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The different behaviour of total and partial numberings with respect to the reducibility preorder
is investigated. Partial numberings appear quite naturally in computability studies for topological
spaces. The degrees of partial numberings form a distributive lattice which in the case of an infinite
numbered set is neither complete nor contains a least element. Friedberg numberings are no longer
minimal in this situation. Indeed, there is an infinite descending chain of non-equivalent Friedberg
numberings below every given numbering, as well as an uncountable antichain.
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1 Introduction

Numberings appear quite naturally in computability theory. In most cases they are obtained by an
appropriate coding of programs. Doing so, destroys the distinction between programs (and/or the
functions they compute) and data, thus allowing the derivation of very powerful results such as the
recursion theorem.

The idea of a systematical study of numbered sets seems to have first been proposed by A. N. Kol-
mogorov in the mid-nineteen fifties. A great part of the nowadays theory of numberings has been
developed by the Russian school of computability theory (cf. e.g. [1, 2, 3, 4, 5]).

Numberings can be used to lift computability notions from the natural numbers to more abstract
structures. In nearly all studies on numberings only totally defined numberings have been considered.
This is legitimate as long as one has only numberings of algebraic structures in mind. The situation
is completely different in case of topological spaces such as the computable reals. Here, the canonical
numberings are only partial maps and, as has been shown in [7], they are necessarily so, as long as the
space does not have enough finite points. These are points the neighbourhood filter of which has a finite
base. If one enlarges the space by adding sufficiently many such points, the numbering can be extended
to a total numbering of the larger space [10].

It is the aim of this paper to study structural properties of the collection of all partial numberings of a
given set. As will be seen, they behave quite differently from what is known for total numberings. Total
numberings are usually compared by a preorder, the reducibility relation. The induced equivalence
classes, called degrees, form an upper semilattice, in which the degrees generated by Friedberg (i.e.
one-to-one) numberings are minimal.
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2 S. Badaev and D. Spreen: A Note on Partial Numberings

The reducibility relation can be generalised to partial numberings in a straightforward way. The
corresponding degrees form a distributive lattice now. In the case of an infinite numbered set it is
neither complete nor has it a least element. The degrees generated by partial one-to-one numberings
are no longer minimal in this situation. We call such numberings partial Friedberg numberings.

The degree of any numbering, which now may contain also partial numberings, is uncountable.
Moreover, if the numbered set is infinite then below every numbering there is both, an infinite descending
chain as well as an uncountable antichain of non-equivalent partial Friedberg numberings. Note that at
most countably many total numberings can be reduced to a given numbering.

As has already been mentioned above, one has to deal with partial numberings in computability
studies for topological spaces. In this case there is a natural computability notion for numberings. A
numbering is computable if one can effectively list all basic open sets containing a given point, uniformly
in the index of the point. The set of degrees of computable numberings is an ideal in the lattice of all
degrees of partial numberings. Moreover, there is a greatest among these degrees. It is generated by
computable numberings that allow to pass uniformly from an effective listing of a normed base of a
filter to the point the filter converges to. Such numberings have turned out to be very important in
computability considerations for effectively given topological spaces [7, 8, 9, 10].

The paper is organised as follows. Section 2 contains basic definitions. Moreover, it is shown that
the degrees of partial numberings form a distributive lattice. In Section 3 the degree structures of total
and partial numberings, respectively, are compared and in Section 4 the special role of partial Friedberg
numberings is studied. Then, in Section 5, computable numberings of effectively given topological spaces
are considered. Concluding remarks will be found in Section 6.

2 Basic definitions and results

In what follows, let (, ): w? — w be a computable pairing function with corresponding projections 7

and my such that 7;((a1, az)) = a;. Furthermore, let P("™) denote the set of all n-ary partial computable
functions and let ¢ be a Gédel numbering of P(). For a function f € PM), we let f(a)| € C mean that
the computation of f(a) stops with value in C. Generally, if g is a partial function then g(a) = b means
that ¢ is defined for the argument a and has value b.

The following, rather technical result is needed in the sequel.

Lemma 2.1 There is an uncountable family C of subsets of w such that for any m € w and any two
distinct sets A, B € C, wy *({m}) intersects A\ B.

Proof. As is well known, for each m € w, m; ' ({m}) is infinite. Let (v]");c., be an enumeration of
7 1 ({m}) without repetitions and set V; = {v[" | m € w} (i € w). Then all sets V; are pairwise disjoint.
Define V to be the family of these sets.

Now, let C be the collection of all families Z of subsets of w such that the following two conditions
hold:

1. vCZ.
2. For all A € Z, all m € w and all finite subsets B of Z\ {A}, 77 *({m}) intersects A\ |JB.

Order C by set inclusion. By construction, ¥V € C. Hence, C is not empty. Moreover, every chain in
C has an upper bound. The union of all families in the chain is in C again. With Zorn’s Lemma we
therefore obtain that C contains a maximal element, say C.

Because of Condition (1), C is infinite. We will show now that C must be uncountable. Assume to the
contrary that it is countable and let it be enumerated by Ag, A1,... without repetition. By Condition
(2) we can find some a* € 77 ({m}) N (Aip1 \U,_g Av), for all i,m € w. Let M = {a™ | i,m € w}
and suppose that M € C, say M = A;. Then ag € M, by the definition of M, but a? & A;, by the
choice of a(;, a contradiction. Thus M ¢ C.

Next, we prove that also C U {M} € C, in contradiction to the maximality of C. It follows that C
must be uncountable.
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Condition (1) is obviously satisfied. For the verification of Condition (2) let By,...,B, € C, say
B, = A;,, for v < n. Without restriction assume that ig < --- < 4,,. By the definition of M we have in
this case that

a € my ' ({m}) N (M \ LnJ Ay) St ({mp)n(M\ | B).
v=0 v=0

Next, let A, By, ..., B,_1 be pairwise distinct sets in C. It remains to show that 71 *({m}) intersects
A\ (U:;é B, U M), for every m € w. Let A = A; and note that by the construction of M, AN M is
contained in {a]} | m € w Av < j}. Therefore, A\ M D A; \ UJV;B A, and hence

n—1 n—1 j—1 n—1 j—1 n—1
AN(U BuuM) =AM\ B2 (AN [ A\ U Bu=4\ (U A v U B
n=0 n=0 v=0 n=0 v=0 n=0
By Condition (2) the last set in the preceding line intersects each 7 *({m}) (m € w). O

Definition 2.2 Let S be a countable set. A partial mapping v with domain dom(r) C w onto the
set S is said to be a (partial) numbering of S.

For a given s € S, any n € dom(v) with v(n) = s is called index of s. In case that dom(v) = w we
say that v is a total numbering. The set of all partial numberings of the set .S is denoted by Nump(S)
and Num(S) stands for the set of all total numberings of S.

Definition 2.3 Let o, 3 € Num, (S5).

1. o < B, read «a is reducible to f3, if there is some witness function f € P™ such that dom(a) C
dom(f), f(dom(e)) € dom(S), and a(a) = 5(f(a)), for all a € dom(«).

2. a = 3, read « is equivalent to 3, if « < f and G < a.

Note that if & < 3 and « is total, then the witness function will be total as well. Hence, in the case of
total numberings the just defined reducibility notion coincides with the well known reducibility notion
for such numberings.

Sometimes, it is useful to modify a given partial numbering in such a way that every element of S
has infinitely many indices.

Definition 2.4 Let a € Num, (S). The cylindrification of o is the numbering c(c) defined by

a(1) if ¢ € dom(a),

. 1,] € w.
undefined otherwise,

c(@)((i, ) = {

Obviously, ¢(a) = a. Cylindrifications of total numberings were introduced by Ershov [1].
The relation < on Nump(S ) is reflexive and transitive. Therefore we can define degrees of numberings
as follows:

deg,(a) = {8 € Num,(S) |« =3}, o€ Num,(S5),
deg(a) ={pB €Num(S) |a=0}, «€ Num(S).

As usual the reducibility < induces partial orderings on the sets of degrees which we also denote by
<. Thus, we have the two partial orders:

Lp(5) = ({ deg, (@) | @ € Num,(5) }, <)
L(5) = ({deg(a) | @ € Num(5) }, <)
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4 S. Badaev and D. Spreen: A Note on Partial Numberings

It is well known that these algebraic structures are upper semilattices in which the least upper bound
of degrees of a and [ is induced by the join o @ 3 defined as follows: For a € w

a(a) if @ € dom(a),
undefined otherwise,

B(a), if a € dom(p),

undefined otherwise.

a® f(2a) = {

a@ﬁ(2a+1):{

In the case of £,(S5) also the greatest lower bound of two degrees exists. It is induced by the meet
a (B of the numberings a and (. For m,n € w

a(m) if m € dom(«), n € dom(3) and a(m) = B(n),
undefined otherwise.

afp((m,n)) = {

It follows that £,(S) is a lattice. Note that £(S) is not a lattice, if S contains more than one
element [1, 4].

Proposition 2.5 L£,(S) is a distributive lattice.
Proof. For numberings o, 3,7 € Num, (5) we only have to show [6] that
(@@ f)Ny<ad(BNy).
As follows from the definitions,
((a @ p) M) ((2m,n)) = a(m),
if m € dom(«), n € dom(y) and a(m)
((a@ ) M) ((2m +1,n)) = B(m),

if m € dom(B3), n € dom(y) and 3(m)
On the other hand,

(a&® (BM17))(2m) = a(m),

v(n). Moreover

7(n). In any other case ((a @ ) M+)(a) is undefined.

if m € dom(«), and

(@@ (BM7))(26,4) +1) = B(3),

if i € dom(B), j € dom(y) and 5(i) = v(j). In all other cases (a @ (5 ))(a) is undefined. It follows
that the function which maps (2m,n) to 2m and (2m + 1,n) to 2(m,n) + 1 is a witness function. [

Corollary 2.6 A minimal element of L,(S), if any, is its least element.

3 A comparison of the degree structures

To avoid trivialities, we will assume that S contains at least two elements.
First of all, note that reducibility relation behaves more differently on Num(S) and Num, (S) than
it may seem at the first glance. For arbitrary o € Num(S) the set

{8 €Num(5) [ f < a}

is infinite, but countable. In contrary, if « € Num, (S5) then the set

{ﬁGNump(SHﬁSa}
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is uncountable. Indeed, consider the cylindrification ¢(a) of «, then by identifying mappings with their
graphs we have uncountably many partial numberings 8 C ¢(«) of the same set S. The identity function
on w reduces each of these numberings 5 to c¢(a).

It follows that for numberings o € Num(S), deg(a) is properly contained in deg,(a). As is easily
verified, the mapping that takes deg(a) to degp(a), for @ € Num(S), is an order-monomorphism which
preserves finite least upper bounds.

Proposition 3.1 £(S) is embeddable into L,(S) as upper subsemilattice
Proposition 3.2 If S is a finite nonempty set, then both L£,(S) and L(S) have a least element.

Proof. Let a be a partial Friedberg numbering of S, i.e., let a be a partial one-to-one mapping onto
S. Then deg, (a) is the least element of the semilattice £, (5).

In order to generate the least element of L£(S), we totalise a. Let S = {sg,..., 8,1} and without
restriction assume that «(i) = s;, for i < n. Set 5(j) = a(i), if j =¢ mod n. Then 8 € Num(S) with
B < a. It follows that deg(() is the least element of L£(S5). O

Proposition 3.3 For every set S with at least two elements, both L,(S) and L(S) have no mazimal
elements.

Proof. Since £,(5) and L£(S) are upper semilattices, it follows that they can only have one maximal
element or none at all. For sets S with at least two elements it is known that £(S) is uncountable [1].
Note that for every numbering v € Nump(S) and any total computable function f there is at most
one total numbering of S which is reducible to v by f. Hence, both £,(S5) and £(S) have no greatest
element. O

4 Partial Friedberg numberings

Friedberg numberings play an important role in the theory of total numberings. As is well known, they
are minimal with respect to the reducibility pre-order and if the numbered set is infinite, there are
uncountably many of them which are pairwise incomparable. Moreover in this case, every decidable
total numbering is equivalent to such a numbering [1]. Here, a total numbering « is decidable if the set
of all (i,j) with «(i) = a(j) is recursive.

Proposition 4.1 Let S be an infinite set. Then the degree of any partial Friedberg numbering is not
minimal in L,(S).

Proof. Let a € Nump(S ) be any partial Friedberg numbering. We will define a partial Friedberg
numbering 3 € Num,,(5) such that

6<a but a<p.

Let f € P be a surjective function so that the pre-image f~'({i}) is infinite, for every i € w. Any
universal partial computable function may be used as f. If we take exactly one element j; € f~1({i}),
for every i € dom(a), set 3(j;) = a(i) and let 8 be undefined in any other case, we obtain a partial
Friedberg numbering of S which is reducible to a by the function f.

In order to ensure that also the second condition holds, we have to be more careful in our choice of
the j’s. We have to guarantee that no partial computable function ¢, reduces a to 3. This can be
achieved by a diagonal construction.

Let ag,aq,as, ... be a listing of the elements of dom(«). For every n choose a number b,, such that

f(bn) = an, but b, # pnlay)
and define 3 by
B(bi) = afas),
for ¢ € w. In any other case let § be undefined. O
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6 S. Badaev and D. Spreen: A Note on Partial Numberings

The above construction shows that for every partial numbering there is a partial Friedberg numbering
reducible to it, but not vice versa. By iterating the construction we obtain an infinite descending chain
of non-equivalent partial Friedberg numberings.

Corollary 4.2 Let S be an infinite set. Then there is an infinite descending chain generated by
partial Friedberg numberings below every degree in L,(S).

Proposition 4.3 Let the set S have at least two elements and a € Num (S). Then degy(a) is
uncountable, but contains at most countably many partial Friedberg numberings.

Proof. Consider the following straightforward modification of cylindrification. For any nonempty
subset Y of w set Sy ({m,n)) = a(m), if m € dom(a) and n € Y, and let Oy ((m,n)) be undefined,
otherwise. Then 8y € Num, (S). Moreover, for any fixed a € Y the functions 71 and f with f(m) =
(m, ay, for m € w, reduce By to a and « to Py, respectively. This shows that degp(a) is uncountable.

For the verification of the remaining statement let v € Nump(S) be a partial Friedberg numbering
with o < 7 and let h € P() be a witness function. Then h(dom(a)) = dom(y). Thus, if 5 € Num, (S)
is a further partial Friedberg numbering so that a < n via h, then v = 1. Therefore, a can be reduced
to at most countably many partial Friedberg numberings. O

In the proof of the last statement we showed the following fact which will be used again later.

Corollary 4.4 Let a,v,n € Nump(S) so that n and v are partial Friedberg numberings. If there is
some partial computable function which witnesses that both o <~ and a < n, then v =1.

Proposition 4.5 Let S be an infinite set and a € Nump(S). Then there are uncountably many
pairwise incomparable partial Friedberg numberings which are reducible to .

Proof. Let S = {so,s1,...}and i, € a *({s,}), for n € w. We will show that there are uncountably
many pairwise incomparable partial Friedberg numberings below the cylindrification of «.

Obviously, for all n € w, there are distinct numbers ay,, b, € w such that v, () ((in, an)) # (in,bn).
Each sequence ((in,¢n))new With ¢, € {an,b,}, for n € w, defines a partial Friedberg numbering S of
S, which is reducible to ¢(«) by the identity function on w: set B({in, cn)) = $n, for n € w, and let (k)
be undefined, otherwise.

Now, let C be an uncountable family of subsets of w as in Lemma 2.1 and for every A € C let
() new be the sequence with j2 = (i, a,), if n € A, and j2 = (in,b,), otherwise. Then we obtain
an uncountable family of sequences of the above kind. We consider the partial Friedberg numberings
defined by these sequences.

It remains to show that they are pairwise incomparable. Let (3,7 be two such numberings defined
by sequences (j),ew and (j52),c., respectively, and assume that 3 is reducible to v by ¢,,. Then
there is some n € A\ B with 7;(n) = m. Let r be the least such n. It follows that j* = (i,,a,) and
jB = (i,,b,). Since

Y((ir, br)) = sr = B((ir, ar)) = Y(Pm({ir, ar))),
we have that (i, b.) = ©m({ir, a,)), which is impossible by the choice of a, and b,. O

Corollary 4.4 implies that the partial degrees generated by the uncountable antichain of partial
Friedberg numberings considered in the preceding proposition cannot have a lower bound. Thus, we
obtain the following consequence.

Proposition 4.6 Let S be an infinite set. Then the lattice L,(S) is not complete and has no least
element.

The next theorem summarises what we have shown so far.

Theorem 4.7 Let S be a nonempty set. Then L£,(S) is a distributive lattice without mazimal ele-
ments. Moreover, the following two statements hold:

1. If S is finite then L,(S) has a least element.
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2. In case S is infinite, L£,(S) has no least element. In addition, it is not complete and below each
degree there is an infinite descending chain as well as an uncountable antichain, both generated by
partial Friedberg numberings.

5 Computable numberings

Let 7 = (T,7) be a countable topological Ty-space with a countable basis B and let B be a total
numbering of B. In computer science applications of topology as well as in constructive approaches to
topology the basic open sets are considered as finitely describable objects. They are basic properties
which determine the points of the space. The numbering B can be thought of as being obtained by an
encoding of the finite descriptions. A central aim of topology is making statements about approximation.
In the applications and approaches just mentioned there is a canonical relation between the (code
numbers of the) descriptions which is stronger than usual set inclusion between the described sets. This
relation is computably enumerable (c.e.), which in general is not true for set inclusion. It is known from
effective topology that one has to use this stronger relation (cf. e.g. [7, 8, 9]).

Definition 5.1 Let 7 = (T, 7) be a countable topological Ty-space, B be a countable basis of 7, B
be a numbering of B, and <p be a transitive binary relation on w. (7, B, B, <p) is an effectively given
topological space, if the following four conditions hold:

1. B is total.
2. <pis c.e.
3. For all m,n € w, from m <g n it follows that B,, C B,,.

4. For all z € T and m,n € w with z € B,, N B,, there is a number a € w such that z € B,, a <p m
and a <B n.

For the remainder of this section we assume that (7,8, B,<pg) is an effectively given topological
space.

Definition 5.2 Let o € Num, (T'). We say that « is computable if there is some c.e. set L such that
for all ¢ € dom(w) and n € w, (i,n) € L if and only if a(i) € B,.

Thus, « is computable exactly if all basic open sets B,, are completely enumerable, uniformly in n.
Here, a subset X of T' is completely enumerable, if there is a c.e. set A such that «(:) € X if and only
if i € A, for all i € dom(«). Let Com(7) denote the set of all computable numberings of T

Lemma 5.3 Let o, 3 € Num, (T'). Then the following two statements hold:
1. If B <« and « is computable, so is 3.
2. If a and B are computable, so are both a @ 3 and a1 (.

Proof. (1). Let L Cw and f € P | respectively, witness that a is computable and 3 is reducible
to a. Then the set { (i,n) | ¢ € dom(f) An € wA (f(i),n) € L} witnesses the computability of 3.
(2). Let M, N C w witness the computability of « and 3, respectively. Then the set

{(2i,n) | (G,n) € MYU{ (2i+1,m) | (i,n) € N}
witnesses the computability of o @ 8. The computability of a3 is a consequence of (1). O

It follows that the partial degree of a computable numbering of T' contains only computable number-
ings.

Definition 5.4 The algebraic structure
R(T) = (Com(T)/=, <)
is called Rogers lattice of computable numberings of the set T of elements of 7.
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8 S. Badaev and D. Spreen: A Note on Partial Numberings

The following result is a consequence of Lemma 5.3.
Proposition 5.5 R(7) is an ideal of L,(T). In particular, R(T) is a distributive lattice.

As we have seen in Proposition 3.3, the lattice £,(T) has no maximal elements, if T' contains at least
two points. In case of the sublattice R(7) the situation is different. There is a greatest element, which
is generated by numberings that allow to pass uniformly from a normed computable enumeration of a
strong base of the neighbourhood filter of some point to an index of this point [9].

It is well known that each point y of a Ty-space is uniquely determined by its neighbourhood filter
N (y) and/or a base of it.

Definition 5.6 Let H be a filter. A nonempty subset F of H is called strong base of H if the
following two conditions hold:

1. For all m,n € w with B,,, B, € F there is some index a € w such that B, € F, a <g m, and
a <p n.

2. For all m € w with B,, € ‘H there is some index a € w such that B, € F and a <g m.

If a is computable, a strong base of basic open sets can effectively be enumerated for each neighbour-
hood filter. For effectively given spaces this can be done in a normed way (cf. [9]).

Definition 5.7 An enumeration (By(,))ecw With f: w — w is said to be normed if f is decreasing
with respect to <p. If f is computable, it is also called computable and any Goédel number of f is said
to be an indez of it.

In case (By(q)) enumerates a strong base of the neighbourhood filter of some point, we say it converges
to that point.

Definition 5.8 Let a € Num, (7'). We say that:

1. a allows effective limit passing if there is a function pt € P such that, if m is an index of a
normed computable enumeration of basic open sets which converges to some point y € T, then
pt(m)| € dom(a) and a(pt(m)) = y.

2. « is acceptable if it allows effective limit passing and is computable.

It has been proved in [9] that the point set of every effectively given topological space 7 which has a
computable numbering, also has an acceptable one. Moreover, it was shown for partial numberings «, 8
of T that o < 3, if v is computable and 3 allows effective limit passing. In case that « is acceptable
we have that (3 is acceptable as well, exactly if « = (. It follows that the acceptable numberings
are maximal among the computable ones. In addition, they form a single degree consisting only of
acceptable numberings.

Proposition 5.9 If R(T) is nonempty then it has a greatest element.

With Propositions 3.2, 4.5 and 4.6 as well as Corollary 4.2 we thus have the following result.

Theorem 5.10 Let (7,8, B,<p) be an effectively given topological space. Then the following two
statements hold:

1. If T is finite then Rogers lattice R(T) has both a greatest and a least element.

2. If T is infinite then Rogers lattice R(T) has a greatest, but no least element. Moreover, it is
not complete and below each of its elements there is an infinite descending chain as well as an
uncountable antichain, both generated by computable Friedberg numberings.

6 Final remarks

In this paper the different behaviour of total and partial numberings with respect to reducibility was
pointed out. Partial numberings appear quite naturally in computability studies for topological spaces.
In the case of such numberings a computable function may reduce several numberings to one numbering.
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This was used to show that each partial degree is uncountable, whereas a total degree is only countable.
The collection of all partial degrees is a distributive lattice with respect to the order induced by the
reducibility preorder. If the numbered set is infinite, the lattice is neither complete nor has it a least
element. In addition, there is an infinite descending chain and an uncountable antichain below every
degree, both generated by partial Friedberg numberings. Hence, these numberings are no longer minimal
in the reducibility preorder, in contrary with the case of total numberings.
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