinite %0 49— computable family
A. We notice that if A is infinite, then the claim follows also from
Badaev and Goncharov’s result [3] and from Theorem 1.3, [4], which
reads that for every infinite %0 o~ computable family A the correspond-
ing Rogers semilattice R, ,(.A) has infinitely many minimal elements.
Thus RY 42(A) is obviously infinite and not a lattice since no pair of
distinct minimal elements can have greatest lower bound.

The original proof of this claim given in [12] is however quite differ-
ent. We wish to sketch this proof here since it employs a method for
constructing numberings with some desired property which promises to
have applications also in different contexts.

So, let A be a £ ,— computable infinite family. Let o € Com) , ,(A),
and let a, b be such that a(a) # a(b). We will construct a family {o; }iew
of 39 ,— computable numberings of A, such that for no 8 € Com? , ,(A)
do we have 3 < o, aj if i # j. Notice that this implies that RY,(A) is
infinite and not a lattice.

By Lemma 1.1, [4], let { By ¢}k ten be a 0(™— computable sequence of
finite sets (given according to their canonical indices) such that for every
k, a(k) = lim ;B ;. In constructing the numberings «;, i € IN, first of
all we will ensure that each «; is a numbering of a subfamily of A by
arranging that for every x there exists k such that o;(z) = lim By .
Then we aim to satisfy the following requirements, for every ¢, j, k,, y,
with ¢ #£ j:

P ik : s 1 total = (3z)(ai(pr(@)) # oj(ei(w))
Quy : (32)(a(y) = ai(@)).
We observe that satisfaction of all ); ,’s ensures that each o; is a num-
bering of the whole family A.

In the course of the construction below, at step ¢, for every i,k we
define a finite set Dj , so that eventually
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We will arrange that the sequence {D}C t} k,telN 1S 0(”)fcomputable. Then
by Lemma 1.1, [4], each «; is £Y_ ,— computable.

The constructiqn is by stages. Suppose that Di’t = B, and at stage
t+1, we define D} , .| = By 441 for 2’ # x. Then we say that at t+1 we
redefine D:; if we do not redefine D}AC at stage £+ 1 then it is understood
that D, = Bo+1.

We arrange the requirements in an effective priority listing

Ry<Ri<...,

in which each P; ;1, © # j, and each @);, appears exactly once.

At stage t we define also the value of a restraint function r(h,t) for
every requirement R, and we declare some requirements temporarily
satisfied or temporarily unsatisfied.

Stage 0) Define D?O = By, for every i,k € IN. Let r(h,0) = —1, for
every h € IN. All requirements are temporarily unsatisfied.

Stage t + 1) We say that a requirement Ry, requires attention at t+ 1, if
R;, is temporarily unsatisfied at the end of stage ¢, and there is a number
x such that i (), pr¢(x) > r(h,t) if Ry = P;j -

Choose the least h such that Ry requires attention.

» if Ry = P; 1, then choose some such z and define

i —
D@y t41 = Bagr

J P
D<Pl (z)t+1 7 Bt

(Notice that if we never redefine D’ and D’ at any later
on () ei(z)
stage then

%

o;i(pr(2)) =lim D,

Nt lim ;Bas = a(a),
aj(@i(@) = lim D | = lim , By, = a(b)
hence ai(or(2)) # a;(ei(x)).) Set
F( 4 1) = max{ipa(z), (2}
for all b’ > h.
= If R, = Q;, then choose x = r(h,t) + 1 and define
D41 = Byt

Set r(h,t + 1) =z, for all K’ > h.



Algebraic properties )

Whatever the case, declare Ry, temporarily satisfied at the end of stage
t 4+ 1, declare Ry temporarily unsatisfied at the end of stage t 4+ 1, for
all > h.

This ends the construction. Notice that r(h,t) and the function as-
signing to each triple i, k,t a number x such that D} , = B, ; are in fact

computable, so {Dli:,t}k,telN is 00— computable. For the verification, a
standard inductive argument shows that each requirement requires at-
tention only finitely many times, and thus for every i, k we redefine D,
only finitely often. We pause only to point out where the assumption
that A is infinite is needed in this argument. Consider R; = P,
and suppose that to is the least stage such that no Ry with b/ < h
requires attention at any t > to. Thus r(h) = lim;r(h,t) exists, being
r(h) = r(h,ty), and, starting from stage to, R}, is temporarily unsatisfied
until it eventually requires attention. Now, if 3 € Com!_,(A) is such
that 3 = ajopy and B = a0 (with ¢y, ¢ total) then since A is infinite
we have that both ¢ and ¢; have infinite ranges, so that eventually we
find x such that ¢g(x),¢;(z) > r(h). At this point R} requires atten-
tion (for the last time), we act accordingly on Ry, D;k () and DZD (@)
never again redefined, and thus, as already remarked, our action ensures
that 8 # a; 0 ¢ or B # «a; o ¢, and therefore the requirement Ry, is
eventually met. (Notice that a requirement of the form P, can be
met even if it is eventually always temporarily unsatisfied, for instance
if 1 and ¢; are not both total.)

are

Remark 1.1. Notice that the relation in i,z,y “z € «;(y)” is itself
S0

Let us consider the case in which A is finite, say A = {Ao,..., Ax}.
If C' is a proper c.e. subset of IN then define

A$+2 1fl’<k3—1,
af(z) = { Ay ifr>k—landz+1-keC
A ifr>k—landz+1—-k¢C.

If now 8 = o€ o f, where f is computable, then one easily shows that
B = aP, where D = f~1[C]. Hence every principal ideal of the c.e. m—
degrees is isomorphic to an ideal of RY, ,(.A). The result then follows in
this case from the fact that the semilattice of the c.e. m—degrees is not
a lattice, and that it has infinite ideals, see [7] and [17]. O

Apparently, classical computability may seem very close to ¥ ! — com-
putability (the classes X! refer to the finite levels of the Ershov hierar-
chy of the AJ sets), since classical computability is definable by means
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of Y-formulas of first order arithmetic, while X!~ computability is de-
finable by means of Boolean combinations of these formulas.

Unfortunately, the methods employed in Theorems 3.1 — 3.3 do not
seem to apply to the case of X' computability. In this regard, both Er-
shov’s questions — on cardinality of Rogers semilattices and on whether
or not a Rogers semilattice is always a lattice — are still open. It looks
appropriate to raise these questions here (see also [2]). Consider com-
putable numberings of families of Z;lrl sets in the sense of Definition
1.1, [4]:

Question 1. Let A C E;h be such that R 1, (A) contains at least two

n+1
elements. Is R, !, (A) infinite?

Question 2. Let A C Z;}H be such that R;}FI(A) contains at least two
elements. Is R;}H(A) a lattice?

2. Intervals in Rogers semilattices

We first introduce some preliminary notations and remarks. If o and
0 are E% 41— computable numberings of a family A, then we denote by
[, 8] the closed interval of RY | (A),

[, B] = {deg(v) | deg(a) < deg(v) < deg(B)}-

We also let

(a, B) = {deg(7) | deg(a) < deg(y) < deg(B)}-

Moreover, we will denote by 3 the principal ideal of RO 1 (A),

B = {deg(y) | deg() < deg(8)}.

Finally, we let 3 = '\ {deg(3)}.
In the rest of the paper, the following Definition 2.1 and Lemma 2.2
will play fundamental role.

Definition 2.1. Let § be a numbering of any family A, and let C be
any nonempty X—c.e. set. For every X—computable function f such
that range(f) = C, define o x = Bo f. If C is c.e. we simply write B¢
instead of Bco.

Then ¢ x is a numbering of some subfamily A4y C A. Clearly, for
every pair of X—computable function f and ¢ such that range(f) =
range(g) = C, we have

Bof=xpfoy.
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Thus, in contexts in which we are interested in comparing numberings
with respect to <x, we are justified in writing B¢ x without mentioning
any particular X—computable function f such that range(f) = C.

The following lemma holds:

Lemma 2.1. For every triple of sets X, Y, Z such that X ®Y <p Z and
for every pair of numberings 3,7 we have:

(1) if A is X—c.e. then fax <x 03;
(2) if Ais X—c.e., B is Y—c.e. then the following are equivalent:
(a) Bax <z BBY;

(b) there exists a partial Z— computable function ¢ satisfying the
conditions: dom(p) D A, p(A) C B and for all x € A,

Blx) = Ble(x));

(c) there exists a Z—c.e. equivalence relation n such that

Va,y((z,y) en& a#y=x,y € AUB),

Va,y((z,y) € n = B(z) = By)),
Vo € AJy € B((z,y) € n);

(3) if Ais X—c.e., Bis Y—c.e., and A C B then fax <z OBY;

(4) ZfA 78 X — c.e., B is Y-c.e. then ﬁAUB,Z =y ﬁA,X @ﬁgﬁg;

(5) if Ais X—c.e., Bis Y—c.e., and if Bax <z BBy, then Bpy =z
BAuB,Z;

(6) if v <x [ then there exists an X—c.e. set A such that v =x fax;

(7) if v <x B, and v =x Bax, for some X—c.e. A, then for every o
such that v <x a <x [ there erists an X—c.e. set B with A C B
and o =x Bpx;

(8) if v <x B via some X~—computable function f, then v <z Bay,
for every Y—c.e. set A such that A D range(f);

(9) if A and B are X—c.e. and for some a € B, f[A] = {B(a)} then
Bau,x =x BB,X;

(10) if A and B are X—c.e., A is finite and S[A] C [B[B] then we have
5AuB,x =X /BB,X~

Proof. We now show the various items, one by one.

(1) Immediate.
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Let f and g be an X—computable function and a Y—computable
function, respectively, such that A = range(f), B = range(g).

(a) = (b). Assume that 84 x <z [py via some Z-computable
function h. Then fo f = 3o goh. Define

o(z) = {g(h(“y (x=f(y))) ifzxzecA,

T otherwise.

Then ¢ is the desired partial Z—computable function. (Notice that
dom(p) = A.)

(b) = (c). Let n be the Z—c.e. equivalence relation generated by

the set of pairs
{(z,p(x)) |z € A}.

It is easy to see that n satisfies (c).

(c) = (a). Let n satisfy the conditions in (c); let n = J, 7® where
{n°}sen is a Z—computable sequence of finite sets approximating
1. Define a function h as follows:

h(z) = mo(us((f (@), g(mo(s))) € n™ ).

It is now easy to see that h is a Z—computable function reducing
Bax to BBy-

This item follows from (2b) taking ¢ to be the identity embedding

of A into B, i.e.
x ifx €A,
p(r) = .
T otherwise.

Notice that ¢ is in this case partial X—computable.

Claim (3) implies that Sax <z Baupz and ey <z BauBz.
Therefore, 4 x © OBy <z [auB.z-

To prove that Saupz <z Bax © Bp,y and let f; be an X com-
putable function, fo a Y—computable function and f a Z—com-
putable function whose ranges are A, B and A U B respectively.
By the Reduction Theorem there exist Z—c.e. sets A; and B;
such that A1 C A, B C B, AyNB; =0 and A1 UB; = AUB.
Then f~1(A;)Uf~Y(By) = Nand f~1(A41) N f~1(B1) = 0. Hence,
f7 (A1), f~1(By) are Z— computable sets. Fori = 1,2, let g;(z) =
uy(fily) = f(z)) and define

o(z) = 2g1(x) if z € f~1(Ay),
- 2g2(l‘) +1 ifze fﬁl(Bl) ’
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9)

(10)

It is easy to see that B4up z is reducible to 84 x © Bpy by the Z—
computable function g.

Immediately from (4).

A numbering v <x B can be considered of the form v = (4 x,
where A = range(f), and f is any X—computable function that
reduces v to 3.

This follows from (5) and (6).

Let v = B o f, where f is some X—computable function, and let
A D range(f) be any Y—c.e. set, with say A = range(g) and g is
Y- computable. Then

h(z) = py (9(y) = f(2))
is the desired Z- computable function that reduces v to 84 v.

Let n be the least X —c.e. equivalence relation containing the set

{(z,a) | = € A}. Then by (2), Bax <x Bpx. Thus by (5),
Baupx =x BB x, and statement (9) is proved.

This is a consequence of (9).

O]

Particularly important is the case in which X =Y = (). In this case
the previous lemma gives:

Lemma 2.2. For every pair A, B of c.e. sets and for every pair of
numberings «, 3, we have

(1) The following are equivalent:

(a) Ba < BB;
(b) there is a partial computable function ¢ satisfying dom(p) D
A, 9(A) C B and for all z € A, 3(x) = B(p(x));

(c) there exists a c.e. equivalence relation n such that

Ve, y((z,y) En&z#y=z,y€ AUB),

v, y((z,y) € n = B(x) = B(y)),
Vo € Ay € B((z,y) € n);

(2) if AC B then B4 < Bp;
(3) if Ba < BB, then Bp = Baus;
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(4) if a« < B then o = B¢ for some c.e. set C;

(5) if « < B, and o = B, for some c.e. set C, then for every v such
that a < v < 0 there exists a c.e. set D with C C D and v = Bp;

(6) Baus = Ba ® Bp;

(7) let U be any set; if v <u [ via some U-computable function f,
then v <u Bc, for every c.e. set C such that C D range(f).

(8) if for some a € B, B[A] = {B(a)} then Baup = Bs;
(9) if A is finite set and B[A] C B[B] then Baus = BB
Proof. The statements follow immediately from the previous lemma. [

We will consider mainly intervals and ideals of Rogers semilattices
RO (A) with m > 2. It should be mentioned that the principal ideals
of R{(A), in the case of finite families A of c.e. sets, were completely
described by Yu.L. Ershov and I.A. Lavrov in [8]. V.V. V’jugin studied
initial segments of R{(.A) for some infinite families A C %9 (see [24] and
[25]). A first insight into the ideals of RY, (A), for m > 2, is provided by
the following theorem.

Theorem 2.1 (S.S.Goncharov). Let By1 be the finite Boolean alge-
bra with k 4+ 1 atoms. Then

(1) for every infinite £ ,—computable family A, RY ,(A) contains

an element deg() such that the subsemilattice 3 is isomorphic to

Biy1 \ {0};
(2) for every finite 22_5_27 computable family A, R2+2(A) contains an

element deg((3) such that the subsemilattice [ is isomorphic to
Brt1-

Proof. Let Ry, R1, ..., Ry be infinite computable sets such that

Uri=N and RiNR; =0ifi#j.

i<k

For every i < k let f; be a computable 1-1 function such that range(f;) =
R;. We will consider the Boolean algebra B as the subalgebra of the
Boolean algebra of all subsets of IN, generated by Ry, Ry, ..., Rg.

(1) Let A be an infinite Z?Hrf computable family, and let Ay, ..., Ag
be distinct elements of A. Choose o € Com?,(A), and let M be a
maximal set. For every i < k, let M; = f;[M], and let

Ri\ M; = {m} <m! <mh < ...}
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Define a numbering 3 of A as follows: For every xz € IN, find ¢ < k such
that z € R;, and let

a(j) ifx=m

A; if x € M;,
j

Following the proof of Theorem 1.3, [4], one easily shows that for every
i < k, Bg, is a minimal 22 4o~ computable numbering of A, and g, &
Br; if i # j. Lemma 2.2(6) implies that

B = BRoURU...R, = Bro © Bry © -+ © BR,-

We will now prove that 3 is isomorphic to By \ {0}. It is sufficient to
show that for every v € Com) ,(A), if v < 3 then
VE/BRl'O GaﬁRil eaeaﬂf{zs

for some unique sequence 0 < ig < i1 < ... <15 < k.
So, let v < 8 and choose by Lemma 2.2(4) some c.e. set @) such that
7 = Bg. Denote by Iy and I; the sets

In={i|i<k&QnN(R;\ M) is infinite}
and
L = {0,1,...,k}\[0,
respectively. Note that Iy # ) since A is infinite. Define
Qo= | J®Ri\ M) nQ,
i€lp

Q= @R\ M)NQ,
i€l

Q= | J@nMy),
i€l

Qs = [J(QuQo) N Ry).
i€y

Since M is maximal, it follows that Q) is finite. Then, by Lemma 2.2(9),

Boug, = Bg-

We have Q U Qg = Q1 U Q2 U Q3. The set Q1 is finite by choice of Iy,
therefore, by Lemma 2.2(9), 8o = Bg,uqs- Since G]Q N M;] C {A;} for
all i < k it follows by Lemma 2.2(6) and (8) that

ﬂQ E/8Q3 EﬂRiO EBﬂRil ®“'®ﬂRi57
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where ig,41,...,1s are all the elements of Iy. Thus, the ideal B of the
semilattice RY, ,(A) is isomorphic to Bjy11 \ {0}.
For uniqueness it is sufficient to show that, fori < k,

Bri £ Bro ® ... ® PR,y D PBRiyy D ... © PR,

By Lemma 2.2(6) it is sufficient to show that Bg, £ Br, where R} =
U#i R;. Let Bo f; = 30goh where g and h are computable functions
and range(g) = R;. Then (g o h)[M] C U, (R; \ M;) and (g o h)[M]
is finite since (J;;(R; \ M;) is immune. But this implies that M is
computable, contradicting the choice of M. Thus, the ideal B of the
semilattice RY ,(A) is isomorphic to By \ {0}.

(2) If A is finite then, as in Theorem 1.3, we can easily show that
RY.5(A) contains any principal ideal of the c.e. m—degrees. It follows
from a result of Lachlan, [17], that there exists a c.e. set such that the
principal ideal of m—degrees generated by the m—degree of this set is
isomorphic to By 1. ]

We are now going to exhibit a great variety of intervals and ideals of
RO 42(A), for every n > 0. We still need some definitions and notations.

Definition 2.2. Let € denote the poset of all c.e. subsets of w with
respect to inclusion. As is well known, € is a bounded (i.e. with least
and greatest element) distributive lattice.

Let €* denote the bounded distributive lattice obtained by dividing e
modulo the ideal of all finite sets.

If X is any c.e. set, then ex denotes the principal filter of € gen-
erated by X, i.e. the collection of all c.e. supersets of X: Clearly ex
is still a bounded distributive lattice. Likewise, €% denotes the bounded
distributive lattice obtained by dividing €x modulo the finite sets.

The following three lemmas play a key role in understanding the con-
structions in the proofs of several theorems in the sequel of the paper.

Lemma 2.3. Let o, 3 be Egﬁfcomputable numberings of a family A.
Then the mapping ¢ : € — RO, ,(A) defined by ¢, (C) = deg(a® Bc)
for every C € ¢, induces an isomorphism from £* onto [, a @ [] if and
only if

(1) for every infinite C € ¢, fc & «;

(2) for every C1,Cs € ¢ if Cy \ Cy is infinite then Bc, £ Be, .
Proof. The conditions (1) and (2) are clearly necessary. As to sufficiency,
let (1) and (2) hold. Clearly, by (2) and (9) of Lemma 2.2, if C; C* Cy
then o @ Bc;, < a® Be,-
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Moreover, we can use (5) and (6) of Lemma 2.2 to show that the
mapping induced by 7 is onto. In fact, let v be a numbering of A
such that « < v < a® ( and let (' be the set of all even numbers.
Then a = (a ® §)¢,. By Lemma 2.2 (5), there exists a c.e. superset
Cy of the set C; such that v = (o @ )c,. Then by Lemma 2.2 (6),
(@@ B)oy, = (@® By, @ (a @ B)oy\¢,- Therefore v = a @ fp where
D={z:2x+1€Cy\ C1}.

We are only left to show that if C1\C5 is infinite then a® 8¢, € a®fe, .
For the sake of a contradiction, suppose otherwise, and let Cy \ Ca be
infinite and o @ B, < a @ Bc,. Then Bo, < a @ Be,. Let f be a
computable function such that range(f) = C1, and let g be a computable
function that reduces ¢, to a @ Bc,. Define

C3 = {f(z) | g(x) even}
Ci={f(z) | g(x) odd}.

Then C = C5UCy and C3NCy = . Clearly B¢, < a. If C3 were infinite,
then by condition (1) we would get B¢, € . Thus Cj is finite. But then
C1 =* Cy and thus, being B¢, < B¢,, we would have B¢, = B¢, < Beys
contradicting (2). O

Lemma 2.4. Let B be a E%_chomputable numbering of an infinite
family A such that every set of A has infinitely many ( -indices. Let
Yy e — RY,,(A) be a mapping defined as follows: ¢2(C) = deg(Bc),
C ee. Then

(1) 1o induces an epimorphism of upper semilattices from the semilat-
tice (e*\ {L},U*, C*) onto the ideal [ of the semilattice RO o (A)
if and only if for every infinite C € ¢, Bc is a numbering of the
whole family;

(2) 1o induces an isomorphism between (e*\{L},U*, C*) and RY ,(A)
if and only if for every pair of infinite sets C1,Cy € €, if C1 \ Co
is infinite then Bey, % Bey -

Proof. Let A and (3 be chosen as in statement of the lemma.

(1) Necessity is obvious (if the condition does not hold then 9 is
not well defined). For sufficiency we only need to show that )
preserves the binary operation and induces a mapping onto [3 . This
follows immediately from (4) and (6) of Lemma 2.2 (notice that
1o is well defined by (9) of lemma 2.2).

(2) Sufficiency is evident. Let us prove necessity. Let 1y induce an
isomorphism of (e*\ {L},U*, C*) onto RY,,(A) and assume that
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Bey, < Be, for some pair of infinite c.e. sets C, Cy such that C1\Ca
is infinite. Then by (3) of Lemma 2.2, 8¢, = Bc,uc,. Therefore,
9 [Cz] = 19 [01 U CQ] but Cy #* C1 U Cy. This is in contradiction
with the injectivity of the mapping induced by 9 on £*\ {L}.

O]

Lemma 2.5. Let A be a finite family of E?Hzfsets, and suppose that
for some 3 € Com?,,(A) and some finite set F' we have that B[F] = A.
Let o : e — RY_,(A) be defined as in the previous lemma. Then

(1) 1o induces an gpz‘morphz’sm of upper semilattices from (e}, U*, C*)
onto the ideal (3 of the semilattice RY_ ,(A);

(2) o induces an isomorphism between (g%, U*, C*) and RO, ,(A) if
and only if for every pair of sets C1,Cy € e, if C1 \ Cy is infinite
then ﬂol ;{ ﬂcz.

Proof. Let A, 3, and F be chosen as in statement of lemma.

(1) The mapping 12 is onto by (4) and (9) of Lemma 2.2 and preserves
the binary operation by (6) of the same lemma. (Notice that €7, =
e%).

(2) Similar to the proof of (2) in Lemma 2.4.

O

Theorem 2.2. Let A be a X0, ,— computable family. If o € Com? , ,(A)
is mot 0'—universal in Com,,(A) then there exists a numbering 3 €
Com2+2(¢4) such that the following conditions hold:

»  The interval [, & (] is isomorphic to €*;

» the ideal 3 is isomorphic to e*\{L} if A is infinite, and B is iso-
morphic to €* if A is finite family.

Proof. Let A and « be given as in the statement of the theorem. We
will construct the numbering 3 by stages. Let v € Com? 42(A) be such
that v o @, and let ay,as be two numbers such that v(a;) # v(a2).
Let {€ }+ew be a standard listing of all c.e. equivalence relations. Firstly
we will consider the case when A is infinite family.
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The requirements. In view of Lemma 2.3 and Lemma 2.4, we will
build a numbering § of A so as to satisfy the following requirements, for

every p,q,t:

P:f <o~
Qp : W, infinite = v <o Bw,
Ripq : Wy \ W, infinite = By, & Bw, via €

where we say that Sy, ;{ Bw, via € if € does not witness the reduction
of Bw, to Bw, in the sense of (1c) of Lemma 2.2.

We will satisfy P by building a 0’—computable function h such that
B = yoh. This feature of § (i.e. 5 <o ) will be used in the verification.

For every p we will satisfy @), by building, whenever W), is infinite, a
0’ computable function f, such that range(f,) € Wy, and v = B o f,.
Thus, by (7) of Lemma 2.2, v <o Bw,, which implies that Sy, is a
numbering of the whole family, and By, & a, otherwise v <¢/ a.

Finally, if W), \ W, is infinite then we will satisfy Ry, q by choosing
in the interval (k(t),k(t + 1)) — where k is a suitable increasing 0'-
computable function — numbers z,y with (z,y) € €, and letting 8(x) #
B(y)-

Together with the numbering 3, and the functions h, f,, during the
construction we will also define the values of a counter function At s(p,t),
for every number p. In fact, the definition of 3 will follow automatically
from A by letting 3° = {(0,~(h(0)))} and

B = B U {(z(h(2) | k() <z < k(t+1)}

for all ¢.

The construction. By stages:
Stage 0) Define

k(0) = h(0) = 0, f) = 0,s(p,0) = p

for every p € IN and go to next stage.

Stage t 4+ 1). Go through Steps 1, 2), 3) in order.
Step 1) Check whether

FzoIz yoTyi [(Vi < 1) (k(t) < x4,y
& {0, z1, 90, y1} = 4 & (i, 91) € e)] (A)

If (A) does not hold then define k(t+1) = k(t) + 1. If (A) holds then
fix such numbers x, 1, Yo, y1 so that, say, (zo, 1, yo,y1) is the least such
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quadruple, and define
k(t + 1) = max{zo, 1, y0,y1} + 1.

Move to Step 2).
Step 2) Check if the following condition B(p) holds, for any p < ¢:

B(p) : J2(k(t) <z < k(t+1) & ze W,).
If B(p) holds of some p, then fix py such that B(pg) holds and
Vp < t(B(p) & p # po = (s(po, t) < s(p,1)
vV (s(po,t) = s(p, t) & po < p)).

Let zp be the least z for which B(pg) holds. Choose the least number
ug ¢ dom(f} ). Fix the least ig € {0,1} such that 20 ¢ {ziy,%i,}. Go to
Step 3).

Step 3) We distinguish the following cases:

(a) If (A) is not true and B(p) fails for every p < t then choose the
least number y ¢ range(h') and let

W =P U{(k(t+ 1))} i = fLos(p,t+1) = s(p,t) forall p.
(b) If (A) holds and, for some p, B(p) holds then define

At =ty {(xim CL1), (yioa a2)7 (ZO; UO)}
U {(xval) ‘ k(t) <z < k;(t+ 1) &z ¢ {xiovyiovz()}}

and

;;rl = f;o U {(uo, 20)},s(po,t + 1) = s(po,t) + 1, f;ﬂ = f;;
s(p,t+1) = s(p,t) forall p+#pg

(c) If (A) holds but B(p) fails for all p < ¢ then define

W = h' U {(20,a1), (yo, a2)} U {(x, a1) |
k(t) <z < k(t+1) &z ¢ {zo,yo}}
and
= fls(p,t+1) = s(p,t) forall p.
(d) If (A) fails and B(p) holds for some p then define

il = pt U {(Zo,uO)}
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and

Z,;rl = f;o U {(uo, 20)}, s(po, t +1) = s(po,t) + 1
s st +1) = s(p,t) forall p# po

Notice that in this case zo = k(t + 1). Go to stage t + 2.

The verification. = We show that the following conditions hold:

(1) For every t, k(t) < k(t + 1).
(2) The functions h, k, f, with p € IN, are 0'— computable.

(3) For every z, we have that B(z) = v(h(z)). Thus 3 is a X0, ,—
computable numbering of some subfamily Ay C A.

(4) For every p, s(p) < s(p+1) < s(p) + 1.

(1)—(4) are obvious.

(5) For every p,

W, infinite = li%n s(p,t) = oo.

To see this, assume that W), is infinite and at a stage top we have
s(p,to) = m for some m. We will show that for some t; > o, s(p, t1+1) >
m.
For all ¢t and p’ > m we have s(p/,t) > m (recall that s(p’,0) = p/).
Let t1 > tg be a stage such that t; > p and for every p’ < m,

w if limy s(p/, t) < oo than (Yt > t1)[s(p/,t) = s(p', t1)];
w if lim s(p/, ) = oo than s(p/,t1) > m;
w (k(t1),k(t1 + 1) N W, # 0.

So, either s(p,t1) > m, or s(p,t1) = m. In the latter case, we choose
p = po at t; and increase the counter s(p,t), i.e. s(p,t1 +1) =m+ 1.
(6) For every p, if W), is infinite then f), is total, range(f,) € W), and

v=pof p-
This follows from the way we define f, and $ and the fact that
lim; s(p,t) = 400 by (5) and thus every time we increase s(p,t) we

also define f, on the least element ug which is not in the domain of f;:

B(fp(uo)) = B(20) = v(h(20)) = v(uo).

(7) For every p, if W), is infinite then § is a numbering of the whole
family and By, £ a.
This follows immediately from the previous point, and the choice of

Y %0/ Q.
(8) For every p,q if W, \ W, is infinite then Sy, £ Bw,.
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To see this, assume that W), \ Wy is infinite, and Sw, < Bw,. By (1c)
of Lemma 2.2, let n be a c.e. equivalence relation such that

Ve, y((z,y) en& z #y=x,y € W, UW,),

Ve, y((,y) € n = B(x) = 6(y)),
Vo e Wp3y € Wy((z,y) € n).

Let n = ¢ for some ¢t € IN. Since W), \ W, is infinite it follows that either
7 has infinitely many nontrivial equivalence classes, or it has an infinite
equivalence class. Therefore (A) holds at stage ¢t. By construction, at
stage t we proceed through (b) or (¢) in Step 3. We then define h(z) = aq,
h(y) = ag for some z,y > k(t) such that (z,y) € n. But (z,y) € n
implies G(z) = B(y), and therefore v(a1) = y(az), since B(z) = vy(h(zx))
and B(y) = v(h(y)). This contradicts our choice of y(a;) # v(az).

To finish off the proof in the case of an infinite family A, we observe
that ( satisfies both Lemma 2.3 and Lemma 2.4. (Note that every set
of A has infinitely many [-indices. This is consequence of (6), since
there are infinitely many pairwise disjoint infinite c.e. sets.) Hence the

interval [o, a @ [3] is isomorphic to €* and the ideal 3 is isomorphic to
e*\{L}.

Finally, if A is finite, then we may slightly modify stage 0 of our
construction as follows. Let A consist of m + 1 sets and let by, b1, ...,bn
be 7 -indices of these sets. Then at stage 0 we define k(0) = m, h(i) = b;
for all 7 < m, and let fg =0, s(p,0) = p for every p € IN.

It is easy to check that the modified numbering 3 satisfies both Lemma
2.3 and Lemma 2.5 and thus in this case the ideal 3 is isomorphic to €%
for ' = {0,1,...,m}. The result then follows by observing the trivial
fact that the lattices €%, and €* are isomorphic. O

Corollary 2.2.1 (S.Podzorov, [19]). Let A be any X9, computable
family. For every numbering o € Com?HQ(.A) there exists a numbering
B € Com , ,(A) which is 0'- equivalent to o and such that

(1) B is isomorphic to e*\{L} if the family A is infinite;
(2) 3 is isomorphic to e if the family A is finite.

Proof. Note that numbering 3 constructed in Theorem 2.2 is 0'—equiv-
alent to . The proof is now immediate, since if we do not require that
the interval [, @ ] be isomorphic to £*, then we do not need the
feature that v €/ . In other words, we can carry on the construction
of Theorem 2.2 starting from the numbering « instead of 7, and thus
obtaining the desired conclusions (1) and (2). O
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Corollary 2.2.1 and the fact that the elementary theory of * is hered-
itarily undecidable, [13], immediately yield:

Corollary 2.2.2. The elementary theory of every non-trivial Rogers
semilattice RO ,(A) is hereditarily undecidable.

Corollary 2.2.1 and Corollary 2.2.2 give us a deep insight into the
complexity of Rogers semilattices of 30 1o —computable families. The
case of ¥.Y ~computable families is still open:

Question 3. Is the elementary theory of any non-trivial Rogers semi-
lattice of a XY —~computable family hereditarily undecidable, or at least
undecidable?

We know that the range of isomorphism types of €%, for different c.e.
sets A, is very wide. For instance, we know that every countable Boolean
algebra with a sufficiently effective presentation is isomorphic to some €%
(namely every X9- presentable Boolean algebra, see [15]; see also [23]).
Under reasonable conditions, we can realize these isomorphism types as
intervals of Rogers semilattices of arithmetical numberings.

Theorem 2.3. Let A be a 22+3700mputable family, and let A be both
an infinite and coinfinite c.e. set. Then for every a € Com2+3(A) such
that a is not 0 —universal in Com2+3 (A), there exists some numbering
B € Com!_ 5(A) such that the subsemilattice [a, 3] is isomorphic to €%.

Proof. Let A, A, and « be given, and let f : N — A be a computable
bijection. We will construct a numbering 3, as required. First of all, we

define
B(f(n)) = a(n)

so that a < 3 and a = Ba. It remains to define 3(n) on each n € A:
This will be done, stage by stage, by the construction below. Fix some
v € Com9L+3(A) such that v €42 a; define a listing of all c.e. supersets
of A by letting, for every i,

V; = Wi U 4;

and fix some distinct C, D € A.
We sketch the strategy for the construction. We define § so that the

mapping
Y(Vi) = deg(By;)

induces an isomorphism from &% onto [«, 3]. For this, we first prove:
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Lemma 2.6. ¢ (as defined above) induces an isomorphism from €% onto

(o, B] if and only if
Wi, Vi € ea (Vi \ Vj infinite = By, £ Bv;) - (1)

Proof. The condition (1) is clearly necessary. Suppose now that v sat-
isfies condition (). It follows from (2) and (9) of Lemma 2.2 that

Vi €V = By, < Py,

By (5) of Lemma 2.2 every « such that o < v < [ satisfies v = (p, for
some c.e. B D A. So 1 is onto. On the other hand, if V; * Vj, then
V; \ Vj is infinite, and thus Sy, £ Bv;. So ¢ is an isomorphism. O

The requirements. In view of Lemma 2.6 the construction aims to
satisfy the following requirements:

Ryij Vi \ Vj infinite and (Pp[vi] 7* A= By, % /6\/] via g,
Qi :Vi \ A infinite = v <42 By,

where we say that By, £ Bv; via @, if the following does not happen (see
(1b) of Lemma 2.2): V; C dom(yp), ¢p[Vi] € Vj, and, for every z € V;,
B(z) = Blpp(a)).

The requirement R, ; ; will be satisfied at stage 2t+1 with t = (p, 4, j),
by looking for some k € V;\ A such that ¢,(k) € V;\ A, and by defining
B(k) # B(ep(k))-

The requirement ); will be attacked at infinitely many stages 2t 4 2,
with 7o(t) = i, each time extending (if V; \ A is infinite), the values of
a 02— computable function f; such that range(f;) C A and v = B o f;.
This is used to show that v <y « (as shown in details later), contrary
to the assumptions.

Step by step, we will construct an increasing sequence {A'};en of
finite sets such that A = |J, A?, and the (in general, partial) 02— com-
putable functions { f;}ienN-

The construction. By stages:

Stage 0) Define 3(f(n)) = a(n) for every n. Let f0 = 0 for all 4, and
let A = ().

Stage 2t + 1). Assume that ¢t = (p,i,75). If i # j and the following
conditions hold:

(1) Vi € dom(pp) & Vy(y € Vi = ¢p(y) € V));
(2) 3k(k e Vi\ A& pp(k) € Vi\ A) & k ¢ A% & (k) ¢ A* U {k})
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then choose the least such number &, let

A2t+1 — A2t U {k,cpp(k)}
B(k) = C
Blpp(k)) = D

and move to next stage.

If i = j, or either of (1) or (2) does not hold, then do nothing and
move to next stage.

Stage 2t + 2). Suppose that 7y(t) = ¢, and there exists z € V; \ A such
that 3(z) has not yet been defined. Fix the least such x, and define

A2t+2 — A2t+1 U {33‘}
fi2 = U {(s,2))

where s is the least number such that s ¢ dom(f*™!); finally define

1
Bz) = 1(s).
Move to next stage.

Finally, define f; = |J, ff, for every i.

The verification.  The following properties hold:

(1) For every z there exists a stage ¢ such that 3(x) is defined at stage
t.

To see this, notice that if z € A then ((z) is defined at stage 0 of the
construction. On the other hand, let iy be such that IN = V;,. At every
stage 2t + 2, with mo(¢) = ip, we define (z) for the least = such that
x ¢ A and f(x) is undefined by stage 2t + 1. So if © ¢ A, then there
exists some ¢ such that we define 3(x) at stage 2t + 2.

(2) B € Coml5(A).

Indeed, range(3) = A. This follows from the way (3 is defined at stage
0. Moreover, the relation “y € B(z)” is 0¥}~ computably enumerable,
since o,y € Comy, 5(A) and the conditions (1) and (2) of odd stages, as
well as the test relative to each even stage can be effectively tested with
oracle 0.

(3) For every i, if V; \ A is infinite, then By, £ a.

Indeed, if V;\ A is infinite then at every stage 2t+2 such that mo(t) = 1,
we have that f22 = f2+1 U {(s,z)}, for some s and z € V;. Tt is
thus easy to see that f; is 02— computable, and v = S o f;. Therefore
v <o Pv, by (7) of Lemma 2.2. This implies that Sy, £ «, since
otherwise it would follow that v <) .
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(4) If Vi \ Vj is infinite then By; £ By, .

We prove this by contradiction. Assume that By, < fy;. Then by
(1b) of Lemma 2.2 there exists a partial computable function ¢, such
that V; C dom(ypp), ¢p[Vi] C Vj, and B(x) = B(ep(x)), for every x € V;.

Let Vi, ={z € Vi | pp(x) # 2} UA and t = (p,m, j). It is easy to
see that V,, \ A is infinite since it contains V; \ V;. We have ¢,[V},] Z*
A, otherwise fy,, < [a via ¢p, but this contradicts (3). Moreover,
©plVim \ (AU A%))] ¢ AU A%, To show this fact suppose that this
inclusion holds and consider the partial computable function

ep(z) if Fy(g(y) = op(@)&Vz < y(g(2) & {z, vp(x)})),

pg(z) = Q@ if Jy(g(y) = 2&Vz < y(g(2) € {z, pp(2)})),
T otherwise,

where ¢ is a computable function from IN onto A U A?!. It’s easy to see
that dom(p,) DV, and By, < [a via ¢4 which contradicts (3) again.
Now consider the stage 2t + 1. We see that all conditions of this stage
hold and we have (k) = C # D = [B(pp(k)) for some k € V,,. But
k € V; since V,,, C V; by choice of V,,. O

By requesting more of «, we can show that a result similar to Theorem
2.3 holds also for %9 computable families. (We observe that next theo-
rem is a trivial consequence of the previous theorem if n > 0; for n = 0
it provides a stronger result. We give a proof here for any arbitrary n.)

Theorem 2.4. Let A be a 22”, computable family and let A be both an
infinite and coinfinite c.e. set. If a € Comd,,(A) and a is not 0"+ -

universal in ComD ,(A) then there ezists a numbering 3 € Com’_,(A)
such that the interval [o, (] is isomorphic to €% .

Proof. Let A, A, and « be given as in the statement of the theorem.
In view of Lemma 2.6, we construct § so as to satisfy the following
requirements, for every p,1, j:

Ry : Vi \'V; infinite = By, £ By, via ¢,

where V, = W, U A, as in the proof of Theorem 2.3, and “By, £ By,
via ¢,” has the same meaning as in the proof of Theorem 2.3. Thus if
Vi \'Vj is infinite, satisfaction of R, ; ;, for any p, will guarantee that ¢,
does not reduce fy; to By, in the sense of (1b) of Lemma 2.2.

For this proof we employ a finite priority argument to computably
enumerate, relatively to the oracle 0t g numbering § so that § €
Com2+2(A).

We briefly sketch the strategy to meet R, ; ;.
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Let v € ComY, ,(A) be such that v £gm+1 . Using that o,y €
Com!_5(A), fix 0("*1— computable sequences of finite sets {a!(z)}¢ e
and {7'(x) }+ zew such that, for every ¢, z,

ol(z) C o' (2), a(z) = Uat(x)

and
V@) Sy @), () = ().

First of all, we make 3 “look like” a on A, to get o < (. Then
we monitor (via the notion of ¢—reducibility, and a suitable counter
function) the step by step progress towards obtaining that V; \ Vj is
infinite and ¢, reduces By, to By, (via monitoring, in turn, the progress
towards obtaining V; C dom(ypy,), ¢p[Vi] € V; and B(z) = B(ep(z)),
for every x € V;). If this progress threatens to tend to infinity, then we
select (by suitably labelling its elements) a set G C V;\V; (hence G C A)
on which we define a partial 01— computable function F., such that,
for every z € G, B(xz) = vy(F,(x)). On the other hand, if F,(z) is
defined and ¢,(z) € V; , then we define on ¢,(x) the value F,(¢p(x))
of a 0"+ computable function F,, so that 8(¢p(z)) = a(Falpp(z))).
As shown in details later, this implies that v <gu+1) o, contradiction.
Thus ¢, does not reduce By, to By, (in the sense of (1b) of Lemma 2.2),
and eventually the requirement is satisfied, and thus injures only finitely
many times the lower priority requirements.

Some of the -indices will be marked by labels of the form [m], with
m € IN (where m must be viewed as coding a triple, m = (p,1,7)).
Together with the values of the finite approximation 3! to 3 at stage t,
the construction will define a counter function s(m,t), for every m.

We will say that ¢, t-reduces By, to Py, if (where m = (p,1,j))

(1) s(m,t) <max(V;\ V;N[0,t]);
(2) forevery x € V;N[0, s(m, t)] we have that € dom(yp,) and ¢,(x) €
‘/j.
(3) for every x € V; N[0, s(m,t)] we have
ﬂt(x) N [07 S(m7t)] = ﬂt(sop(x)) N [07 S(mvt)]'

Fix also a partial computable 1-1 and onto function ¢ : A — N,
and a 0’—computable function k& enumerating A in order of magnitude,
i.e.

A={k(0) <k(l)<---}.
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Finally, at stage ¢ we will define also the approximations Fj, F of

partial 0("*1)—computable functions F,,F,. The arguments of these
functions are f—indices, the values of F,, are a—indices, and the values
of F, are vy—indices. Moreover, we shall have, for every ¢,

dom(F}) Ndom(F!) =0
and
dom(F.) Udom(F!) = {k(i) | i < t}.
The construction. By stages:
Stage 0) Define 3%(z) = a%(p(x)) for every x € A. Let 3°(z) = 0, for

every € A. Let F) = 0 and F? = (). Define s(m,0) = 0 for all m.
Move to next stage.

Stage t + 1) For every m < t (with, say, m = (p, 1, j)) check whether the
following conditions hold.

»  Any number, marked by with m' < m, is less then k(t);
= t-reduces By, to Py;;

. k(1) €V V;

m k(t) € dom(ypp) and @,(k(t)) € V.

If there is no m < t with those four properties then go directly to
Procedure E below. Otherwise let mg = (po, 70, jo) be the least number
satisfying these conditions. Act as follows.

m  Remove all labels with m > mg from all numbers currently
marked by these labels;
» Increase s(myo,t) (i.e. define s(mg,t + 1) = s(mg,t) + 1);

m  Put the label on k(t) (notice that k(t) is not currently marked
by any label since we have already removed all markers [m], with
m > mo);

m If pp, (k(t)) & A and ¢, (k(t)) is not marked by any markers then
put the marker on @y, (k(t));

n If pp, (k(t)) is marked by (it should be kept in mind that we
have already executed the previous item) and @y, (k(t)) € dom(FY)
then remove the pair (@p, (k(t)), F2(p, (k(t))))from F,, find the

least pseudopair (y, s) such that B'(pp,(k(t))) C a®(y) and put
the pair (pp, (k(t)),y) into Fj,.

Go to Procedure E, below.
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Procedure E. If k(t) is not marked by any markers then put the pair
(k(t),0) into F,. If k(t) is marked by with m = (p, 1, j), consider
the following possibilities:

= k(t) € Vi \ Vj. Find the least y such that y ¢ range(F!) or y €
range(F!) but for every x such that F!(x) =y we have that x is
not marked by and put the pair (k(t),y) into F;

» k(t) € Vj. Put the pair (k(t),0) into Fi,.

Let F/' and F!! be the sets of all pairs which are currently in Fy,
and F, respectively, as a consequence of the actions undertaken in the
previous stages, and of the action so far undertaken at the current stage.
Let z > t be the least number such that for all z,y,

(z,y) € Fi' = B'(z) C a*(y)
(z,y) € FIT' = B'(z) S+ (y)
For every z, let
at(p(z)) ifz € A,
ﬂt+1(m) A if (x,y) € F for some y
) A (w) if (z,u) € Fé“ for some u
0 otherwise.

For any m, if s(m,t+1) has not yet been defined then let s(m,t+1) =
s(m,t). Go to the next stage.

The Verification.  Let f(x) = J,en 8°(x). The construction satis-
fies the following properties:

(1) All parameters in the construction are 0**1)— computable and 3
is 20 4o~ computable numbering of the family 3[IN].

(2) For every t any number can be labelled by at most one marker
after stage £. Any marked number must be in A.

(3) We can remove marker only if we put some smaller marker. If we
put a marker then we increase s(m,t). At every stage we put at
most one marker and we mark by it at most two numbers.

(4) For every m,t, s(m,t) < s(m,t+1) < s(m,t) + 1.
(5) For every t, dom(F.) Ndom(FLH) =), and

dom(F.™) Udom(FLHY) = {k(0), ... k(t)}.
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(6) For every x ¢ A if, for some to, x € dom(F%) then for all t > ¢,
z € dom(F}) and F!(z) = Fl(z).

(7) For every x ¢ A if, for some tg, x € dom(F2°) then for all t > tg
such that z € dom(F!) we have F!(z) = Fl°(z).

In view of properties (5)—(7) above we can introduce two functions:
F, = lim; Fé and F, = limy F};

(8) dom(F,) N dom(F,) = @ and dom(Fy,) Udom(F,) = A. F, is a
0"+ computable partial function and for every o(nt+1)— computably
enumerable G such that G C dom(F}), the partial function F, [ G is
0"+ computable.

(9) For every =z € dom(Fy), B(x) = a(Fu(z)), and for every x €
dom(F), fz) = ~v(Fy ().

(10) B is a £%, ,~ computable numbering of A.

We have already noticed in (1) that 8 is £0,,~ computable. By the
definition of 3 we have that $[A] = A. From (8) and (9) we have that
BlA] C A.

(11) For every m (with, say, m = (p,i,7)) if lim; s(m,t) = oo then
Vi \ Vj is infinite and By, < By, via ¢, (in the sense of Lemma 2.2 (1b)).

Suppose that lim; s(m,t) = oo, and V; \ Vj is finite or By, £ By, via
@p. If lim; s(m, t) = oo then let ty > m be a step such that

n if V;\ Vj is finite than s(m,to) > max(V; \ V});

n if V; € dom(pp) then there exists z € V; such that ¢ dom(yp,)
and z < s(m, tp);

n if ¢, (Vi) € V; then there exists € V; such that ¢,(z) € V; and
x < s(m,to);

n if B(z) # B(pp(x)) for some x € V; then x < s(m, ty) and for some
y € (B(x) UB(pp(x))) \ (B(z) N B(pp(x))) we have y < s(m,to) and
y € B'(x) U B (pp()).

According to the definition of t-reducibility and in view of property (4)
above, we have that for all ¢ > #y ¢, does not t-reduces By, to By;. So
for any such ¢, m does not satisfy the second condition of stage ¢+ 1 and
we have s(m,t + 1) = s(m,t). A contradiction.

(12) For any m = (p, 1, j) if m is the least number such that V; \ V} is
infinite and By; < By, via ¢, then lim; s(m,t) = co.

From (11) we have that lim s(m/,t) < oo for all m’ < m. Suppose
that ¢ is so big that m < ¢y and s(m/, o) = lim; s(m/, ty) for all m’ < m.

In order to obtain a contradiction suppose that lim; s(m,t) = s(m, t1)
for some t; > tp. In view of (3) after stage t; we do not put markers
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for m’ < m. Let t > ¢; be a step such that k(t) € V; \ 'V}, k(t)

is greater that any number marked by with m’ < m at stage t1,
max(V; \ V; N [0,¢]) > s(m,t1) and for all x € V; N [0, s(m,t1)] we have
Bt (z) N[0, s(m,t1)] = B(z) N[0, s(m,t1)] and B (pp(x)) N[0, s(m,t1)] =
B(ep(z))N]0, s(m, t1)]. Than all four conditions of step t+1 are satisfied
for m. They are not satisfied for any m’ < m since s(m’,t+1) = s(m/, t),
by choice of tg. Then m is the least number such that m < ¢t and all
conditions of stage t + 1 hold for m; therefore s(m,t + 1) = s(m,t) + 1
and we have a contradiction with the choice of ¢;.

(13) For every m, lim; s(m,t) < oco.

Let m = (p,1,j) be the least number with lim; s(m,t) = oco. By (11)
we have that V; \ Vj is infinite and By, < By, via ¢,.

Let to be such that s(m/,ty) = limg s(m/, t) for all m’ < m. In view of
(3) we may assume that k(tg) is greater than any number ever marked

by with m’ < m. Let M be the set of all numbers marked by
with m’ < m at the end of stage tg.

Let G = {k(t) : t > to and s(m,t + 1) = s(m,t) + 1}. Then G is
0™+t computably enumerable. For every t > to if k(t) € G then at
stage t + 1 we put the label on k(t) and put k(t) into dom(F!*).
After this, the marker can not be removed from k(t) and we have
k(t) € dom(Fy) for all s > ¢. So, G C dom(F,) and G C V; \ V;.

Notice that G contains almost all numbers in dom(F) that are ever
marked by [m]. Indeed if we put on some x ¢ G at some stage
t+1 >ty then z € V; and either z < k(t) and x € dom(F.™) or
x = k(t') for some ¢’ > t and we put z into dom(F,) at stage t’ + 1.
Then from Procedure E of the construction we have that F,[G] is a
cofinite subset of IN.

On the other hand, for any z € G ¢,(x) € Vj, and either ¢,(z) € A
or pp(xz) € dom(Fy,) or pp(z) € M. In all three cases we can easily
compute an a-index of ¢, (z) for any 2 € G with oracle 0"1) since M
is finite, A is 0**1)— computable and 3(z) = a(p~!(x)) for all = € A.

Putting things together we have that there is a 0"*Y)— computable
function g, defined on F,[G], such that vy(z) = a(g(z)) for all x € F,[G].
In order to compute g(z) with oracle 0"+ in view of (8) and (9) we
may enumerate G until we find y € G such that F,(y) = x and then
define g(x) to be an a—index of ¢,(y). Now defining g(x) on IN\\ F,[G] in
an obvious way we obtain that v <gw+1) @ which contradicts the choice
of ~.

(14) All requirements R, ; ; are satisfied.
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For a contradiction let m = (p, i, j) be the least number such that the
requirement R, ; ; is not satisfied. Then lim; s(m,t) = oo by (12) and
lim; s(m, t) < oo by (13).

Properties (10) and (14) imply that the theorem is true. O

The previous three theorems have been proved under the assump-
tion that the numbering o has special properties of relativized non-
universality. We do not know whether in any of these theorems this
assumption may be replaced by the weaker assumption of simple non-
universality. The following question therefore arises naturally:

Question 4. Do the claims of the previous three theorems remain true
if we just assume that the numbering o is not universal?

3. Empty intervals. Minimal elements and
minimal covers of Rogers semilattices

We now turn our attention to empty intervals of Rogers semilattices,
i.e. to intervals of the form («,3) = 0, with < 8 (such a pair of
numberings is usually described by saying that 8 is a minimal cover of
a), and of the form & = (), i.e. « is minimal. We say that 3 is a strong

minimal cover of a if a < B and ﬁA = Q.

3.1 Minimal elements of Rogers semilattices

As to the number of minimal elements of Rogers semilattices of X0 , |-
computable families, the question has been completely settled for infinite
families in the case n > 1 by Badaev and Goncharov, see Theorem 1.3,
[4].

The case n = 0 is still open:
Question 5. Let A be a X{-computable family such that the Rogers

semilattice RY(A) contains at least two minimal elements. Does RY(A)
have infinitely many minimal elements?

There has been however a considerable progress towards answering
this question since it was first posed by Ershov in the late sixties.

We recall the following complete answer to this problem, due to Gon-
charov, [10], [11], if one just considers Friedberg or positive numberings:

Theorem 3.1 (S.Goncharov). For every n there evists a ¥ com-
putable family A such that RY(A) has exactly n degrees of Friedberg
(positive) numberings.

Proof. See [10], [11] O
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3.2 Covers and strong minimal covers in Rogers
semilattices

The following lemma was the starting point of an approach pursued by
S. Badaev and S. Goncharov’s, [3], towards searching for reasonable con-
ditions under which a ¥ 19— computable numbering has minimal covers.

Lemma 3.1. Let 3 be any ngfcomputable numbering of a family A.
If for some mazximal set M, Byr is a numbering of the whole family A
and 3 £ By then 3 is a minimal cover of By .

Proof. Immediate by Lemma 2.2(5), and by maximality of M. O

An evident way to construct a minimal cover § of a given numbering
a € Com?, ,(A) is the following. Choose any maximal set M and let
f be a computable bijection from IN onto M. For every x € M, define
B(z) = af'(xz). It remains to define 3 on M in such a way that
B € Com?, ,(A) and 8 £ .

The following theorem singles out some conditions under which this
can be suitably done.

Theorem 3.2. Let A C EEL+2 be any Z?Hchomputable family, and let
a be a Z?Hr?f computable numbering of A. If either

(1) there exists a proper subfamily Ao of A whose index set a™'[Ag]
is 0D — computable, or

(2) the numbering o is not 0'—universal in Com 5 (A), or

(8) there exists a 0D —computable function f such that ofx) #
a(f(x)) for every x,

then o has a minimal cover.

Proof. Let M be a maximal set, with M = {mg < m1 < ma...}, and
let f be a one-to-one computable function with range(f) = M. If for
every x € M we define 3(z) = a(f~!(z)) then clearly o = Bys. Let us
now define the value 3(x) for an arbitrary # € M according to which of
the assumptions (1), (2) or (3), in the statement of the theorem, holds.
Let x = my for some s € IN.

(1) Fix two sets A, B such that A € A4y and B € A\ Ap. If ms €
dom(yps) and ps(ms) € a~1(Ag) then define 3(ms) = B, otherwise let
B(ms) = A. Since the sets M, a=1(Ap), and {s | ms € dom(ps)} are
0"+ computable it follows that 3 is a 22 19 —computable numbering

of A.
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To apply Lemma 3.1, it is sufficient to show that 8 £ a. Suppose
B(z) = a(ps(x)), © € IN, for some computable function ¢s. Then mg €
dom(ps). If ps(ms) € a=(Ag) then 3(ms) = B. On the other hand,
a(ps(ms)) € Ao, a contradiction. Similarly, if ¢s(ms) ¢ a~1[Ag] then
B(mg) = A, and this is in contradiction with a(ps(ms)) € Ap.

(2) Since the numbering o is not 0’ universal in Com) , ,(A), there
exists v € Com!) ,(A) such that v £o a.

Define 3(ms) = 7(s). By Theorem 1.2, [4], 8 € Com,,(A). Since
the mapping As m; is 0'— computable, it follows that v <g' 3. Therefore,
B & o, otherwise we would obtain v <o cv.

(3) Let f be a 0**1)— computable function, such that a(z) # a(f(z))
for every x. Define

. a(0) if ms ¢ dom(ps),
B(ms) {a(f(gos(ms))> if ms € dom(gps).

Again by Theorem 1.2, [4], 8 € Com?,,(A). Let us prove that 3 £ a.
By contradiction, assume that § is reducible to « via a computable
function ¢,. Then ((x) = a(ps(z)) for all z. By definition of 3, B(m,) =
a(f(ps(ms))). Therefore, a(ps(ms)) = a(f(ps(ms))), i.e. ps(ms) is a
fixed point of the function f modulo the numbering «, contradicting
assumption (3). O

Remark 3.1. The particular case of condition (1) in Theorem 3.2, when
Ajg consists of a single set A, was considered by S.Badaev, S.Goncharov in
[3]. Conditions (2) and (3) were suggested by S.Badaev and S.Podzorov,

[5].
Question 6. Let A be any X0 o~ computable family, and assume that

a € Com?,,(A) is not universal in Comd,,(A). How many (up to
equivalence) minimal covers can o have?

The next theorem shows another approach to constructing minimal
covers based on the special minimal numberings considered in Theorem

1.3, [4].

Theorem 3.3. If A is an infinite Zgwfcomputable family and o €

Com?_ 5 (A) is not 0'- universal in Com?, ,(A), then there exist infinitely
many minimal covers (up to equivalence) of c.

Proof. Let A be an infinite X9 4o~ computable family, and let a,8 €
Com) , ,(A) be numberings such that 8 £o .

Let M be a maximal set and let M’ = {22+ 1 | x € M}. For
every A € A, let us consider the minimal numbering (ar,4 constructed
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in the proof of Theorem 1.3, [4]. We will now check that the numberings
a®PBur,a, A € A, are minimal covers of § and that a® fy,4 £ a® S,
if A+# B.

Since By,a =0 B, it follows that o < o @ Bar 4, otherwise we would
obtain a contradiction with 3 £o «. Let v € Com! +2(A) be any num-
bering such that o < v < a @ Ba,a. If C stands for the set all even
numbers then o = (o @ B, 4)c,- By Lemma 2.2(5), v = (a @ Oum,a)cs
for some c.e. set Cy D C].

By construction of the numbering (7,4, we have (o ® far,a)(x) = A
for every © € M'. Therefore, by applying Lemma 2.2(8) if necessary, we
may suppose that Cy O M’. By Lemma 2.2(6),

Y= (a® Bua)e; © (@@ Bara)ca\c-

If (o ® Ba,a)[C2\ C1] is a finite family then (Cy \ Cq) \ M’ is a
finite set since M is a maximal set. Applying Lemma 2.2(8,9), we have
(a®fBr.a)c, = (a®PBr,a)c,, and, therefore, v = a. If (a® B, 4)[C2\Ch]
is an infinite family then, by maximality of M, C5 is a co-finite set and,
hence, by Lemma 2.2(9), v = o ® Sar,a. Thus, for every A € A, the
numbering o @ By, 4 is a minimal cover of a.

It remains to show that o ® fya £ o ® Bu,p if A # B. We prove
this by contradiction. Assume that A # B and a @ Bya < a @ By B.
Then fBara < a @ By, By Lemma 2.2(4), Bp,a = (o @ Bu,s)p for
some c.e. set D. Let Dy and D9 consist of the even numbers of D and
the odd numbers of D, respectively. By Lemma 2.2(6),

Ba,a = (a® Bu,B)py @ (@ Bur,B)Ds -

Just the same arguments which we have used for the set C above,
can be applied to the set Dy as well. So, we may suppose that M’ C D.
If the family (o ® Bar,5)[D2 \ M'] is finite then the set Dy \ M’ is finite.
Then by Lemma 2.2(8,9), (o« @ Sum,)p = (a @ Bum,B)p,- Therefore,
Buma = ap with D' = {z | 2z € D;}. Hence, Oya < a. Since
Bum,A =o', we obtain a contradiction with 8 £or cv.

If the family (a@® Bar,g)[D2 \ M'] is infinite then by maximality of M,
the set Dy is co-finite with respect to the set of all odd numbers. Then
Lemma 2.2(6,9) implies that

Ba,a = (a® Bup)p = ap @ Bu,B.

This is in contradiction with 8y, £ B, A-
ThuS,Oz@ﬁMvA;{Oé@,BM’B lfA#B OJ

A useful condition guaranteeing the existence of strong minimal covers
is provided by the following theorem.
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Theorem 3.4 (S.Badaev, S.Podzorov). Let A be any X0, ,- com-
putable family, and let o € Com%+2(A). If there exist a subfamily
Ay C A, a numbering v € Com?_ ,(Ag) with v £ «, and a computable
function f such that o(f(x)) C ~(x), for all x, then o has a strong
minimal cover.

Proof. See [5]. Notice that the proof is based on Lachlan’s construction
using Chinese boxes, [16]. O

Corollary 3.4.1. If a € Com,,(A) and there exists a subfamily Ay C
A such that Ay has least element under inclusion and there is a num-
bering v € Com2+2(.,40) with v £ «, then o has a strong minimal cover.

Proof. Let A, Ay, a,y be as in the statement of the corollary. Let | €
A be the least element of Ay under inclusion, and let a be such that
a(a) = L. Define f(x) = a, for every z. Then a(f(x)) C ~(z), for
every x. Thus the hypotheses of Theorem 3.4 hold, and « has a strong
minimal cover. O

Corollary 3.4.2. If a Engffamily A has least element with respect to
inclusion, then every non—universal numbering o € Comgﬁ(.A) has a
strong minimal cover.

Proof. Immediate by the previous corollary, taking Ay = A. If « is not
universal in Com?, ,(A), then there exists a numbering v € Com , ,(A)
such that v £ a. O

Corollary 3.4.3. For every finite family A C E%Jrz, for every number-
ing a € Com’_,(A), if a is not universal in Com?_,(A) then a has a
minimal cover.

Proof. If A contains L, the least set under inclusion, then « has a min-
imal cover by the previous corollary.

Suppose that A has no least element under inclusion. Let A =
{Ag, A1, ..., Ag}. Tt can be easily shown (see [9] for details) that there
exists a family F = {Fy, F1,. .., F}} of finite sets such that for all i, j < k

Without loss of generality we may assume that Ag, A1,..., Ay, for some
m < k, are all the minimal elements of A with respect to inclusion and
a(z) = A, for x < m. Let o be a permutation of the set {0,1,...,m}
with no fixed points. Let {a!(z)}en be a 01— computable sequence
of finite sets such that for all x,¢

ol(z) C oft(2); a(z) = U ol (z).
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It is easy to see that the functions

to(z) = pt(3i < m(F; C ol (x))),
fla) = pi < m(F; € a@(z))

are 01— computable and o (o (f(x))) # a(z) for all z. Finally we can
apply Theorem 3.2(3) for the function o o f. O

Question 7. Let a € Com2+2(A) be a numbering which is not universal
m COIn?H_Q (A). How many strong minimal covers, up to equivalence, can
the numbering o have?

Question 8. Let A be any finite family of 22+2—86t8, and let a €
Com? , »(A) be not universal in Com’  ,(A). Does a have a strong min-
imal cover?
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