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The problems in the theory of computable

models

In this my talk I will discuss some application of

results of the theory of numberings and open

problems in the theory of Computable models.

We will use some basic facts and concepts

from model theory, universal algebra, and com-

putability theory. We will follow in these knowl-

edge of the first several chapters of the text-

books by Chang and Keisler on model theory,

by C.Ash and J.Knight, by Ershov and Gon-

charov, and Handbook of recursive mathemat-

ics on theory of computable models will suffice

to follow this talk.

Model Theory + Computability Theory
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At present, the notion of computability is ex-

tremely important in mathematics. The active

development of mathematical logic motivated

the development of the mathematical theory of

computability. The study of the computability

phenomenon leads to a number of very inter-

esting directions in mathematics and applica-

tions (cf. Handbook on Recursive Mathemat-

ics [1]).

One of such directions is the theory of con-

structive (computable) models presented in this

talk. This theory was initiated by A.Fröhlich,

J.Shepherdson, A.Mal’tsev, A.Kuznetsov, O.Ra-

bin, and R.Vaught in the 1950’s. Within the

framework of this theory, the dependence of

algorithmic properties of abstract models is

studied by constructing representations of mod-

els on natural numbers. Relationships between

algorithmic properties and structural properties

of such models are also the subject of this the-

ory. The development of this general approach
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began with the pioneering works of Markov

and Novikov concerning algorithmic problems

in algebra for finitely defined semigroups and

groups.

The systematic studies of constructive and com-

putable algebraic systems were initiated by A.

Mal’tsev and was further developed by his pupils

and colleagues. Mal’tsev’s approach is based

on the notion of a numbering.

Owing to a numbering of the universe of an

algebraic system (i.e., a mapping of the set of

all natural numbers onto the universe of this

system), we can formulate algorithmic ques-

tions on properties of this algebraic system and

express such questions in terms of numbers

(names) of elements of the system. More-

over, fundamental algorithmic problems over

abstract structures can be reduced to the study

of algorithms on natural numbers or on words



of some finite alphabet. Such numberings can
be regarded as some system of coordinates
(which is “effective” provided that the num-
bering is a constructivization). The use of
numberings (constructivizations) permits one
to study algorithmic properties of algebraic sys-
tems and to understand how these properties
depend on the choice of a constructivization.

This theory was initiated by A. Fröhlich, J.
Shepherdson, A. Mal’tsev, A.Kuznetsov, O.Ra-
bin, and R.Vaught in the 1950’s. Within the
framework of this theory, the dependence of
algorithmic properties of abstract models is
studied by constructing representations of mod-
els on natural numbers. Relationships between
algorithmic properties and structural proper-
ties of such models are also the subject of this
theory. The systematic studies of constructive
and computable algebraic systems were initi-
ated by A. Mal’tsev and was further developed
by his pupils and colleagues. Mal’tsev’s ap-
proach is based on the notion of a numbering.



Owing to a numbering of the universe of an

algebraic system (i.e., a mapping of the set of

all natural numbers onto the universe of this

system), we can formulate algorithmic ques-

tions on properties of this algebraic system and

express such questions in terms of numbers

(names) of elements of the system. More-

over, fundamental algorithmic problems over

abstract structures can be reduced to the study

of algorithms on natural numbers or on words

of some finite alphabet. Such numberings can

be regarded as some system of coordinates

(which is “effective” provided that the num-

bering is a constructivization). The use of

numberings (constructivizations) permits one

to study algorithmic properties of algebraic sys-

tems and to understand how these properties

depend on the choice of a constructivization.
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We mention some fundamental problems in
this direction [1-4] such as

• the existence of computable representations

• (non)uniqueness of computable representa-

tions and algorithmic dimension (with special
properties),

• the classification of computable models con-
structed structures connected with computable

models,

• the computability of families of computable
representations and classes of computable mod-
els,

• the classification of algorithmic problems with

respect to complexity in different sense,

• Connection between definability and com-
plexity in some sense.
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We fix a language

L =< f
n0
0 , f

n1
1 , . . . , P

m0
0 , P

m1
1 , . . . , c0, c1, . . . >

for which the functions i → ni and j → mj are
computable. Such languages are called com-
putable languages. The symbols f

ni
i and P

mj
j

are operation and predicate symbols, respec-
tively.

The full diagram of A is the set

FD(A) = {φ(a1, . . . , an) | φ(x1, . . . , xn) is a for-
mula, A |= φ(a1, . . . , an), a1, . . . , an ∈ A}.

From algebraic point of view, then it is natural
to consider the atomic diagram of A,

that is the set

AD(A) = {φ(a1, . . . , an) | φ(x1, . . . , xn) is an
atomic formula or a negation of an atomic for-
mula, A |= φ(a1, . . . , an), a1, . . . , an ∈ A}.
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In the literature there is an equivalent termi-

nology for constructive models and construc-

tivizations that does not refer to numberings.

These are computable models and computable

presentations.

An model is called computable if the domain

of the system is ω and the atomic diagram is a

computable set. A model is called decidable

if the domain of the system is ω and the full

diagram is a computable set.

9



Notions related to computable categoricity

Let A be a computable structure.

We say that A is computably categorical if for

all computable B ∼= A, there is a computable

isomorphism from A onto B.

Similarly, A is ∆0
α categorical if for all com-

putable B ∼= A, there is a ∆0
α isomorphism.

We say that A is relatively computably cate-

gorical if for all B ∼= B, there is an isomorphism

that is computable relative to B, and

A is relatively ∆0
α categorical if for all B ∼= A,

there is a ∆0
α(B) isomorphism.
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Kleene’s O

The system consists of a set O of notations,
together with a partial ordering <O.

The ordinal 0 gets notation 1.

If a is a notation for α, then 2a is a notation
for α + 1.

Then a <O 2a, and also, if b <O a, then b <O
2a.

Suppose α is a limit ordinal. If ϕe is a total
function, giving notations for an increasing se-
quence ordinals with limit α, then 3 · 5e is a
notation for α.

For all n, ϕe(n) <O 3 · 5e, and if b <O ϕe(n),
then b <O 3 · 5e.

The set O is Π1
1 complete.
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Computable infinitary formulas

Next, we say a little about computable infini-

tary formulas. Roughly speaking, the com-

putable infinitary formulas are infinitary formu-

las with disjunctions and conjunctions over c.e.

sets.

Taken all together, the computable infinitary

formulas have the same expressive power as

the formulas in the least admissible fragment

of Lω1ω.

1. A computable Σ0, or Π0 formula is a fini-

tary open formula.

2. Suppose α > 0, where α is a computable

ordinal.
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(a) A computable Σα formula is a c.e. dis-

junction of formulas ∃u ψ(x, u), where ψ is

computable Πβ for some β < α.

(b) A computable Πα formula is a c.e. con-

junction of formulas ∀u ψ(x, u), where ψ is

computable Σβ for some β < α.



A Scott family for A is a set Φ of formulas,

with a fixed tuple of parameters c in A, such

that

1. each tuple in A satisfies some ϕ ∈ Φ, and

2. if a, b are tuples in A satisfying the same

formula ϕ ∈ Φ, then there is an automor-

phism of A taking a to b.
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A formally c.e. Scott family is a c.e. Scott

family made up of finitary existential formulas.

A formally Σ0
α Scott family is a Σ0

α Scott family

made up of “computable Σα” formulas.

Theorem 1 For a structure A, the set {a :

A |= ϕ(a)} is Σ0
α(A), if ϕ is computable Σα,

and Π0
α(A), if ϕ is computable Πα. Moreover,

this is so with all imaginable uniformity, over

structures and formulas.

It is easy to see that if A has a formally c.e.

Scott family, then it is relatively computably

categorical, so it is computably categorical.

More generally, if A has a formally Σ0
α Scott

family, then we can see, using Theorem 1, that

it is relatively ∆0
α categorical, so it is ∆0

α cat-

egorical.
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Goncharov showed that, under some added ef-

fectiveness conditions (on a single copy), if A is

computably categorical, then it has a formally

c.e. Scott family.

Ash showed that, under some effectiveness con-

ditions (on a single copy), if A is ∆0
α categor-

ical, then it has a formally Σ0
α Scott family.

For the relative notions, the effectiveness con-

ditions disappear. Ash-Knight-Manasse-Slaman,

Chisholm proved

Theorem 2 A computable structure A is rel-

atively ∆0
α categorical iff it has a formally Σ0

α

Scott family. In particular, A is relatively com-

putably categorical iff it has a formally c.e.

Scott family.
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It would be pleasant if computable categoricity

and relative computable categoricity were the

same, and the effectiveness conditions could

be dropped from these results.

However, It was showed by me that this is not

the case, using an Selivanov result from num-

bering theory.

Later Cholak, Goncharov, Khoussainov, and

Shore gave an example of a structure that is

computably categorical, but ceases to be after

naming a constant. It follows from Theorem

2 that such a structure is not relatively com-

putably categorical.
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Notions related to computable dimension

The computable dimension of a structure A is

the number of computable copies, up to com-

putable isomorphism. Similarly, the ∆0
α dimen-

sion is the number of computable copies, up

to ∆0
α isomorphism.
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Basic results from Numbering theory

For S ⊆ P (ω) an numbering is a binary relation
ν such that S = {ν(i) : i ∈ ω}, where ν(i) =
{x : (i, x) ∈ ν}.

A Friedberg numbering of S is an numbering
ν that is 1− 1, in the sense that if i 6= j, then
ν(i) 6= ν(j).

Suppose ν, µ are two numberings of the same
family S.

We write ν ≤ µ if there is a computable func-
tion f such that for all i, ν(i) = µ(f(i))—we
can effectively pass from a ν-index to a µ-index
for the same set.

We say that ν and µ are computably equivalent
if µ ≤ ν and ν ≤ µ. Note that if µ and ν are
Friedberg numberings of S, then µ ≤ ν implies
ν ≤ µ.
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A family S ⊆ P (ω) is discrete if for each A ∈ S,

there exists σ ∈ 2<ω such that for all B ∈ S,

σ ⊆ χB iff B = A.

The family is effectively discrete if there is a

c.e. set E ⊆ 2<ω such that

(a) for each A ∈ S, there is σ ∈ E such that

σ ⊆ χA, and

(b) for all σ ∈ E and all A, B ∈ S, if σ ⊆ χA, χB,

then A = B.

Theorem 3 (Selivanov) There exists a fam-

ily S ⊆ P (ω) which has a unique computable

Friedberg numbering, up to computable equiv-

alence, and is discrete but not effectively dis-

crete.
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Theorem 4 (Goncharov) For each finite n ≥
1 there is a family of sets with just n com-

putable Friedberg numberings, up to computable

equivalence.

Theorem 5 (Wehner) There is a family S ⊆
P (ω) with numberings in all non-computable

degrees but no computable numbering.

The numbering results of Selivanov, Goncharov,

and Wehner all relativize.
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Turning a family of sets into a graph

Let S be a family of sets. For each A ∈ S, a

daisy graph GA consists of one index point a

at the center, with a → a, and, for each n ∈ ω,

a petal of the form a → a0 → am → a, where

m = 2n+1 if n ∈ A. In all, GA has one cycle of

length 1, and, for each n, one cycle of length

either 2n + 1if n ∈ A. Now, let G(S) be the

union of a disjoint family of daisy graphs, one

for each A ∈ S.
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Lemma 1 Let S ⊆ P (ω).

(a) G(S) is a rigid graph,

(b) If S has a unique computable Friedberg

numbering, then G(S) is computably categori-

cal.

(c) If S has just n computable Friedberg num-

berings, up to computable equivalence, then

G(S) has computable dimension n.

(d) If S is discrete, then every element of G(S)

has a finitary existential definition with no pa-

rameters.

(e) Suppose S has a computable Friedberg

numbering, and is discrete but not effectively

discrete. Then G(S) does not have a formally

c.e. defining family.
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For S ⊆ P (ω), we may also form a graph struc-

ture G∞(S) made up of infinitely many copies

of GA for each A ∈ S. This structure is not

rigid. Copies of the structure correspond to ar-

bitrary numberings of S—not Friedberg num-

berings.

Lemma 2 Let S ⊆ P (ω). Then the degrees of

numberings of S are the same as the degrees

of copies of G∞(S).

Proof: If ν is an numbering of S, then there

is a copy of G∞(S) computable in ν. If H is a

copy of G∞(S), then there is an numbering of

S computable in H, with indices corresponding

to index points.
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Results of Goncharov, Manasse, Slaman,

and Wehner

Here we shall re-work the basic results that we

plan to lift.

Theorem 6 (Goncharov) There is a rigid graph

structure G that is computably categorical with

no formally c.e. defining family.

Theorem 7 (Manasse) There is a computable

structure A with a relation R that is intrinsi-

cally c.e. but not relatively intrinsically c.e.

Proof: Consider the cardinal sum of disjoint

computable copies of the graph structure G
from Theorem 6, and let R be the unique iso-

morphism.
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Theorem 8 (Goncharov) For each finite n,

there is a rigid graph structure G with com-

putable dimension n.

Theorem 9 (Slaman, Wehner) There is a struc-

ture A with copies in just the non-computable

degrees.
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Coding a ∆0
α structure in a computable one

To lift the basic results of Goncharov and Man-

asse, we first relativize, producing a ∆0
α graph.

We then pass to a computable structure, using

a pair of structures to code the arrow relation.
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Theorem 10 For a graph G, and a some pair

of structures B1, B2, for the same relational

language, let G∗ = (G ∪ U, G, U, Q, . . .), where

1. G is the universe of G,

2. G and U are disjoint,

3. Q is a ternary relation assigning to each

pair a, b ∈ G an infinite set U(a,b),

4. the sets U(a,b) form a partition of U ,

5. each relation in . . . is the union of its re-

strictions to the sets U(a,b), and

6. for each pair a, b ∈ G,
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(U(a,b), . . .)
∼=

{
B1 if G |= a → b
B2 otherwise .

There are conditions on the pair of structures

Bi under which a ∆0
α graph structure G gives

rise to a computable structure G∗.



The standard back-and-forth relations ≤β on

the set of pairs {(i, b) : b ∈ Bi}, are defined

inductively as follows:

(i) (i, b) ≤1 (j, c) if the existential formulas true

of c in Bj are true of b in Bi.

(ii) for β > 1, (i, b) ≤β (j, c) if for all c′ in Bj,

and all γ such that 1 ≤ γ < β, there exists b
′
in

Bi such that (j, c, c′) ≤γ (i, b, b
′
).

28



Remark: By a result of Karp, (i, b) ≤β (j, c) iff

all Πβ formulas of Lω1ω formulas true of b in

Bi are true of c in Bj (not just the computable

Πβ formulas).

A pair of structures (B1,B2) is α-friendly if the

structures are computable and the standard

back-and-forth relations ≤β are c.e., uniformly

in β < α.

(To make this precise, we fix a notation a for

α in O and identify each ordinal β < α with its

unique notation b <O a.)
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Lemma 3 Let α be a computable successor

ordinal. Let B1,B2 be a pair of structures such

that

1. the pair (B1,B2) is α-friendly,

2. B1, B2 satisfy the same Πβ sentences (of

Lω1ω) for β < α,

3. each Bi satisfies some computable Πα sen-

tence not true in the other,

Then for any ∆0
α set S, there is a uniformly

computable sequence (Cn)n∈ω such that

Cn
∼=

{
B1 if n ∈ S
B2 otherwise .
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We need pairs of structures Bi satisfying the

hypotheses of Lemma 3.

In addition, each Bi will be uniformly relatively

∆0
α categorical; i.e., given an X-computable

index for C ∼= Bi, we can find a ∆0
α(X) index

for an isomorphism from Bi onto C.

We need some notation to describe some of

the structures. If C1, C2 are structures for the

same relational language, we write C1|C2 for the

cardinal sum, where this includes unary predi-

cates for the two universes.
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Lemma 4 For each computable successor or-

dinal α, there is an α-friendly pair of structures

B1, B2 such that

1. B1 and B2 satisfy the same Πβ sentences

(of Lω1ω) for β < α,

2. each Bi satisfies some computable Πα sen-

tence not true in the other,satisfying the

conditions of Lemma 3,

3. each Bi is uniformly relatively ∆0
α-categorical.
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Proof:

For α = 1, we let B1, B2 be orderings of types

ω and ω∗.

For α = 2, we use ω|ω2 and ω2|ω.

For α = 3, we use Z · ω and Z · ω2.

For α = 4, we use ω2|ω3 and ω3|ω2.

For α = 2n + 1, we use Zn · ω and Zn · ω∗.

For α = 2n + 2, we use ωn|ωn+1 and ωn+1|ωn.

For α = ω, we use ωω|ωω+1 and ωω+1|ωω.

For α = ω + 1, we use Zω · ω and Zω · ω∗.

For limit α, we use ωα|ωα+1 and ωα+1|ωα.
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For α + 1, where α is a limit ordinal, we use

Zα · ω and Zω · ω∗.

For α + 2n, where α is a limit ordinal, we use

ωα+n|ωα+n+1 and ωα+n+1|ωα+n.

For α + 2n + 1, where α is a limit ordinal, we

use Zω+n · ω and Zω+n · ω∗.



We note that if α is a limit ordinal, then struc-
tures that satisfy the same Πβ formulas for all
β < α also satisfy the same Πα formulas.

Lemma 5 Suppose G is a graph structure, and
G∗ is constructed from G, Bi in the way that
was described at the beginning of this section.

Then G has a ∆0
α copy iff G∗ has a computable

copy. More generally, for any X, G has a ∆0
α(X)

copy iff G∗ has an X-computable copy.

In addition,

(a) if G has just one ∆0
α copy, up to ∆0

α iso-
morphism, then G∗ is ∆0

α categorical,

(b) if G has just n ∆0
α copies, up to ∆0

α iso-
morphism, then G∗ has ∆0

α dimension n.

(c) if G has no Σ0
α Scott family made up of fini-

tary existential formulas, then G∗ has no for-
mally Σ0

α Scott family.
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Lifting the basic results

Here is our lifting of the result of Goncharov

on structures that are computably categorical

but not relatively computably categorical.

Theorem 11 For each computable successor

ordinal α, there is a structure that is ∆0
α cat-

egorical but not relatively ∆0
α categorical(and

without Σ0
α–Scott family ).
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Here is our lifting of the result of Manasse on

relations that are intrinsically c.e. but not rel-

atively intrinsically c.e.

Theorem 12 For each computable successor

ordinal α, there is a computable structure with

a relation that is intrinsically Σ0
α but not rela-

tively intrinsically Σ0
α.
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Here is our lifting of the result of Goncharov on

structures with finite computable dimension.

Theorem 13 For each computable successor

ordinal α and each finite n, there is a com-

putable structure with ∆0
α dimension n.
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Here is our lifting of the result of Slaman and

Wehner.

Theorem 14 For each computable successor

ordinal α, there is a structure with copies in

just the degrees of sets X such that ∆0
α(X) is

not ∆0
α. In particular, for each finite n, there

is a structure with copies in just the non-lown

degrees.
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Problems

Problem 1 For a computable limit ordinal α,

is there a computable structure which is ∆0
α

categorical but not relatively ∆0
α categorical?

Problem 2 For a computable limit ordinal α,

is there a computable structure A with a rela-

tion R that is intrinsically Σ0
α but not relatively

intrinsically Σ0
α.

Problem 3 If A is ∆1
1 categorical, must it be

relatively ∆1
1 categorical?
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Problem 4 For a computable limit ordinal α

and finite n, is there a structure with ∆0
α di-

mension n?

Problem 5 Is it true that for any computable

limit ordinal α, there is a rigid computable

structure which is ∆0
α categorical but not rel-

atively ∆0
α categorical?

For certain computable successor ordinals α,

we have a rigid structure which is ∆0
α categor-

ical but not relatively ∆0
α categorical, because

we have a rigid pair of structures to use in

coding a ∆0
α graph.
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Intrinsically c.e. and intrinsically Σ0
α rela-

tions

Definition 1 Let A be a computable struc-

ture, and let R be a relation on A.

1. R is intrinsically c.e. on A if in all com-

putable copies of A, the image of R is c.e.

2. R is relatively intrinsically c.e. on A if in all

copies B of A (not just computable copies),

the image of R is c.e. relative to B.

If, in the previous definitions, we replace c.e. by

Σ0
α, ∆1

1, Π1
1, then we obtain definitions of in-

trinsically, and relatively intrinsically, Σ0
α, ∆1

1,

Π1
1.
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Ash and Nerode gave a syntactical condition

sufficient for a relation to be intrinsically c.e.

on a structure A. They showed that, with

some added effectiveness, on a single copy of

A, the condition is also necessary. The syn-

tactical condition is in the following definition.

Definition 2 A relation R is formally c.e. on a

structure A if it is defined by a computable Σ1

formula; i.e., a c.e. disjunction of existential

formulas, with finitely many parameters in A.

Theorem 15 (Ash-Nerode) For a relation R

on a computable structure A, under some ef-

fectiveness conditions∗, R is intrinsically c.e.

on A iff it is formally c.e. on A.

∗It is enough to suppose that the existential diagram of
(A, R) is computable.
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By Ash-Knight-Manasse-Slaman, Chisholm it

is shown that the syntactical condition by it-

self, with no added effectiveness, is necessary

and sufficient for a relation to be relatively in-

trinsically c.e. on A.

It would be pleasing if the intrinsically c.e. and

relatively c.e. relations coincided. Goncharov

and Manasse gave examples of relations R on

computable structures A such that R is intrin-

sically c.e. but not formally c.e., so by Theorem

4, R is not relatively intrinsically c.e. on A.
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Harizanov considered the degree spectrum of

R on A, where this is the set of Turing degrees

of images of R in computable copies of A. The

following is just one of her results.

Theorem 16 (Harizanov) Let R be a rela-

tion on a structure A, and suppose R is in-

trinsically c.e., while ¬R is not. Then, under

some extra effectiveness conditions∗, for any

c.e. degree d, there is a computable copy of A
in which the image of R has degree d.

Example: Let A be an algebraically closed

field of infinite transcendence degree—the char-

acteristic may be either 0 or p. Let R be the set

of algebraic elements. Then R is defined by a

c.e. disjunction of polynomial equations, with

no parameters, so it is (relatively) intrinsically

∗Again, it is enough to suppose that the existential di-
agram of (A, R) is computable.
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c.e. There is a copy of A satisfying the ef-

fectiveness conditions of Theorem 16. Apply-

ing the theorem, we can produce computable

copies of A in which the set of algebraic ele-

ments has any desired c.e. degree.

There are simple examples in which the spec-

trum consists of a single c.e. degree.

Example: If A is the standard model of arith-

metic, and R is a c.e. set, then in all com-

putable B ∼= A, the image of R is always c.e.,

with the same Turing degree as R.



There are now many deep and interesting re-

sults, due to Harizanov, Goncharov and Khous-

sainov, Khoussainov and Shore, Hirschfeldt,

Khoussainov, Shore, Slinko, and others, illus-

trating further possible spectra for intrinsically

c.e. relations.

Barker lifted the Ash-Nerode Theorem to arbi-

trary levels in the hyperarithmetical hierarchy.

Here is the natural extension of the syntactical

condition formally c.e.

Definition 3 A relation R on a structure A is

formally Σ0
α if it is definable by a computable

Σα formula, with finitely many parameters.

Theorem 17 (Barker) For a structure A and

relation R, under some effectiveness conditions,

R is intrinsically Σ0
α iff it is formally Σ0

α on A.
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Ash-Knight-Manasse-Slaman, Chisholm proved

Theorem 18 For a relation R on a computable

structure A, R is relatively intrinsically Σ0
α on

A iff it is formally Σ0
α on A.
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Intrinsically ∆1
1 and intrinsically Π1

1 rela-

tions

Soskov gave results characterizing the intrinsi-

cally ∆1
1 relations and the relatively intrinsically

Π1
1 relations. In this section, we first rework

Soskov’s results, and then give our characteri-

zation of intrinsically Π1
1 relations.

Intrinsically ∆1
1 relations

Theorem 19 (Soskov) Suppose A is computable,

and R is a ∆1
1 relation that is invariant under

automorphisms of A. Then R is definable in

A by a computable infinitary formula, with no

parameters.
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Corollary 1 For a computable structure A, and

a relation R on A, the following are equivalent:

1. R is intrinsically ∆1
1 on A,

2. R is relatively intrinsically ∆1
1 on A,

3. R is definable in A by a computable infini-

tary formula, with finitely many parame-

ters.
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Intrinsically Π1
1 relations
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Definition 4 A relation R on A is formally Π1
1

on A if it is defined in A by a Π1
1 disjunction

of computable infinitary formulas, with finitely

many parameters.

I. Soskov proved a result that may be restated

as follows.

Theorem 20 (Soskov) For a computable (or

hyperarithmetical) structure A and relation R

on A, the following are equivalent:

1. R is relatively intrinsically Π1
1 on A,

2. R is formally Π1
1 on A.
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Theorem 21 Suppose A is a computable struc-

ture, and let R be a relation on A that is Π1
1 and

invariant under automorphisms of A. Then R

is formally Π1
1. Moreover, there is a definition

with no parameters.

Corollary 2 For a computable structure A and

relation R, the following are equivalent:

1. R is intrinsically Π1
1 on A,

2. R is relatively intrinsically Π1
1 on A,

3. R is formally Π1
1 on A.
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A relation is properly Π1
1 if it is Π1

1 and not Σ1
1.

We have seen that if a relation R on a com-

putable structure A is invariant and Π1
1, then

it is intrinsically Π1
1.

Moreover, if there is some computable copy of

A in which the image of R is ∆1
1, then it is

intrinsically ∆1
1. This shows the following.

Corollary 3 If a relation R on a computable

structure A is invariant and properly Π1
1, then

the image of R in any computable copy is also

properly Π1
1.
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The next result produces computable copies of

a given structure A with the same intrinsically

Π1
1 relation, but with no hyperarithmetical iso-

morphism. Again, for B ∼= A, we write RB for

the image of R in B.

Theorem 22 Let A be a computable struc-

ture, with an invariant Π1
1 unary relation R.

Suppose that for any invariant ∆1
1 relation R′ ⊆

R and any ∆1
1 set Γ0 of computable infinitary

formulas, there is a computable structure, not

isomorphic to A, but with the same universe

A, such that the identity function on R′ pre-

serves satisfaction of all formulas in Γ0. Then

the identity function on R extends to an iso-

morphism from A onto a computable copy B,

where A and B are not hyperarithmetically iso-

morphic.
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Proof: Since R is Π1
1 and invariant, there is a

formally Π1
1 definition, with no parameters—

say P is the Π1
1 set of disjuncts. We use the

fact that O is m-complete Π1
1 . Let f be a

computable function witnessing that P ≤m O.

For each a ∈ O, let Pa be the set of all n such

that f(n) <O a. We can pass effectively from

a ∈ O to a computable infinitary formula ψa(x)

equivalent to the disjunction of the formulas in

Pa.

We describe B by a Π1
1 set Γ of computable

infinitary sentences, in a language with added

constants for the elements of A.

1. We include a sentence saying that B is a

computable structure with universe A.

2. To guarantee that B ∼= A, we include all

computable infinitary sentences true in A
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(in the language without the constants from

A).

3. To guarantee that RB = RA, we include,

for each a ∈ A, sentences ψa(c) if A |=
ψa(c), and ¬ψa(c) if A |= ¬ψa(c).

4. To guarantee that there is an isomorphism

that acts as the identity on R, we include

ϕ(c), for each tuple c in R and each com-

putable infinitary formula ϕ(x) such that

A |= ϕ(c).



The hypotheses yield a model for any ∆1
1 sub-

set of Γ. Then, by Barwise-Kreisel Compact-

ness, Γ has a model. We have a computable

structure B that is isomorphic to A, such that

for all a ∈ O, ψBa = ψAa , and the identity func-

tion on R preserves satisfaction of all com-

putable infinitary formulas. For each a ∈ O,

if we expand A and B by constants for all el-

ements satisfying ψa, the resulting structures

are hyperarithmetical, and since they satisfy

the same computable infinitary sentences, they

are isomorphic.

We must show that there is an isomorphism

from A onto B that acts as the identity on

all of R. Let A∗ be the structure (A,A,B),

with separate relations for the two structures.

Then A∗ is computable. We form a Π1
1 set

Λ of computable infinitary sentences, in a lan-

guage with a new binary relation symbol F , in

addition to the symbols of the language of A∗.
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We include a sentence saying that F is an iso-

morphism from A onto B, and sentences for

all a ∈ O saying that F acts as the identity on

the set of elements satisfying ψa(x). It follows

from the previous paragraph that for any ∆1
1

set Λ′ ⊆ Λ, there is an expansion of A∗ sat-

isfying Λ′. Then there is an expansion of A∗
satisfying all of Λ.



Examples

Here are some examples of computable struc-
tures with intrinsically Π1

1 relations.

Example 1. A Harrison ordering is a com-
putable ordering of type ωCK

1 (1 + η). Recall
that η is the order type of the rationals, and
for orderings A and B, A · B is the result of re-
placing each element of B by a copy of A. Har-
rison showed the existence of such orderings.
In fact, he showed that for any computable
tree T ⊆ ω<ω, if T has paths but no hyper-
arithmetical paths, then the Kleene-Brouwer
ordering on T is a computable ordering of type
ωCK
1 (1+η)+α, for some computable ordinal α.

Let A be a Harrison ordering, and let R be the
initial segment of type ωCK

1 . This set is intrin-
sically Π1

1, since it is defined by the disjunction
of computable infinitary formulas saying that
the interval to the left of x has order type β,
for computable ordinals β.
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Example 2. A Harrison Boolean algebra is a

computable Boolean algebra of type I(ωCK
1 (1+

η)). Recall that for an ordering C, the interval

algebra I(C) is the algebra generated, under

finite union, by the half-open intervals [a, b),

(−∞, b), [a,∞), with endpoints in C. Let A be

a Harrison Boolean algebra, and let R be the

set of superatomic elements—those contained

in one of the Frechet ideals. This is intrinsi-

cally Π1
1, since it is defined by the disjunction

of computable infinitary formulas saying that

x is a finite join of α-atoms, for computable

ordinals α.
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Example 3. Recall that a countable Abelian p-

group G is determined up to isomorphism by its

Ulm sequence (uα(G))α<λ(G), and the dimen-

sion of the divisible part. A Harrison p-group

is a computable Abelian p-group G such that

λ(G) = ωCK
1 , uG(α) = ∞, for all α < ωCK

1 , and

the divisible part D has infinite dimension. A

Harrison group is a Harrison p-group for some

p. Let A be a Harrison group, and let R be

the set of elements that have computable or-

dinal height—the complement of the divisible

part. Then R is intrinsically Π1
1 on A, since

it is defined by the disjunction of computable

infinitary formulas saying that x has height α,

for computable ordinals α.
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The Scott Isomorphism Theorem says that for

any countable structure A (for a countable

language), there is an Lω1,ω sentence σ such

that the countable models of σ are exactly the

copies of A. In the proof, Scott assigned an

ordinal to the structure. There is more than

one definition of “Scott rank”.

We can involve a sequence of expansions of

A. Let A0 = A, let Aα+1 be the result of

adding to Aα predicates for the types realized

in Aα, and for limit α, let Aα be the limit of the

expansions Aβ, for β < α. For some countable

ordinal α, Aα is atomic. The least such α is

the rank. For a hyperarithmetical structure A,

the maximum possible rank is ωCK
1 + 1.

Another possible rank, for a hyperarithmetical

structure A, is the least ordinal α such that

for each tuple a in A, there is some β < α

such that the set of all computable Πγ formulas
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true of a, for γ < β, defines the orbit of a

under automorphisms. These definitions are

not equivalent, but they agree to the extent

that if the one rank is a computable ordinal,

or ωCK
1 , or ωCK

1 + 1, then so is the other.



A hyperarithmetical structure A has rank ωCK
1 +

1 just in case there is a tuple a in A whose or-

bit under automorphisms is not defined by any

computable infinitary formula.

In the three examples of intrinsically Π1
1 re-

lations described above, the structures have

Scott rank ωCK
1 + 1. Below, we describe a

general class of examples arising in computable

structures of this rank.

Proposition 1 Let A be a computable struc-

ture of Scott rank ωCK
1 +1. Let a be a tuple in

A whose orbit is not defined by any computable

infinitary formula, and let R be the comple-

mentary relation. Then R is intrinsically Π1
1,

and not ∆1
1.
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The structures in Examples 1, 2, and 3 above

all have Scott rank ωCK
1 + 1, but the intrinsi-

cally Π1
1 relations that we described above are

not complements of single orbits.

We can apply Proposition 1 to obtain further

intrinsically Π1
1 relations on these same struc-

tures. In particular, in the Harrison ordering, if

a is an element outside the well-ordered initial

segment, then the orbit of a is not defined by

any computable infinitary formula.

Say a is first in its copy of ωCK
1 . Then the orbit

of a consists of the elements that are first in

their copy of ωCK
1 , but not first over-all. By

Proposition 1, the complement of this orbit is

intrinsically Π1
1. It is not ∆1

1.
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