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One of the main tasks of the theory of numberings is the study and
the characterization of algebraic and elementary properties of the Rogers
semilattices of the families of numberings under investigation. The study
of Rogers semilattices was started by H. Rogers, [20]. In the theory of
numberings, see [9], the notion of a Rogers semilattice plays a fundamen-
tal role. Rogers semilattices are used to classify properties of computable
numberings for different families.

For the basic notions and notations relative to arithmetical number-
ings the reader is referred to [4]. For unexplained terminology and no-
tations relative to computability theory, our main references are the
textbooks of A.I. Mal’tsev [18], H. Rogers [21] and R. Soare [23]. For
the main concepts and notions of the theory of numberings we refer to
the book of Yu.L. Ershov [9].

This paper intends to continue the program of research initiated by
S. Badaev and S. Goncharov in [2]. In particular we address some of the
possible questions on how complicated the Rogers semilattice R0

n+1(A),
of a given Σ0

n+1– computable family, can be.

1. The cardinality of Rogers semilattices
The question of the cardinality of the Rogers semilattices of Σ0

1– fam-
ilies was settled by Khutoretsky, [14].

Theorem 1.1 (A. Khutoretsky). Let A be a Σ0
1– computable family.

If the Rogers semilattice R0
1(A) contains at least two distinct elements

then it is infinite.

Proof. See [14].

Indeed, Khutoretsky shows that it is possible to embed a linear or-
dering of type ω into R0

1(A) above any non-greatest element of R0
1(A).

Subsequently Badaev, [1], was able to prove that in every nontrivial
Rogers semilattice R0

1(A), for every non-greatest element one can em-
bed a chain with no endpoints containing that element, and for every
non-minimal element one can embed a chain with no endpoints contain-
ing that element.

The following result, [22], shows thatR0
1(A) is never a lattice, ifR0

1(A)
is not trivial.

Theorem 1.2 (V. Selivanov). Let A be a Σ0
1– computable family of

c.e. sets. If R0
1(A) contains at least two elements then it is not a lattice.
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Proof. See [22].

For Σ0
1– families, both Theorem 1.1 and Theorem 1.2 answer questions

posed by Ershov, [6]. The corresponding questions for Σ0
n+2– computable

families have been answered by Goncharov and Sorbi, [12].

Theorem 1.3 (S. Goncharov, A. Sorbi). If a Σ0
n+2– computable fam-

ily A contains at least two elements then the Rogers semilattice R0
n+2(A)

is infinite and is not a lattice.

Proof. See [12]. The proof consists of two cases, distinguishing whether
we deal with a finite family or an infinite Σ0

n+2– computable family
A. We notice that if A is infinite, then the claim follows also from
Badaev and Goncharov’s result [3] and from Theorem 1.3, [4], which
reads that for every infinite Σ0

n+2– computable family A the correspond-
ing Rogers semilattice R0

n+2(A) has infinitely many minimal elements.
Thus R0

n+2(A) is obviously infinite and not a lattice since no pair of
distinct minimal elements can have greatest lower bound.

The original proof of this claim given in [12] is however quite differ-
ent. We wish to sketch this proof here since it employs a method for
constructing numberings with some desired property which promises to
have applications also in different contexts.

So, let A be a Σ0
n+2– computable infinite family. Let α ∈ Com0

n+2(A),
and let a, b be such that α(a) 6= α(b). We will construct a family {αi}i∈IN

of Σ0
n+2– computable numberings of A, such that for no β ∈ Com0

n+2(A)
do we have β 6 αi, αj if i 6= j. Notice that this implies that R0

n+2(A) is
infinite and not a lattice.

By Lemma 1.1, [4], let {Bk,t}k,t∈IN be a 0(n)– computable sequence of
finite sets (given according to their canonical indices) such that for every
k, α(k) = lim tBk,t. In constructing the numberings αi, i ∈ IN, first of
all we will ensure that each αi is a numbering of a subfamily of A by
arranging that for every x there exists k such that αi(x) = lim tBk,t.
Then we aim to satisfy the following requirements, for every i, j, k, l, y,
with i 6= j:

Pi,j,k,l : ϕk, ϕl total ⇒ (∃x)(αi(ϕk(x)) 6= αj(ϕl(x))
Qi,y : (∃x)(α(y) = αi(x)).

We observe that satisfaction of all Qi,y’s ensures that each αi is a num-
bering of the whole family A.

In the course of the construction below, at step t, for every i, k we
define a finite set Di

k,t so that eventually

αi(k) ® lim tD
i
k,t.
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We will arrange that the sequence {Di
k,t}k,t∈IN is 0(n)– computable. Then

by Lemma 1.1, [4], each αi is Σ0
n+2– computable.

The construction is by stages. Suppose that Di
k,t = Bx,t, and at stage

t+1, we define Di
k,t+1 = Bx′,t+1 for x′ 6= x. Then we say that at t+1 we

redefine Di
k; if we do not redefine Di

k at stage t+1 then it is understood
that Di

k,t+1 = Bx,t+1.
We arrange the requirements in an effective priority listing

R0 < R1 < . . . ,

in which each Pi,j,k,l, i 6= j, and each Qi,y appears exactly once.
At stage t we define also the value of a restraint function r(h, t) for

every requirement Rh, and we declare some requirements temporarily
satisfied or temporarily unsatisfied.

Stage 0) Define Di
k,0 ® Bk,0, for every i, k ∈ IN. Let r(h, 0) ® −1, for

every h ∈ IN. All requirements are temporarily unsatisfied.

Stage t + 1) We say that a requirement Rh requires attention at t + 1, if
Rh is temporarily unsatisfied at the end of stage t, and there is a number
x such that ϕk,t(x), ϕl,t(x) > r(h, t) if Rh = Pi,j,k,l.

Choose the least h such that Rh requires attention.

if Rh = Pi,j,k,l, then choose some such x and define

Di
ϕk(x),t+1 ® Ba,t+1

Dj
ϕl(x),t+1 ® Bb,t+1.

(Notice that if we never redefine Di
ϕk(x) and Dj

ϕl(x) at any later
stage then

αi(ϕk(x)) = lim tD
i
ϕk(x),t = lim tBa,t = α(a),

αj(ϕl(x)) = lim tD
j
ϕl(x),t = lim tBb,t = α(b),

hence αi(ϕk(x)) 6= αj(ϕl(x)).) Set

r(h′, t + 1) = max{ϕk(x), ϕl(x)}
for all h′ > h.

If Rh = Qi,y then choose x = r(h, t) + 1 and define

Di
x,t+1 ® By,t+1.

Set r(h′, t + 1) = x, for all h′ > h.



Algebraic properties 5

Whatever the case, declare Rh temporarily satisfied at the end of stage
t + 1, declare Rh′ temporarily unsatisfied at the end of stage t + 1, for
all h′ > h.

This ends the construction. Notice that r(h, t) and the function as-
signing to each triple i, k, t a number x such that Di

k,t = Bx,t are in fact
computable, so {Di

k,t}k,t∈IN is 0(n)– computable. For the verification, a
standard inductive argument shows that each requirement requires at-
tention only finitely many times, and thus for every i, k we redefine Di

k
only finitely often. We pause only to point out where the assumption
that A is infinite is needed in this argument. Consider Rh = Pi,j,k,l,
and suppose that t0 is the least stage such that no Rh′ with h′ < h
requires attention at any t ≥ t0. Thus r(h) = limt r(h, t) exists, being
r(h) = r(h, t0), and, starting from stage t0, Rh is temporarily unsatisfied
until it eventually requires attention. Now, if β ∈ Com0

n+2(A) is such
that β = αi◦ϕk and β = αj◦ϕl (with ϕk, ϕl total) then since A is infinite
we have that both ϕk and ϕl have infinite ranges, so that eventually we
find x such that ϕk(x), ϕl(x) > r(h). At this point Rh requires atten-
tion (for the last time), we act accordingly on Rh, Di

ϕk(x) and Dj
ϕl(x) are

never again redefined, and thus, as already remarked, our action ensures
that β 6= αi ◦ ϕk or β 6= αj ◦ ϕl, and therefore the requirement Rh is
eventually met. (Notice that a requirement of the form Pi,j,k,l can be
met even if it is eventually always temporarily unsatisfied, for instance
if ϕk and ϕl are not both total.)

Remark 1.1. Notice that the relation in i, x, y “x ∈ αi(y)” is itself
Σ0

n+2.

Let us consider the case in which A is finite, say A = {A0, . . . , Ak}.
If C is a proper c.e. subset of IN then define

αC(x) ®





Ax+2 if x < k − 1,

A0 if x ≥ k − 1 and x + 1− k ∈ C

A1 if x ≥ k − 1 and x + 1− k /∈ C.

If now β = αC ◦ f , where f is computable, then one easily shows that
β ≡ αD, where D = f−1[C]. Hence every principal ideal of the c.e. m–
degrees is isomorphic to an ideal of R0

n+2(A). The result then follows in
this case from the fact that the semilattice of the c.e. m– degrees is not
a lattice, and that it has infinite ideals, see [7] and [17].

Apparently, classical computability may seem very close to Σ−1
n – com-

putability (the classes Σ−1
n refer to the finite levels of the Ershov hierar-

chy of the ∆0
2 sets), since classical computability is definable by means
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of Σ-formulas of first order arithmetic, while Σ−1
n – computability is de-

finable by means of Boolean combinations of these formulas.
Unfortunately, the methods employed in Theorems 3.1 – 3.3 do not

seem to apply to the case of Σ−1
n – computability. In this regard, both Er-

shov’s questions – on cardinality of Rogers semilattices and on whether
or not a Rogers semilattice is always a lattice – are still open. It looks
appropriate to raise these questions here (see also [2]). Consider com-
putable numberings of families of Σ−1

n+1 sets in the sense of Definition
1.1, [4]:

Question 1. Let A ⊆ Σ−1
n+1 be such that R−1

n+1(A) contains at least two
elements. Is R−1

n+1(A) infinite?

Question 2. Let A ⊆ Σ−1
n+1 be such that R−1

n+1(A) contains at least two
elements. Is R−1

n+1(A) a lattice?

2. Intervals in Rogers semilattices
We first introduce some preliminary notations and remarks. If α and

β are Σ0
n+1– computable numberings of a family A, then we denote by

[α, β] the closed interval of R0
n+1(A),

[α, β] ® {deg(γ) | deg(α) 6 deg(γ) 6 deg(β)}.
We also let

(α, β) ® {deg(γ) | deg(α) < deg(γ) < deg(β)}.

Moreover, we will denote by β̂ the principal ideal of R0
n+1(A),

β̂ ® {deg(γ) | deg(γ) 6 deg(β)}.

Finally, we let ˆ̂
β ® β̂ \ {deg(β)}.

In the rest of the paper, the following Definition 2.1 and Lemma 2.2
will play fundamental role.

Definition 2.1. Let β be a numbering of any family A, and let C be
any nonempty X– c.e. set. For every X– computable function f such
that range(f) = C, define βC,X ® β ◦ f . If C is c.e. we simply write βC

instead of βC,0.

Then βC,X is a numbering of some subfamily A0 ⊆ A. Clearly, for
every pair of X– computable function f and g such that range(f) =
range(g) = C, we have

β ◦ f ≡X β ◦ g.
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Thus, in contexts in which we are interested in comparing numberings
with respect to 6X, we are justified in writing βC,X without mentioning
any particular X– computable function f such that range(f) = C.

The following lemma holds:

Lemma 2.1. For every triple of sets X, Y, Z such that X⊕Y 6T Z and
for every pair of numberings β, γ we have:

(1) if A is X– c.e. then βA,X 6X β;

(2) if A is X– c.e., B is Y– c.e. then the following are equivalent:

(a) βA,X 6Z βB,Y;

(b) there exists a partial Z– computable function ϕ satisfying the
conditions: dom(ϕ) ⊇ A, ϕ(A) ⊆ B and for all x ∈ A,
β(x) = β(ϕ(x));

(c) there exists a Z– c.e. equivalence relation η such that

∀x, y((x, y) ∈ η & x 6= y ⇒ x, y ∈ A ∪B),
∀x, y((x, y) ∈ η ⇒ β(x) = β(y)),
∀x ∈ A∃y ∈ B((x, y) ∈ η);

(3) if A is X– c.e., B is Y– c.e., and A ⊆ B then βA,X 6Z βB,Y;

(4) if A is X– c.e., B is Y– c.e. then βA∪B,Z ≡Z βA,X ⊕ βB,Y;

(5) if A is X– c.e., B is Y– c.e., and if βA,X 6Z βB,Y, then βB,Y ≡Z

βA∪B,Z;

(6) if γ 6X β then there exists an X– c.e. set A such that γ ≡X βA,X;

(7) if γ 6X β, and γ ≡X βA,X, for some X– c.e. A, then for every α
such that γ 6X α 6X β there exists an X– c.e. set B with A ⊆ B
and α ≡X βB,X;

(8) if γ 6X β via some X– computable function f , then γ 6Z βA,Y,
for every Y– c.e. set A such that A ⊇ range(f);

(9) if A and B are X– c.e. and for some a ∈ B, β[A] = {β(a)} then
βA∪B,X ≡X βB,X;

(10) if A and B are X– c.e., A is finite and β[A] ⊆ β[B] then we have
βA∪B,X ≡X βB,X.

Proof. We now show the various items, one by one.

(1) Immediate.
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(2) Let f and g be an X– computable function and a Y– computable
function, respectively, such that A = range(f), B = range(g).
(a) ⇒ (b). Assume that βA,X 6Z βB,Y via some Z– computable
function h. Then β ◦ f = β ◦ g ◦ h. Define

ϕ(x) =

{
g(h(µy (x = f(y)))) if x ∈ A,

↑ otherwise.

Then ϕ is the desired partial Z– computable function. (Notice that
dom(ϕ) = A.)
(b) ⇒ (c). Let η be the Z– c.e. equivalence relation generated by
the set of pairs

{(x, ϕ(x)) | x ∈ A}.
It is easy to see that η satisfies (c).
(c) ⇒ (a). Let η satisfy the conditions in (c); let η =

⋃
s ηs where

{ηs}s∈IN is a Z– computable sequence of finite sets approximating
η. Define a function h as follows:

h(x) ® π0(µs((f(x), g(π0(s))) ∈ ηπ1(s))).

It is now easy to see that h is a Z– computable function reducing
βA,X to βB,Y.

(3) This item follows from (2b) taking ϕ to be the identity embedding
of A into B, i.e.

ϕ(x) ®
{

x if x ∈ A,

↑ otherwise.

Notice that ϕ is in this case partial X– computable.

(4) Claim (3) implies that βA,X 6Z βA∪B,Z and βB,Y 6Z βA∪B,Z.
Therefore, βA,X ⊕ βB,Y 6Z βA∪B,Z.
To prove that βA∪B,Z 6Z βA,X ⊕ βB,Y and let f1 be an X– com-
putable function, f2 a Y– computable function and f a Z– com-
putable function whose ranges are A,B and A ∪ B respectively.
By the Reduction Theorem there exist Z– c.e. sets A1 and B1

such that A1 ⊆ A, B1 ⊆ B, A1 ∩ B1 = ∅ and A1 ∪ B1 = A ∪ B.
Then f−1(A1)∪f−1(B1) = IN and f−1(A1)∩f−1(B1) = ∅. Hence,
f−1(A1), f−1(B1) are Z– computable sets. For i = 1, 2, let gi(x) ®
µy(fi(y) = f(x)) and define

g(x) ®
{

2g1(x) if x ∈ f−1(A1),
2g2(x) + 1 if x ∈ f−1(B1)

.
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It is easy to see that βA∪B,Z is reducible to βA,X⊕βB,Y by the Z–
computable function g.

(5) Immediately from (4).

(6) A numbering γ 6X β can be considered of the form γ = βA,X,
where A = range(f), and f is any X– computable function that
reduces γ to β.

(7) This follows from (5) and (6).

(8) Let γ = β ◦ f , where f is some X– computable function, and let
A ⊇ range(f) be any Y– c.e. set, with say A = range(g) and g is
Y– computable. Then

h(x) ® µy (g(y) = f(x))

is the desired Z– computable function that reduces γ to βA,Y.

(9) Let η be the least X –c.e. equivalence relation containing the set
{(x, a) | x ∈ A}. Then by (2), βA,X 6X βB,X. Thus by (5),
βA∪B,X ≡X βB,X, and statement (9) is proved.

(10) This is a consequence of (9).

Particularly important is the case in which X = Y = ∅. In this case
the previous lemma gives:

Lemma 2.2. For every pair A,B of c.e. sets and for every pair of
numberings α, β, we have

(1) The following are equivalent:

(a) βA 6 βB;

(b) there is a partial computable function ϕ satisfying dom(ϕ) ⊇
A, ϕ(A) ⊆ B and for all x ∈ A, β(x) = β(ϕ(x));

(c) there exists a c.e. equivalence relation η such that

∀x, y((x, y) ∈ η & x 6= y ⇒ x, y ∈ A ∪B),
∀x, y((x, y) ∈ η ⇒ β(x) = β(y)),
∀x ∈ A∃y ∈ B((x, y) ∈ η);

(2) if A ⊆ B then βA 6 βB;

(3) if βA 6 βB, then βB ≡ βA∪B;
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(4) if α 6 β then α = βC for some c.e. set C;

(5) if α 6 β, and α ≡ βC , for some c.e. set C, then for every γ such
that α 6 γ 6 β there exists a c.e. set D with C ⊆ D and γ ≡ βD;

(6) βA∪B ≡ βA ⊕ βB;

(7) let U be any set; if γ 6U β via some U– computable function f ,
then γ 6U βC , for every c.e. set C such that C ⊇ range(f).

(8) if for some a ∈ B, β[A] = {β(a)} then βA∪B ≡ βB;

(9) if A is finite set and β[A] ⊆ β[B] then βA∪B ≡ βB.

Proof. The statements follow immediately from the previous lemma.

We will consider mainly intervals and ideals of Rogers semilattices
R0

m(A) with m ≥ 2. It should be mentioned that the principal ideals
of R0

1(A), in the case of finite families A of c.e. sets, were completely
described by Yu.L. Ershov and I.A. Lavrov in [8]. V.V. V’jugin studied
initial segments of R0

1(A) for some infinite families A ⊆ Σ0
1 (see [24] and

[25]). A first insight into the ideals of R0
m(A), for m ≥ 2, is provided by

the following theorem.

Theorem 2.1 (S.S.Goncharov). Let Bk+1 be the finite Boolean alge-
bra with k + 1 atoms. Then

(1) for every infinite Σ0
n+2– computable family A, R0

n+2(A) contains
an element deg(β) such that the subsemilattice β̂ is isomorphic to
Bk+1 \ {0};

(2) for every finite Σ0
n+2– computable family A, R0

n+2(A) contains an
element deg(β) such that the subsemilattice β̂ is isomorphic to
Bk+1.

Proof. Let R0, R1, . . . , Rk be infinite computable sets such that
⋃

i≤k

Ri = IN and Ri ∩Rj = ∅ if i 6= j.

For every i ≤ k let fi be a computable 1–1 function such that range(fi) =
Ri. We will consider the Boolean algebra Bk+1 as the subalgebra of the
Boolean algebra of all subsets of IN, generated by R0, R1, . . . , Rk.

(1) Let A be an infinite Σ0
n+2– computable family, and let A0, . . . , Ak

be distinct elements of A. Choose α ∈ Com0
n+2(A), and let M be a

maximal set. For every i ≤ k, let Mi ® fi[M ], and let

Ri \Mi ® {mi
0 < mi

1 < mi
2 < . . .}.
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Define a numbering β of A as follows: For every x ∈ IN, find i ≤ k such
that x ∈ Ri, and let

β(x) ®
{

Ai if x ∈ Mi,

α(j) if x = mi
j .

Following the proof of Theorem 1.3, [4], one easily shows that for every
i ≤ k, βRi is a minimal Σ0

n+2– computable numbering of A, and βRi 

βRj if i 6= j. Lemma 2.2(6) implies that

β ≡ βR0∪R1∪...Rk
≡ βR0 ⊕ βR1 ⊕ · · · ⊕ βRk

.

We will now prove that β̂ is isomorphic to Bk+1 \ {0}. It is sufficient to
show that for every γ ∈ Com0

n+2(A), if γ 6 β then

γ ≡ βRi0
⊕ βRi1

⊕ · · · ⊕ βRis

for some unique sequence 0 ≤ i0 < i1 < . . . < is ≤ k.
So, let γ 6 β and choose by Lemma 2.2(4) some c.e. set Q such that

γ ≡ βQ. Denote by I0 and I1 the sets

I0 ® {i | i ≤ k & Q ∩ (Ri \Mi) is infinite}
and

I1 ® {0, 1, . . . , k} \ I0,

respectively. Note that I0 6= ∅ since A is infinite. Define

Q0 ®
⋃

i∈I0

(Ri \Mi) ∩Q,

Q1 ®
⋃

i∈I1

(Ri \Mi) ∩Q,

Q2 ®
⋃

i∈I1

(Q ∩Mi),

Q3 ®
⋃

i∈I0

((Q ∪Q0) ∩Ri).

Since M is maximal, it follows that Q0 is finite. Then, by Lemma 2.2(9),

βQ∪Q0 ≡ βQ.

We have Q ∪ Q0 = Q1 ∪ Q2 ∪ Q3. The set Q1 is finite by choice of I1,
therefore, by Lemma 2.2(9), βQ ≡ βQ2∪Q3 . Since β[Q ∩Mi] ⊆ {Ai} for
all i ≤ k it follows by Lemma 2.2(6) and (8) that

βQ ≡ βQ3 ≡ βRi0
⊕ βRi1

⊕ · · · ⊕ βRis
,
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where i0, i1, . . . , is are all the elements of I0. Thus, the ideal β̂ of the
semilattice R0

n+2(A) is isomorphic to Bk+1 \ {0}.
For uniqueness it is sufficient to show that, fori ≤ k,

βRi 66 βR0 ⊕ . . .⊕ βRi−1 ⊕ βRi+1 ⊕ . . .⊕ βRk
.

By Lemma 2.2(6) it is sufficient to show that βRi 66 βR′i where R′
i =⋃

j 6=i Rj . Let β ◦ fi = β ◦ g ◦ h where g and h are computable functions
and range(g) = R′

i. Then (g ◦ h)[M ] ⊆ ⋃
j 6=i(Rj \ Mj) and (g ◦ h)[M ]

is finite since
⋃

j 6=i(Rj \ Mj) is immune. But this implies that M is
computable, contradicting the choice of M . Thus, the ideal β̂ of the
semilattice R0

n+2(A) is isomorphic to Bk+1 \ {0}.
(2) If A is finite then, as in Theorem 1.3, we can easily show that

R0
n+2(A) contains any principal ideal of the c.e. m– degrees. It follows

from a result of Lachlan, [17], that there exists a c.e. set such that the
principal ideal of m– degrees generated by the m– degree of this set is
isomorphic to Bk+1.

We are now going to exhibit a great variety of intervals and ideals of
R0

n+2(A), for every n ≥ 0. We still need some definitions and notations.

Definition 2.2. Let ε denote the poset of all c.e. subsets of ω with
respect to inclusion. As is well known, ε is a bounded (i.e. with least
and greatest element) distributive lattice.

Let ε∗ denote the bounded distributive lattice obtained by dividing ε
modulo the ideal of all finite sets.

If X is any c.e. set, then εX denotes the principal filter of ε gen-
erated by X, i.e. the collection of all c.e. supersets of X: Clearly εX

is still a bounded distributive lattice. Likewise, ε∗X denotes the bounded
distributive lattice obtained by dividing εX modulo the finite sets.

The following three lemmas play a key role in understanding the con-
structions in the proofs of several theorems in the sequel of the paper.

Lemma 2.3. Let α, β be Σ0
n+2– computable numberings of a family A.

Then the mapping ψ1 : ε −→ R0
n+2(A) defined by ψ1(C) ® deg(α⊕ βC)

for every C ∈ ε, induces an isomorphism from ε∗ onto [α, α⊕ β] if and
only if

(1) for every infinite C ∈ ε, βC 
 α;

(2) for every C1, C2 ∈ ε if C1 \ C2 is infinite then βC1 
 βC2.

Proof. The conditions (1) and (2) are clearly necessary. As to sufficiency,
let (1) and (2) hold. Clearly, by (2) and (9) of Lemma 2.2, if C1 ⊆∗ C2

then α⊕ βC1 6 α⊕ βC2 .
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Moreover, we can use (5) and (6) of Lemma 2.2 to show that the
mapping induced by ψ1 is onto. In fact, let γ be a numbering of A
such that α 6 γ 6 α ⊕ β and let C1 be the set of all even numbers.
Then α ≡ (α ⊕ β)C1 . By Lemma 2.2 (5), there exists a c.e. superset
C2 of the set C1 such that γ ≡ (α ⊕ β)C2 . Then by Lemma 2.2 (6),
(α ⊕ β)C2 ≡ (α ⊕ β)C1 ⊕ (α ⊕ β)C2\C1

. Therefore γ ≡ α ⊕ βD where
D = {x : 2x + 1 ∈ C2 \ C1}.

We are only left to show that if C1\C2 is infinite then α⊕βC1 
 α⊕βC2 .
For the sake of a contradiction, suppose otherwise, and let C1 \ C2 be
infinite and α ⊕ βC1 6 α ⊕ βC2 . Then βC1 6 α ⊕ βC2 . Let f be a
computable function such that range(f) = C1, and let g be a computable
function that reduces βC1 to α⊕ βC2 . Define

C3 ® {f(x) | g(x) even}
C4 ® {f(x) | g(x) odd}.

Then C1 = C3∪C4 and C3∩C4 = ∅. Clearly βC3 6 α. If C3 were infinite,
then by condition (1) we would get βC3 
 α. Thus C3 is finite. But then
C1 =∗ C4 and thus, being βC4 6 βC2 , we would have βC1 ≡ βC4 6 βC2 ,
contradicting (2).

Lemma 2.4. Let β be a Σ0
n+2– computable numbering of an infinite

family A such that every set of A has infinitely many β -indices. Let
ψ2 : ε −→ R0

n+2(A) be a mapping defined as follows: ψ2(C) ® deg(βC),
C ∈ ε. Then

(1) ψ2 induces an epimorphism of upper semilattices from the semilat-
tice 〈ε∗ \ {⊥},∪∗,⊆∗〉 onto the ideal β̂ of the semilattice R0

n+2(A)
if and only if for every infinite C ∈ ε, βC is a numbering of the
whole family;

(2) ψ2 induces an isomorphism between 〈ε∗\{⊥},∪∗,⊆∗〉 and R0
n+2(A)

if and only if for every pair of infinite sets C1, C2 ∈ ε, if C1 \ C2

is infinite then βC1 
 βC2.

Proof. Let A and β be chosen as in statement of the lemma.

(1) Necessity is obvious (if the condition does not hold then ψ2 is
not well defined). For sufficiency we only need to show that ψ2

preserves the binary operation and induces a mapping onto β̂. This
follows immediately from (4) and (6) of Lemma 2.2 (notice that
ψ2 is well defined by (9) of lemma 2.2).

(2) Sufficiency is evident. Let us prove necessity. Let ψ2 induce an
isomorphism of 〈ε∗ \ {⊥},∪∗,⊆∗〉 onto R0

n+2(A) and assume that
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βC1 6 βC2 for some pair of infinite c.e. sets C1, C2 such that C1\C2

is infinite. Then by (3) of Lemma 2.2, βC2 ≡ βC1∪C2 . Therefore,
ψ2[C2] = ψ2[C1 ∪ C2] but C2 6=∗ C1 ∪ C2. This is in contradiction
with the injectivity of the mapping induced by ψ2 on ε∗ \ {⊥}.

Lemma 2.5. Let A be a finite family of Σ0
n+2– sets, and suppose that

for some β ∈ Com0
n+2(A) and some finite set F we have that β[F ] = A.

Let ψ2 : ε −→ R0
n+2(A) be defined as in the previous lemma. Then

(1) ψ2 induces an epimorphism of upper semilattices from 〈ε∗F ,∪∗,⊆∗〉
onto the ideal β̂ of the semilattice R0

n+2(A);

(2) ψ2 induces an isomorphism between 〈ε∗F ,∪∗,⊆∗〉 and R0
n+2(A) if

and only if for every pair of sets C1, C2 ∈ εF , if C1 \C2 is infinite
then βC1 
 βC2.

Proof. Let A, β, and F be chosen as in statement of lemma.

(1) The mapping ψ2 is onto by (4) and (9) of Lemma 2.2 and preserves
the binary operation by (6) of the same lemma. (Notice that ε∗F =
ε∗).

(2) Similar to the proof of (2) in Lemma 2.4.

Theorem 2.2. Let A be a Σ0
n+2– computable family. If α ∈ Com0

n+2(A)
is not 0′– universal in Com0

n+2(A) then there exists a numbering β ∈
Com0

n+2(A) such that the following conditions hold:

The interval [α, α⊕ β] is isomorphic to ε∗;

the ideal β̂ is isomorphic to ε∗\{⊥} if A is infinite, and β̂ is iso-
morphic to ε∗ if A is finite family.

Proof. Let A and α be given as in the statement of the theorem. We
will construct the numbering β by stages. Let γ ∈ Com0

n+2(A) be such
that γ 
0′ α, and let a1, a2 be two numbers such that γ(a1) 6= γ(a2).
Let {εt}t∈IN be a standard listing of all c.e. equivalence relations. Firstly
we will consider the case when A is infinite family.
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The requirements. In view of Lemma 2.3 and Lemma 2.4, we will
build a numbering β of A so as to satisfy the following requirements, for
every p, q, t:

P : β 60′ γ

Qp : Wp infinite ⇒ γ 60′ βWp

Rt,p,q : Wp \Wq infinite ⇒ βWp 
 βWq via εt

where we say that βWp 
 βWq via εt if εt does not witness the reduction
of βWp to βWq in the sense of (1c) of Lemma 2.2.

We will satisfy P by building a 0′– computable function h such that
β = γ ◦h. This feature of β (i.e. β 60′ γ) will be used in the verification.

For every p we will satisfy Qp by building, whenever Wp is infinite, a
0′– computable function fp such that range(fp) ⊆ Wp and γ = β ◦ fp.
Thus, by (7) of Lemma 2.2, γ 60′ βWp , which implies that βWp is a
numbering of the whole family, and βWp 
 α, otherwise γ 60′ α.

Finally, if Wp \ Wq is infinite then we will satisfy Rt,p,q by choosing
in the interval (k(t), k(t + 1)) – where k is a suitable increasing 0′–
computable function – numbers x, y with (x, y) ∈ εt, and letting β(x) 6=
β(y).

Together with the numbering β, and the functions h, fp, during the
construction we will also define the values of a counter function λt s(p, t),
for every number p. In fact, the definition of β will follow automatically
from h by letting β0 ® {〈0, γ(h(0))〉} and

βt+1 ® βt ∪ {〈x, γ(h(x))〉 | k(t) < x ≤ k(t + 1)}
for all t.

The construction. By stages:
Stage 0) Define

k(0) = h(0) ® 0, f0
p ® ∅, s(p, 0) ® p

for every p ∈ IN and go to next stage.

Stage t + 1). Go through Steps 1, 2), 3) in order.
Step 1) Check whether

∃x0∃x1∃y0∃y1[(∀i ≤ 1) (k(t) < xi, yi

& |{x0, x1, y0, y1}| = 4 & (xi, yi) ∈ εt)] (A)

If (A) does not hold then define k(t+1) ® k(t)+1. If (A) holds then
fix such numbers x0, x1, y0, y1 so that, say, 〈x0, x1, y0, y1〉 is the least such
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quadruple, and define

k(t + 1) ® max{x0, x1, y0, y1}+ 1.

Move to Step 2).
Step 2) Check if the following condition B(p) holds, for any p ≤ t:

B(p) : ∃z(k(t) < z ≤ k(t + 1) & z ∈ Wp).

If B(p) holds of some p, then fix p0 such that B(p0) holds and

∀p ≤ t(B(p) & p 6= p0 ⇒ (s(p0, t) < s(p, t)
∨ (s(p0, t) = s(p, t) & p0 < p)).

Let z0 be the least z for which B(p0) holds. Choose the least number
u0 /∈ dom(f t

p0
). Fix the least i0 ∈ {0, 1} such that z0 /∈ {xi0 , yi0}. Go to

Step 3).
Step 3) We distinguish the following cases:

(a) If (A) is not true and B(p) fails for every p ≤ t then choose the
least number y /∈ range(ht) and let

ht+1 ® ht ∪ {(k(t + 1), y)}, f t+1
p ® f t

p, s(p, t + 1) ® s(p, t) for all p.

(b) If (A) holds and, for some p, B(p) holds then define

ht+1 ® ht ∪ {(xi0 , a1), (yi0 , a2), (z0, u0)}
∪ {(x, a1) | k(t) < x ≤ k(t + 1) & x /∈ {xi0 , yi0 , z0}}

and

f t+1
p0

® f t
p0
∪ {(u0, z0)}, s(p0, t + 1) ® s(p0, t) + 1, f t+1

p ® f t
p

s(p, t + 1) ® s(p, t) for all p 6= p0

(c) If (A) holds but B(p) fails for all p ≤ t then define

ht+1 ® ht ∪ {(x0, a1), (y0, a2)} ∪ {(x, a1) |
k(t) < x ≤ k(t + 1) & x /∈ {x0, y0}}

and

f t+1
p ® f t

p, s(p, t + 1) ® s(p, t) for all p.

(d) If (A) fails and B(p) holds for some p then define

ht+1 ® ht ∪ {(z0, u0)}
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and

f t+1
p0

® f t
p0
∪ {(u0, z0)}, s(p0, t + 1) ® s(p0, t) + 1

f t+1
p ® f t

p, s(p, t + 1) ® s(p, t) for all p 6= p0

Notice that in this case z0 = k(t + 1). Go to stage t + 2.

The verification. We show that the following conditions hold:
(1) For every t, k(t) < k(t + 1).
(2) The functions h, k, fp, with p ∈ IN, are 0′– computable.
(3) For every x, we have that β(x) = γ(h(x)). Thus β is a Σ0

n+2–
computable numbering of some subfamily A0 ⊆ A.

(4) For every p, s(p) ≤ s(p + 1) ≤ s(p) + 1.
(1)–(4) are obvious.
(5) For every p,

Wp infinite ⇒ lim
t

s(p, t) = ∞.

To see this, assume that Wp is infinite and at a stage t0 we have
s(p, t0) = m for some m. We will show that for some t1 ≥ t0, s(p, t1+1) >
m.

For all t and p′ > m we have s(p′, t) > m (recall that s(p′, 0) = p′).
Let t1 ≥ t0 be a stage such that t1 ≥ p and for every p′ ≤ m,

if limt s(p′, t) < ∞ than (∀t ≥ t1)[s(p′, t) = s(p′, t1)];

if limt s(p′, t) = ∞ than s(p′, t1) > m;

(k(t1), k(t1 + 1)] ∩Wp 6= ∅.
So, either s(p, t1) > m, or s(p, t1) = m. In the latter case, we choose
p = p0 at t1 and increase the counter s(p, t), i.e. s(p, t1 + 1) = m + 1.

(6) For every p, if Wp is infinite then fp is total, range(fp) ⊆ Wp, and
γ = β ◦ fp.

This follows from the way we define fp and β and the fact that
limt s(p, t) = +∞ by (5) and thus every time we increase s(p, t) we
also define fp on the least element u0 which is not in the domain of f t

p:

β(fp(u0)) = β(z0) = γ(h(z0)) = γ(u0).

(7) For every p, if Wp is infinite then β is a numbering of the whole
family and βWp 
 α.

This follows immediately from the previous point, and the choice of
γ 
0′ α.

(8) For every p, q if Wp \Wq is infinite then βWp 
 βWp .
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To see this, assume that Wp \Wq is infinite, and βWp 6 βWp . By (1c)
of Lemma 2.2, let η be a c.e. equivalence relation such that

∀x, y((x, y) ∈ η & x 6= y ⇒ x, y ∈ Wp ∪Wq),
∀x, y((x, y) ∈ η ⇒ β(x) = β(y)),
∀x ∈ Wp∃y ∈ Wq((x, y) ∈ η).

Let η = εt for some t ∈ IN. Since Wp \Wq is infinite it follows that either
η has infinitely many nontrivial equivalence classes, or it has an infinite
equivalence class. Therefore (A) holds at stage t. By construction, at
stage t we proceed through (b) or (c) in Step 3. We then define h(x) = a1,
h(y) = a2 for some x, y > k(t) such that (x, y) ∈ η. But (x, y) ∈ η
implies β(x) = β(y), and therefore γ(a1) = γ(a2), since β(x) = γ(h(x))
and β(y) = γ(h(y)). This contradicts our choice of γ(a1) 6= γ(a2).

To finish off the proof in the case of an infinite family A, we observe
that β satisfies both Lemma 2.3 and Lemma 2.4. (Note that every set
of A has infinitely many β -indices. This is consequence of (6), since
there are infinitely many pairwise disjoint infinite c.e. sets.) Hence the
interval [α, α ⊕ β] is isomorphic to ε∗ and the ideal β̂ is isomorphic to
ε∗\{⊥}.

Finally, if A is finite, then we may slightly modify stage 0 of our
construction as follows. Let A consist of m+1 sets and let b0, b1, . . . , bm

be γ -indices of these sets. Then at stage 0 we define k(0) ® m, h(i) ® bi

for all i ≤ m, and let f0
p ® ∅, s(p, 0) ® p for every p ∈ IN.

It is easy to check that the modified numbering β satisfies both Lemma
2.3 and Lemma 2.5 and thus in this case the ideal β̂ is isomorphic to ε∗F
for F = {0, 1, . . . , m}. The result then follows by observing the trivial
fact that the lattices ε∗F and ε∗ are isomorphic.

Corollary 2.2.1 (S.Podzorov, [19]). Let A be any Σ0
n+2– computable

family. For every numbering α ∈ Com0
n+2(A) there exists a numbering

β ∈ Com0
n+2(A) which is 0′– equivalent to α and such that

(1) β̂ is isomorphic to ε∗\{⊥} if the family A is infinite;

(2) β̂ is isomorphic to ε if the family A is finite.

Proof. Note that numbering β constructed in Theorem 2.2 is 0′– equiv-
alent to γ. The proof is now immediate, since if we do not require that
the interval [α, α ⊕ β] be isomorphic to ε∗, then we do not need the
feature that γ 
0′ α. In other words, we can carry on the construction
of Theorem 2.2 starting from the numbering α instead of γ, and thus
obtaining the desired conclusions (1) and (2).
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Corollary 2.2.1 and the fact that the elementary theory of ε∗ is hered-
itarily undecidable, [13], immediately yield:

Corollary 2.2.2. The elementary theory of every non-trivial Rogers
semilattice R0

n+2(A) is hereditarily undecidable.

Corollary 2.2.1 and Corollary 2.2.2 give us a deep insight into the
complexity of Rogers semilattices of Σ0

n+2 –computable families. The
case of Σ0

1 –computable families is still open:

Question 3. Is the elementary theory of any non-trivial Rogers semi-
lattice of a Σ0

1 –computable family hereditarily undecidable, or at least
undecidable?

We know that the range of isomorphism types of ε∗A, for different c.e.
sets A, is very wide. For instance, we know that every countable Boolean
algebra with a sufficiently effective presentation is isomorphic to some ε∗A
(namely every Σ0

3– presentable Boolean algebra, see [15]; see also [23]).
Under reasonable conditions, we can realize these isomorphism types as
intervals of Rogers semilattices of arithmetical numberings.

Theorem 2.3. Let A be a Σ0
n+3– computable family, and let A be both

an infinite and coinfinite c.e. set. Then for every α ∈ Com0
n+3(A) such

that α is not 0(2)– universal in Com0
n+3(A), there exists some numbering

β ∈ Com0
n+3(A) such that the subsemilattice [α, β] is isomorphic to ε∗A.

Proof. Let A, A, and α be given, and let f : IN −→ A be a computable
bijection. We will construct a numbering β, as required. First of all, we
define

β(f(n)) ® α(n)

so that α 6 β and α ≡ βA. It remains to define β(n) on each n ∈ A:
This will be done, stage by stage, by the construction below. Fix some
γ ∈ Com0

n+3(A) such that γ 
0(2) α; define a listing of all c.e. supersets
of A by letting, for every i,

Vi ® Wi ∪A;

and fix some distinct C, D ∈ A.
We sketch the strategy for the construction. We define β so that the

mapping
ψ(Vi) ® deg(βVi)

induces an isomorphism from ε∗A onto [α, β]. For this, we first prove:
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Lemma 2.6. ψ (as defined above) induces an isomorphism from ε∗A onto
[α, β] if and only if

∀Vi, Vj ∈ εA

(
Vi \ Vj infinite ⇒ βVi 
 βVj

)
. (†)

Proof. The condition (†) is clearly necessary. Suppose now that ψ sat-
isfies condition (†). It follows from (2) and (9) of Lemma 2.2 that

Vi ⊆∗ Vj ⇒ βVi 6 βVj .

By (5) of Lemma 2.2 every γ such that α 6 γ 6 β satisfies γ ≡ βB, for
some c.e. B ⊇ A. So ψ is onto. On the other hand, if Vi *∗ Vj , then
Vi \ Vj is infinite, and thus βVi 
 βVj . So ψ is an isomorphism.

The requirements. In view of Lemma 2.6 the construction aims to
satisfy the following requirements:

Rp,i,j :Vi \ Vj infinite and ϕp[Vi] 6⊆∗ A ⇒ βVi 
 βVj via ϕp

Qi :Vi \A infinite ⇒ γ 60(2) βVi

where we say that βVi 
 βVj via ϕp if the following does not happen (see
(1b) of Lemma 2.2): Vi ⊆ dom(ϕp), ϕp[Vi] ⊆ Vj , and, for every x ∈ Vi,
β(x) = β(ϕp(x)).

The requirement Rp,i,j will be satisfied at stage 2t+1 with t = 〈p, i, j〉,
by looking for some k ∈ Vi \A such that ϕp(k) ∈ Vj \A, and by defining
β(k) 6= β(ϕp(k)).

The requirement Qi will be attacked at infinitely many stages 2t + 2,
with π0(t) = i, each time extending (if Vi \ A is infinite), the values of
a 0(2)– computable function fi such that range(fi) ⊆ A and γ = β ◦ fi.
This is used to show that γ 60(2) α (as shown in details later), contrary
to the assumptions.

Step by step, we will construct an increasing sequence {At}t∈IN of
finite sets such that A =

⋃
t At, and the (in general, partial) 0(2)– com-

putable functions {fi}i∈IN.

The construction. By stages:
Stage 0) Define β(f(n)) ® α(n) for every n. Let f0

i ® ∅ for all i, and
let A0 ® ∅.
Stage 2t + 1). Assume that t = 〈p, i, j〉. If i 6= j and the following
conditions hold:

(1) Vi ⊆ dom(ϕp) & ∀y(y ∈ Vi ⇒ ϕp(y) ∈ Vj);

(2) ∃k(k ∈ Vi \A & ϕp(k) ∈ Vj \A) & k /∈ A2t & ϕp(k) /∈ A2t ∪ {k})
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then choose the least such number k, let

A2t+1 ® A2t ∪ {k, ϕp(k)}
β(k) ® C

β(ϕp(k)) ® D

and move to next stage.
If i = j, or either of (1) or (2) does not hold, then do nothing and

move to next stage.

Stage 2t + 2). Suppose that π0(t) = i, and there exists x ∈ Vi \ A such
that β(x) has not yet been defined. Fix the least such x, and define

A2t+2 ® A2t+1 ∪ {x}
f2t+2

i ® f2t+1
i ∪ {(s, x)}

where s is the least number such that s /∈ dom(f2t+1
i ); finally define

β(x) ® γ(s).

Move to next stage.

Finally, define fi =
⋃

t f t
i , for every i.

The verification. The following properties hold:
(1) For every x there exists a stage t such that β(x) is defined at stage

t.
To see this, notice that if x ∈ A then β(x) is defined at stage 0 of the

construction. On the other hand, let i0 be such that IN = Vi0 . At every
stage 2t + 2, with π0(t) = i0, we define β(x) for the least x such that
x /∈ A and β(x) is undefined by stage 2t + 1. So if x /∈ A, then there
exists some t such that we define β(x) at stage 2t + 2.

(2) β ∈ Com0
n+3(A).

Indeed, range(β) = A. This follows from the way β is defined at stage
0. Moreover, the relation “y ∈ β(x)” is 0(3)– computably enumerable,
since α, γ ∈ Com0

n+3(A) and the conditions (1) and (2) of odd stages, as
well as the test relative to each even stage can be effectively tested with
oracle 0(2).

(3) For every i, if Vi \A is infinite, then βVi 
 α.
Indeed, if Vi\A is infinite then at every stage 2t+2 such that π0(t) = i,

we have that f2t+2
i = f2t+1 ∪ {(s, x)}, for some s and x ∈ Vi. It is

thus easy to see that fi is 0(2)– computable, and γ = β ◦ fi. Therefore
γ 60(2) βVi by (7) of Lemma 2.2. This implies that βVi 
 α, since
otherwise it would follow that γ 60(2) α.
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(4) If Vi \ Vj is infinite then βVi 
 βVj .
We prove this by contradiction. Assume that βVi 6 βVj . Then by

(1b) of Lemma 2.2 there exists a partial computable function ϕp such
that Vi ⊆ dom(ϕp), ϕp[Vi] ⊆ Vj , and β(x) = β(ϕp(x)), for every x ∈ Vi.

Let Vm = {x ∈ Vi | ϕp(x) 6= x} ∪ A and t = 〈p,m, j〉. It is easy to
see that Vm \ A is infinite since it contains Vi \ Vj . We have ϕp[Vm] 6⊆∗
A, otherwise βVm 6 βA via ϕp, but this contradicts (3). Moreover,
ϕp[Vm \ (A ∪ A2t)] 6⊆ A ∪ A2t. To show this fact suppose that this
inclusion holds and consider the partial computable function

ϕq(x) ®





ϕp(x) if ∃y(g(y) = ϕp(x)&∀z < y(g(z) 6∈ {x, ϕp(x)})),
x if ∃y(g(y) = x&∀z < y(g(z) 6∈ {x, ϕp(x)})),
↑ otherwise,

where g is a computable function from IN onto A ∪A2t. It’s easy to see
that dom(ϕq) ⊇ Vm and βVm 6 βA via ϕq which contradicts (3) again.

Now consider the stage 2t+1. We see that all conditions of this stage
hold and we have β(k) = C 6= D = β(ϕp(k)) for some k ∈ Vm. But
k ∈ Vi since Vm ⊆ Vi by choice of Vm.

By requesting more of α, we can show that a result similar to Theorem
2.3 holds also for Σ0

2– computable families. (We observe that next theo-
rem is a trivial consequence of the previous theorem if n > 0; for n = 0
it provides a stronger result. We give a proof here for any arbitrary n.)

Theorem 2.4. Let A be a Σ0
n+2– computable family and let A be both an

infinite and coinfinite c.e. set. If α ∈ Com0
n+2(A) and α is not 0(n+1)–

universal in Com0
n+2(A) then there exists a numbering β ∈ Com0

n+2(A)
such that the interval [α, β] is isomorphic to ε∗A.

Proof. Let A, A, and α be given as in the statement of the theorem.
In view of Lemma 2.6, we construct β so as to satisfy the following
requirements, for every p, i, j:

Rp,i,j : Vi \ Vj infinite ⇒ βVi 
 βVj via ϕp

where Ve ® We ∪ A, as in the proof of Theorem 2.3, and “βVi 
 βVj

via ϕp” has the same meaning as in the proof of Theorem 2.3. Thus if
Vi \ Vj is infinite, satisfaction of Rp,i,j , for any p, will guarantee that ϕp

does not reduce βVi to βVj in the sense of (1b) of Lemma 2.2.
For this proof we employ a finite priority argument to computably

enumerate, relatively to the oracle 0(n+1), a numbering β so that β ∈
Com0

n+2(A).
We briefly sketch the strategy to meet Rp,i,j .
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Let γ ∈ Com0
n+2(A) be such that γ 
0(n+1) α. Using that α, γ ∈

Com0
n+2(A), fix 0(n+1)– computable sequences of finite sets {αt(x)}t,x∈IN

and {γt(x)}t,x∈IN such that, for every t, x,

αt(x) ⊆ αt+1(x), α(x) =
⋃
t

αt(x)

and
γt(x) ⊆ γt+1(x), γ(x) =

⋃
t

γt(x).

First of all, we make β “look like” α on A, to get α 6 β. Then
we monitor (via the notion of t– reducibility, and a suitable counter
function) the step by step progress towards obtaining that Vi \ Vj is
infinite and ϕp reduces βVi to βVi (via monitoring, in turn, the progress
towards obtaining Vi ⊆ dom(ϕp), ϕp[Vi] ⊆ Vj and β(x) = β(ϕp(x)),
for every x ∈ Vi). If this progress threatens to tend to infinity, then we
select (by suitably labelling its elements) a set G ⊆ Vi\Vj (hence G ⊆ A)
on which we define a partial 0(n+1)– computable function Fγ such that,
for every x ∈ G, β(x) = γ(Fγ(x)). On the other hand, if Fγ(x) is
defined and ϕp(x) ∈ Vj , then we define on ϕp(x) the value Fα(ϕp(x))
of a 0(n+1)– computable function Fα, so that β(ϕp(x)) = α(Fα(ϕp(x))).
As shown in details later, this implies that γ 60(n+1) α, contradiction.
Thus ϕp does not reduce βVi to βVj (in the sense of (1b) of Lemma 2.2),
and eventually the requirement is satisfied, and thus injures only finitely
many times the lower priority requirements.

Some of the β-indices will be marked by labels of the form m , with
m ∈ IN (where m must be viewed as coding a triple, m = 〈p, i, j〉).
Together with the values of the finite approximation βt to β at stage t,
the construction will define a counter function s(m, t), for every m.

We will say that ϕp t-reduces βVi to βVj if (where m = 〈p, i, j〉)
(1) s(m, t) < max(Vi \ Vj ∩ [0, t]);

(2) for every x ∈ Vi∩[0, s(m, t)] we have that x ∈ dom(ϕp) and ϕp(x) ∈
Vj ;

(3) for every x ∈ Vi ∩ [0, s(m, t)] we have

βt(x) ∩ [0, s(m, t)] = βt(ϕp(x)) ∩ [0, s(m, t)].

Fix also a partial computable 1–1 and onto function ϕ : A −→ IN,
and a 0′– computable function k enumerating A in order of magnitude,
i.e.

A = {k(0) < k(1) < · · · }.
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Finally, at stage t we will define also the approximations F t
α, F t

γ of
partial 0(n+1)– computable functions Fα, Fγ . The arguments of these
functions are β– indices, the values of Fα are α– indices, and the values
of Fγ are γ– indices. Moreover, we shall have, for every t,

dom(F t
α) ∩ dom(F t

γ) = ∅
and

dom(F t
α) ∪ dom(F t

γ) = {k(i) | i < t}.

The construction. By stages:
Stage 0) Define β0(x) ® α0(ϕ(x)) for every x ∈ A. Let β0(x) ® ∅, for
every x ∈ A. Let F 0

α = ∅ and F 0
γ = ∅. Define s(m, 0) = 0 for all m.

Move to next stage.

Stage t + 1) For every m ≤ t (with, say, m = 〈p, i, j〉) check whether the
following conditions hold.

Any number, marked by m′ with m′ ≤ m, is less then k(t);

ϕp t– reduces βVi to βVj ;

k(t) ∈ Vi \ Vj ;

k(t) ∈ dom(ϕp) and ϕp(k(t)) ∈ Vj .

If there is no m ≤ t with those four properties then go directly to
Procedure E below. Otherwise let m0 = 〈p0, i0, j0〉 be the least number
satisfying these conditions. Act as follows.

Remove all labels m with m > m0 from all numbers currently
marked by these labels;

Increase s(m0, t) (i.e. define s(m0, t + 1) = s(m0, t) + 1);

Put the label m0 on k(t) (notice that k(t) is not currently marked
by any label since we have already removed all markers m , with
m > m0);

If ϕp0(k(t)) 6∈ A and ϕp0(k(t)) is not marked by any markers then
put the marker m0 on ϕp0(k(t));

If ϕp0(k(t)) is marked by m0 (it should be kept in mind that we
have already executed the previous item) and ϕp0(k(t)) ∈ dom(F t

γ)
then remove the pair (ϕp0(k(t)), F t

γ(ϕp0(k(t))))from Fγ , find the
least pseudopair 〈y, s〉 such that βt(ϕp0(k(t))) ⊆ αs(y) and put
the pair (ϕp0(k(t)), y) into Fα.

Go to Procedure E, below.
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Procedure E. If k(t) is not marked by any markers then put the pair
(k(t), 0) into Fα. If k(t) is marked by m with m = 〈p, i, j〉, consider
the following possibilities:

k(t) ∈ Vi \ Vj . Find the least y such that y 6∈ range(F t
γ) or y ∈

range(F t
γ) but for every x such that F t

γ(x) = y we have that x is
not marked by m and put the pair (k(t), y) into Fγ ;

k(t) ∈ Vj . Put the pair (k(t), 0) into Fα.

Let F t+1
α and F t+1

γ be the sets of all pairs which are currently in Fα

and Fγ , respectively, as a consequence of the actions undertaken in the
previous stages, and of the action so far undertaken at the current stage.
Let z > t be the least number such that for all x, y,

(x, y) ∈ F t+1
α ⇒ βt(x) ⊆ αz(y)

(x, y) ∈ F t+1
γ ⇒ βt(x) ⊆ γz(y).

For every x, let

βt+1(x) ­





αt+1(ϕ(x)) if x ∈ A,

αz(y) if (x, y) ∈ F t+1
α for some y

γz(u) if (x, u) ∈ F t+1
γ for some u

∅ otherwise.

For any m, if s(m, t+1) has not yet been defined then let s(m, t+1) =
s(m, t). Go to the next stage.

The Verification. Let β(x) =
⋃

t∈IN βt(x). The construction satis-
fies the following properties:

(1) All parameters in the construction are 0(n+1)– computable and β
is Σ0

n+2– computable numbering of the family β[IN].
(2) For every t any number can be labelled by at most one marker

after stage t. Any marked number must be in A.
(3) We can remove marker only if we put some smaller marker. If we

put a marker m then we increase s(m, t). At every stage we put at
most one marker and we mark by it at most two numbers.

(4) For every m, t, s(m, t) ≤ s(m, t + 1) ≤ s(m, t) + 1.
(5) For every t, dom(F t+1

α ) ∩ dom(F t+1
γ ) = ∅, and

dom(F t+1
α ) ∪ dom(F t+1

γ ) = {k(0), . . . , k(t)}.
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(6) For every x 6∈ A if, for some t0, x ∈ dom(F t0
α ) then for all t ≥ t0

x ∈ dom(F t
α) and F t

α(x) = F t0
α (x).

(7) For every x 6∈ A if, for some t0, x ∈ dom(F t0
γ ) then for all t ≥ t0

such that x ∈ dom(F t
γ) we have F t

γ(x) = F t0
γ (x).

In view of properties (5)–(7) above we can introduce two functions:
Fα = limt F t

α and Fγ = limt F t
γ .

(8) dom(Fα) ∩ dom(Fγ) = ∅ and dom(Fα) ∪ dom(Fγ) = A. Fα is a
0(n+1)– computable partial function and for every 0(n+1)– computably
enumerable G such that G ⊆ dom(Fγ), the partial function Fγ ¹ G is
0(n+1)– computable.

(9) For every x ∈ dom(Fα), β(x) = α(Fα(x)), and for every x ∈
dom(Fγ), β(x) = γ(Fγ(x)).

(10) β is a Σ0
n+2– computable numbering of A.

We have already noticed in (1) that β is Σ0
n+2– computable. By the

definition of β we have that β[A] = A. From (8) and (9) we have that
β[A] ⊆ A.

(11) For every m (with, say, m = 〈p, i, j〉) if limt s(m, t) = ∞ then
Vi \Vj is infinite and βVi 6 βVj via ϕp (in the sense of Lemma 2.2 (1b)).

Suppose that limt s(m, t) = ∞, and Vi \ Vj is finite or βVi 66 βVj via
ϕp. If limt s(m, t) = ∞ then let t0 ≥ m be a step such that

if Vi \ Vj is finite than s(m, t0) ≥ max(Vi \ Vj);

if Vi 6⊆ dom(ϕp) then there exists x ∈ Vi such that x 6∈ dom(ϕp)
and x ≤ s(m, t0);

if ϕp(Vi) 6⊆ Vj then there exists x ∈ Vi such that ϕp(x) 6∈ Vj and
x ≤ s(m, t0);

if β(x) 6= β(ϕp(x)) for some x ∈ Vi then x ≤ s(m, t0) and for some
y ∈ (β(x)∪β(ϕp(x)))\ (β(x)∩β(ϕp(x))) we have y ≤ s(m, t0) and
y ∈ βt0(x) ∪ βt0(ϕp(x)).

According to the definition of t-reducibility and in view of property (4)
above, we have that for all t ≥ t0 ϕp does not t-reduces βVi to βVj . So
for any such t, m does not satisfy the second condition of stage t+1 and
we have s(m, t + 1) = s(m, t). A contradiction.

(12) For any m = 〈p, i, j〉 if m is the least number such that Vi \ Vj is
infinite and βVi 6 βVj via ϕp then limt s(m, t) = ∞.

From (11) we have that limt s(m′, t) < ∞ for all m′ < m. Suppose
that t0 is so big that m ≤ t0 and s(m′, t0) = limt s(m′, t0) for all m′ < m.

In order to obtain a contradiction suppose that limt s(m, t) = s(m, t1)
for some t1 ≥ t0. In view of (3) after stage t1 we do not put markers
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m′ for m′ ≤ m. Let t ≥ t1 be a step such that k(t) ∈ Vi \ Vj , k(t)

is greater that any number marked by m′ with m′ ≤ m at stage t1,
max(Vi \ Vj ∩ [0, t]) > s(m, t1) and for all x ∈ Vi ∩ [0, s(m, t1)] we have
βt(x) ∩ [0, s(m, t1)] = β(x) ∩ [0, s(m, t1)] and βt(ϕp(x)) ∩ [0, s(m, t1)] =
β(ϕp(x))∩ [0, s(m, t1)]. Than all four conditions of step t+1 are satisfied
for m. They are not satisfied for any m′ < m since s(m′, t+1) = s(m′, t),
by choice of t0. Then m is the least number such that m ≤ t and all
conditions of stage t + 1 hold for m; therefore s(m, t + 1) = s(m, t) + 1
and we have a contradiction with the choice of t1.

(13) For every m, limt s(m, t) < ∞.
Let m = 〈p, i, j〉 be the least number with limt s(m, t) = ∞. By (11)

we have that Vi \ Vj is infinite and βVi 6 βVj via ϕp.
Let t0 be such that s(m′, t0) = limt s(m′, t) for all m′ < m. In view of

(3) we may assume that k(t0) is greater than any number ever marked
by m′ with m′ < m. Let M be the set of all numbers marked by m′

with m′ < m at the end of stage t0.
Let G = {k(t) : t ≥ t0 and s(m, t + 1) = s(m, t) + 1}. Then G is

0(n+1)– computably enumerable. For every t ≥ t0 if k(t) ∈ G then at
stage t + 1 we put the label m on k(t) and put k(t) into dom(F t+1

γ ).
After this, the marker m can not be removed from k(t) and we have
k(t) ∈ dom(F s

γ ) for all s > t. So, G ⊆ dom(Fγ) and G ⊆ Vi \ Vj .
Notice that G contains almost all numbers in dom(Fγ) that are ever

marked by m . Indeed if we put m on some x 6∈ G at some stage
t + 1 > t0 then x ∈ Vj and either x < k(t) and x ∈ dom(F t+1

α ) or
x = k(t′) for some t′ > t and we put x into dom(Fα) at stage t′ + 1.
Then from Procedure E of the construction we have that Fγ [G] is a
cofinite subset of IN.

On the other hand, for any x ∈ G ϕp(x) ∈ Vj , and either ϕp(x) ∈ A
or ϕp(x) ∈ dom(Fα) or ϕp(x) ∈ M . In all three cases we can easily
compute an α–index of ϕp(x) for any x ∈ G with oracle 0(n+1) since M

is finite, A is 0(n+1)– computable and β(x) = α(ϕ−1(x)) for all x ∈ A.
Putting things together we have that there is a 0(n+1)– computable

function g, defined on Fγ [G], such that γ(x) = α(g(x)) for all x ∈ Fγ [G].
In order to compute g(x) with oracle 0(n+1), in view of (8) and (9) we
may enumerate G until we find y ∈ G such that Fγ(y) = x and then
define g(x) to be an α–index of ϕp(y). Now defining g(x) on IN\Fγ [G] in
an obvious way we obtain that γ 60(n+1) α which contradicts the choice
of γ.

(14) All requirements Rp,i,j are satisfied.
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For a contradiction let m = 〈p, i, j〉 be the least number such that the
requirement Rp,i,j is not satisfied. Then limt s(m, t) = ∞ by (12) and
limt s(m, t) < ∞ by (13).

Properties (10) and (14) imply that the theorem is true.

The previous three theorems have been proved under the assump-
tion that the numbering α has special properties of relativized non-
universality. We do not know whether in any of these theorems this
assumption may be replaced by the weaker assumption of simple non-
universality. The following question therefore arises naturally:

Question 4. Do the claims of the previous three theorems remain true
if we just assume that the numbering α is not universal?

3. Empty intervals. Minimal elements and
minimal covers of Rogers semilattices

We now turn our attention to empty intervals of Rogers semilattices,
i.e. to intervals of the form (α, β) = ∅, with α < β (such a pair of
numberings is usually described by saying that β is a minimal cover of
α), and of the form ˆ̂α = ∅, i.e. α is minimal. We say that β is a strong

minimal cover of α if α < β and ˆ̂
β = α̂.

3.1 Minimal elements of Rogers semilattices
As to the number of minimal elements of Rogers semilattices of Σ0

n+1–
computable families, the question has been completely settled for infinite
families in the case n ≥ 1 by Badaev and Goncharov, see Theorem 1.3,
[4].

The case n = 0 is still open:

Question 5. Let A be a Σ0
1– computable family such that the Rogers

semilattice R0
1(A) contains at least two minimal elements. Does R0

1(A)
have infinitely many minimal elements?

There has been however a considerable progress towards answering
this question since it was first posed by Ershov in the late sixties.

We recall the following complete answer to this problem, due to Gon-
charov, [10], [11], if one just considers Friedberg or positive numberings:

Theorem 3.1 (S.Goncharov). For every n there exists a Σ0
1– com-

putable family A such that R0
1(A) has exactly n degrees of Friedberg

(positive) numberings.

Proof. See [10], [11]
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3.2 Covers and strong minimal covers in Rogers
semilattices

The following lemma was the starting point of an approach pursued by
S. Badaev and S. Goncharov’s, [3], towards searching for reasonable con-
ditions under which a Σ0

n+2– computable numbering has minimal covers.

Lemma 3.1. Let β be any Σ0
n+2– computable numbering of a family A.

If for some maximal set M , βM is a numbering of the whole family A
and β 
 βM then β is a minimal cover of βM .

Proof. Immediate by Lemma 2.2(5), and by maximality of M .

An evident way to construct a minimal cover β of a given numbering
α ∈ Com0

n+2(A) is the following. Choose any maximal set M and let
f be a computable bijection from IN onto M . For every x ∈ M , define
β(x) = αf−1(x). It remains to define β on M in such a way that
β ∈ Com0

n+2(A) and β 
 α.
The following theorem singles out some conditions under which this

can be suitably done.

Theorem 3.2. Let A ⊆ Σ0
n+2 be any Σ0

n+2– computable family, and let
α be a Σ0

n+2– computable numbering of A. If either

(1) there exists a proper subfamily A0 of A whose index set α−1[A0]
is 0(n+1)– computable, or

(2) the numbering α is not 0′– universal in Com0
n+2(A), or

(3) there exists a 0(n+1)– computable function f such that α(x) 6=
α(f(x)) for every x,

then α has a minimal cover.

Proof. Let M be a maximal set, with M = {m0 < m1 < m2 . . .}, and
let f be a one-to-one computable function with range(f) = M . If for
every x ∈ M we define β(x) ® α(f−1(x)) then clearly α ≡ βM . Let us
now define the value β(x) for an arbitrary x ∈ M according to which of
the assumptions (1), (2) or (3), in the statement of the theorem, holds.
Let x = ms for some s ∈ IN.

(1) Fix two sets A,B such that A ∈ A0 and B ∈ A \ A0. If ms ∈
dom(ϕs) and ϕs(ms) ∈ α−1(A0) then define β(ms) = B, otherwise let
β(ms) = A. Since the sets M , α−1(A0), and {s | ms ∈ dom(ϕs)} are
0(n+1)– computable it follows that β is a Σ0

n+2 – computable numbering
of A.
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To apply Lemma 3.1, it is sufficient to show that β 
 α. Suppose
β(x) = α(ϕs(x)), x ∈ IN, for some computable function ϕs. Then ms ∈
dom(ϕs). If ϕs(ms) ∈ α−1(A0) then β(ms) = B. On the other hand,
α(ϕs(ms)) ∈ A0, a contradiction. Similarly, if ϕs(ms) /∈ α−1[A0] then
β(ms) = A, and this is in contradiction with α(ϕs(ms)) 6∈ A0.

(2) Since the numbering α is not 0′– universal in Com0
n+2(A), there

exists γ ∈ Com0
n+2(A) such that γ 
0′ α.

Define β(ms) = γ(s). By Theorem 1.2, [4], β ∈ Com0
n+2(A). Since

the mapping λsms is 0′– computable, it follows that γ 60′ β. Therefore,
β 
 α, otherwise we would obtain γ 60′ α.

(3) Let f be a 0(n+1)– computable function, such that α(x) 6= α(f(x))
for every x. Define

β(ms) =

{
α(0) if ms 6∈ dom(ϕs),
α(f(ϕs(ms))) if ms ∈ dom(ϕs).

Again by Theorem 1.2, [4], β ∈ Com0
n+2(A). Let us prove that β 
 α.

By contradiction, assume that β is reducible to α via a computable
function ϕs. Then β(x) = α(ϕs(x)) for all x. By definition of β, β(ms) =
α(f(ϕs(ms))). Therefore, α(ϕs(ms)) = α(f(ϕs(ms))), i.e. ϕs(ms) is a
fixed point of the function f modulo the numbering α, contradicting
assumption (3).

Remark 3.1. The particular case of condition (1) in Theorem 3.2, when
A0 consists of a single set A, was considered by S.Badaev, S.Goncharov in
[3]. Conditions (2) and (3) were suggested by S.Badaev and S.Podzorov,
[5].

Question 6. Let A be any Σ0
n+2– computable family, and assume that

α ∈ Com0
n+2(A) is not universal in Com0

n+2(A). How many (up to
equivalence) minimal covers can α have?

The next theorem shows another approach to constructing minimal
covers based on the special minimal numberings considered in Theorem
1.3, [4].

Theorem 3.3. If A is an infinite Σ0
n+2– computable family and α ∈

Com0
n+2(A) is not 0′- universal in Com0

n+2(A), then there exist infinitely
many minimal covers (up to equivalence) of α.

Proof. Let A be an infinite Σ0
n+2– computable family, and let α, β ∈

Com0
n+2(A) be numberings such that β 
0′ α.

Let M be a maximal set and let M ′ ® {2x + 1 | x ∈ M}. For
every A ∈ A, let us consider the minimal numbering βM,A constructed
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in the proof of Theorem 1.3, [4]. We will now check that the numberings
α⊕βM,A, A ∈ A, are minimal covers of β and that α⊕βM,A 
 α⊕βM,B

if A 6= B.
Since βM,A ≡0′ β, it follows that α < α ⊕ βM,A, otherwise we would

obtain a contradiction with β 
0′ α. Let γ ∈ Com0
n+2(A) be any num-

bering such that α 6 γ 6 α ⊕ βM,A. If C1 stands for the set all even
numbers then α ≡ (α ⊕ βM,A)C1 . By Lemma 2.2(5), γ ≡ (α ⊕ βM,A)C2

for some c.e. set C2 ⊇ C1.
By construction of the numbering βM,A, we have (α ⊕ βM,A)(x) = A

for every x ∈ M ′. Therefore, by applying Lemma 2.2(8) if necessary, we
may suppose that C2 ⊇ M ′. By Lemma 2.2(6),

γ ≡ (α⊕ βM,A)C1 ⊕ (α⊕ βM,A)C2\C1
.

If (α ⊕ βM,A)[C2 \ C1] is a finite family then (C2 \ C1) \ M ′ is a
finite set since M is a maximal set. Applying Lemma 2.2(8,9), we have
(α⊕βM,A)C1 ≡ (α⊕βM,A)C2 , and, therefore, γ ≡ α. If (α⊕βM,A)[C2\C1]
is an infinite family then, by maximality of M , C2 is a co-finite set and,
hence, by Lemma 2.2(9), γ ≡ α ⊕ βM,A. Thus, for every A ∈ A, the
numbering α⊕ βM,A is a minimal cover of α.

It remains to show that α ⊕ βM,A 
 α ⊕ βM,B if A 6= B. We prove
this by contradiction. Assume that A 6= B and α ⊕ βM,A 6 α ⊕ βM,B.
Then βM,A 6 α ⊕ βM,B. By Lemma 2.2(4), βM,A ≡ (α ⊕ βM,B)D for
some c.e. set D. Let D1 and D2 consist of the even numbers of D and
the odd numbers of D, respectively. By Lemma 2.2(6),

βM,A ≡ (α⊕ βM,B)D1 ⊕ (α⊕ βM,B)D2 .

Just the same arguments which we have used for the set C2 above,
can be applied to the set D2 as well. So, we may suppose that M ′ ⊆ D2.
If the family (α⊕ βM,B)[D2 \M ′] is finite then the set D2 \M ′ is finite.
Then by Lemma 2.2(8,9), (α ⊕ βM,B)D ≡ (α ⊕ βM,B)D1 . Therefore,
βM,A ≡ αD′ with D′ = {x | 2x ∈ D1}. Hence, βM,A 6 α. Since
βM,A ≡0′ β, we obtain a contradiction with β 
0′ α.

If the family (α⊕βM,B)[D2 \M ′] is infinite then by maximality of M ,
the set D2 is co-finite with respect to the set of all odd numbers. Then
Lemma 2.2(6,9) implies that

βM,A ≡ (α⊕ βM,B)D ≡ αD′ ⊕ βM,B.

This is in contradiction with βM,B 
 βM,A.
Thus, α⊕ βM,A 
 α⊕ βM,B if A 6= B.

A useful condition guaranteeing the existence of strong minimal covers
is provided by the following theorem.
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Theorem 3.4 (S.Badaev, S.Podzorov). Let A be any Σ0
n+2– com-

putable family, and let α ∈ Com0
n+2(A). If there exist a subfamily

A0 ⊆ A, a numbering γ ∈ Com0
n+2(A0) with γ 
 α, and a computable

function f such that α(f(x)) ⊆ γ(x), for all x, then α has a strong
minimal cover.

Proof. See [5]. Notice that the proof is based on Lachlan’s construction
using Chinese boxes, [16].

Corollary 3.4.1. If α ∈ Com0
n+2(A) and there exists a subfamily A0 ⊆

A such that A0 has least element under inclusion and there is a num-
bering γ ∈ Com0

n+2(A0) with γ 
 α, then α has a strong minimal cover.

Proof. Let A,A0, α, γ be as in the statement of the corollary. Let ⊥ ∈
A0 be the least element of A0 under inclusion, and let a be such that
α(a) = ⊥. Define f(x) = a, for every x. Then α(f(x)) ⊆ γ(x), for
every x. Thus the hypotheses of Theorem 3.4 hold, and α has a strong
minimal cover.

Corollary 3.4.2. If a Σ0
n+2– family A has least element with respect to

inclusion, then every non– universal numbering α ∈ Com0
n+2(A) has a

strong minimal cover.

Proof. Immediate by the previous corollary, taking A0 = A. If α is not
universal in Com0

n+2(A), then there exists a numbering γ ∈ Com0
n+2(A)

such that γ 
 α.

Corollary 3.4.3. For every finite family A ⊆ Σ0
n+2, for every number-

ing α ∈ Com0
n+2(A), if α is not universal in Com0

n+2(A) then α has a
minimal cover.

Proof. If A contains ⊥, the least set under inclusion, then α has a min-
imal cover by the previous corollary.

Suppose that A has no least element under inclusion. Let A =
{A0, A1, . . . , Ak}. It can be easily shown (see [9] for details) that there
exists a family F = {F0, F1, . . . , Fk} of finite sets such that for all i, j ≤ k

Fi ⊆ Fj ⇔ Fi ⊆ Aj ⇔ Ai ⊆ Aj .

Without loss of generality we may assume that A0, A1, . . . , Am, for some
m ≤ k, are all the minimal elements of A with respect to inclusion and
α(x) = Ax for x ≤ m. Let σ be a permutation of the set {0, 1, . . . , m}
with no fixed points. Let {αt(x)}t∈IN be a 0(n+1)– computable sequence
of finite sets such that for all x, t

αt(x) ⊆ αt+1(x); α(x) =
⋃

t∈IN

αt(x).
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It is easy to see that the functions

t0(x) = µt(∃i ≤ m(Fi ⊆ αt(x))),

f(x) = µi ≤ m(Fi ⊆ αt0(x)(x))

are 0(n+1)– computable and α(σ(f(x))) 6= α(x) for all x. Finally we can
apply Theorem 3.2(3) for the function σ ◦ f .

Question 7. Let α ∈ Com0
n+2(A) be a numbering which is not universal

in Com0
n+2(A). How many strong minimal covers, up to equivalence, can

the numbering α have?

Question 8. Let A be any finite family of Σ0
n+2– sets, and let α ∈

Com0
n+2(A) be not universal in Com0

n+2(A). Does α have a strong min-
imal cover?
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