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T he problems in the theory of computable
models

In this my talk I will discuss some application of
results of the theory of nhumberings and open
problems in the theory of Computable models.

We will use some basic facts and concepts
from model theory, universal algebra, and com-
putability theory. We will follow in these knowl-
edge of the first several chapters of the text-
books by Chang and Keisler on model theory,
by C.Ash and J.Knight, by Ershov and Gon-
charov, and Handbook of recursive mathemat-
ics on theory of computable models will suffice
to follow this talk.

Model Theory 4+ Computability Theory



At present, the notion of computability is ex-
tremely important in mathematics. The active
development of mathematical logic motivated
the development of the mathematical theory of
computability. The study of the computability
phenomenon leads to a number of very inter-
esting directions in mathematics and applica-
tions (cf. Handbook on Recursive Mathemat-
ics [1]).

One of such directions is the theory of con-
structive (computable) models presented in this
talk. This theory was initiated by A.Frohlich,
J.Shepherdson, A.Mal'tsev, A.Kuznetsov, O.Ra-
bin, and R.Vaught in the 1950's. Within the
framework of this theory, the dependence of
algorithmic properties of abstract models is
studied by constructing representations of mod-
els on natural numbers. Relationships between
algorithmic properties and structural properties
of such models are also the subject of this the-
ory. The development of this general approach
3



began with the pioneering works of Markov
and Novikov concerning algorithmic problems
in algebra for finitely defined semigroups and
groups.

T he systematic studies of constructive and com-
putable algebraic systems were initiated by A.
Mal’tsev and was further developed by his pupils
and colleagues. Mal'tsev’'s approach is based
on the notion of a numbering.

Owing to a numbering of the universe of an
algebraic system (i.e., a mapping of the set of
all natural numbers onto the universe of this
system), we can formulate algorithmic ques-
tions on properties of this algebraic system and
express such questions in terms of numbers
(names) of elements of the system. More-
over, fundamental algorithmic problems over
abstract structures can be reduced to the study
of algorithms on natural numbers or on words



of some finite alphabet. Such numberings can
be regarded as some system of coordinates
(which is “effective” provided that the num-
bering is a constructivization). The use of
numberings (constructivizations) permits one
to study algorithmic properties of algebraic sys-
tems and to understand how these properties
depend on the choice of a constructivization.

This theory was initiated by A. Frohlich, J.
Shepherdson, A. Mal’'tsev, A.Kuznetsov, O.Ra-
bin, and R.Vaught in the 1950's. Within the
framework of this theory, the dependence of
algorithmic properties of abstract models is
studied by constructing representations of mod-
els on natural numbers. Relationships between
algorithmic properties and structural proper-
ties of such models are also the subject of this
theory. The systematic studies of constructive
and computable algebraic systems were initi-
ated by A. Mal'tsev and was further developed
by his pupils and colleagues. Mal'tsev’'s ap-
proach is based on the notion of a humbering.



Owing to a numbering of the universe of an
algebraic system (i.e., a mapping of the set of
all natural numbers onto the universe of this
system), we can formulate algorithmic ques-
tions on properties of this algebraic system and
express such questions in terms of numbers
(names) of elements of the system. More-
over, fundamental algorithmic problems over
abstract structures can be reduced to the study
of algorithms on natural numbers or on words
of some finite alphabet. Such numberings can
be regarded as some system of coordinates
(which is “effective” provided that the num-
bering is a constructivization). The use of
numberings (constructivizations) permits one
to study algorithmic properties of algebraic sys-
tems and to understand how these properties
depend on the choice of a constructivization.



1. Yu. L. Ershov,S. S. Goncharov, A. Nerode,
J. Remmel, Handbook of recursive mathemat-
ics, in Studies in Logic and The Foundations
of Mathematics, v.138-139, Elsevier, Amster-
dam, 1998.



2. S. S. Goncharov, Countable Boolean Al-
gebras and Decidability, in Siberian school of
algebra and logic, v 3,Consultants bureau, New
York,1997.

3. Yu. L. Ershov, S. S. Goncharov, Construc-
tive Models, in Siberian school of algebra and
logic, v 6, Consultants bureau, New York, 2000.

4. C.Ash, J.Knight, Computable Structures
and the Hyperarithmetical Hierarchy, in Studies
in Logic and the Foundations of Mathematics,
v 144, Elsevier, Amsterdam, 2000.

5. S. S. Goncharov, B. Khoussainov,Problems
in the theory of constructive algebraic systems,
Contemporary Mathematics, v 257,American
Mathematical Society,Providence, Rhode Island,
2000.



We mention some fundamental problems in
this direction [1-4] such as

e the existence of computable representations

e (non)uniqueness of computable representa-
tions and algorithmic dimension (with special
properties),

e the classification of computable models con-
structed structures connected with computable
models,

e the computability of families of computable
representations and classes of computable mod-
els,

e the classification of algorithmic problems with
respect to complexity in different sense,

e Connection between definability and com-
plexity in some sense.



We fix a language
L =< fno,f?l,...,PSnO,Pfll,...,Co,Cl,... >

for which the functions ¢ — n; and 5 — m;, are
computable. Such languages are called com-
putable languages. The symbols f/" and P}nj
are operation and predicate symbols, respec-
tively.

The full diagram of A is the set

FD(A) = {¢(a1,...,an) | p(x1,...,xpn) is a for-
mula, A = ¢(a1,...,an),a1,...,an € A}.

From algebraic point of view, then it is natural
to consider the atomic diagram of A,

that is the set

AD(A) = {¢(a1,.-..,an) | ¢(z1,...,2n) IS an
atomic formula or a negation of an atomic for-
mula, A = ¢(a1,...,an),a1,...,an € A}.




In the literature there is an equivalent termi-
nology for constructive models and construc-
tivizations that does not refer to numberings.
T hese are computable models and computable
presentations.

An model is called computable if the domain
of the system is w and the atomic diagram is a
computable set. A model is called decidable
if the domain of the system is w and the full
diagram is a computable set.



Notions related to computable categoricity

Let A be a computable structure.

We say that A is computably categorical if for
all computable B = A, there is a computable
isomorphism from A onto B.

Similarly, A is A9 categorical if for all com-
putable B = A, there is a A9 isomorphism.

We say that A is relatively computably cate-
gorical if for all B = B, there is an isomorphism
that is computable relative to B, and

A is relatively AQ categorical if for all B £ A,
there is a A9(B) isomorphism.
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Kleene’'s O

The system consists of a set O of notations,
together with a partial ordering <p.

The ordinal O gets notation 1.

If a is a notation for «, then 2% is a notation
for o« + 1.

Then a <p 2%, and also, if b <p a, then b <pn
2%,

Suppose « is a limit ordinal. If ¢ is a total
function, giving notations for an increasing se-
quence ordinals with limit «, then 3 .5€¢ is a
notation for «.

For all n, pe(n) <p 3-5¢ and if b <¢p we(n),
then b <p 3 - 5°.

The set O is M complete.
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Computable infinitary formulas

Next, we say a little about computable infini-
tary formulas. Roughly speaking, the com-
putable infinitary formulas are infinitary formu-
las with disjunctions and conjunctions over c.e.
sets.

Taken all together, the computable infinitary
formulas have the same expressive power as
the formulas in the least admissible fragment
of Luyjw-

1. A computable >, or g formula is a fini-
tary open formula.

2. Suppose o > 0, where o is a computable
ordinal.
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(a) A computable X, formula is a c.e. dis-
junction of formulas Juvy(x,w), where 1) is
computable g for some g < a.

(b) A computable M, formula is a c.e. con-
junction of formulas Vuvy(z,w), where 1 is
computable 3 4 for some g < a.



A Scott family for A is a set ® of formulas,
with a fixed tuple of parameters ¢ in A, such
that

1. each tuple in A satisfies some ¢ € ¥, and

2. if @, b are tuples in A satisfying the same
formula ¢ € &, then there is an automor-
phism of A taking @ to b.
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A formally c.e. Scott family is a c.e. Scott
family made up of finitary existential formulas.

A formally =9 Scott family is a 0 Scott family
made up of “‘computable >,” formulas.

Theorem 1 For a structure A, the set {a :
A= ¢(@)} is ZO(A), if ¢ is computable X,
and I‘Ig(A), if ¢ is computable My. Moreover,
this is so with all imaginable uniformity, over
structures and formulas.

It is easy to see that if A has a formally c.e.
Scott family, then it is relatively computably
categorical, so it is computably categorical.

More generally, if A has a formally 9 Scott
family, then we can see, using Theorem 1, that
it is relatively AQ categorical, so it is A cat-
egorical.
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Goncharov showed that, under some added ef-
fectiveness conditions (on a single copy), if A is
computably categorical, then it has a formally
c.e. Scott family.

Ash showed that, under some effectiveness con-
ditions (on a single copy), if A is A9 categor-
ical, then it has a formally 9 Scott family.

For the relative notions, the effectiveness con-
ditions disappear. Ash-Knight-Manasse-Slaman,
Chisholm proved

Theorem 2 A computable structure A is rel-
atively A9 categorical iff it has a formally X9
Scott family. In particular, A is relatively com-
putably categorical iff it has a formally c.e.
Scott family.
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It would be pleasant if computable categoricity
and relative computable categoricity were the
same, and the effectiveness conditions could
be dropped from these results.

However, It was showed by me that this is not
the case, using an Selivanov result from num-
bering theory.

Later Cholak, Goncharov, Khoussainov, and
Shore gave an example of a structure that is
computably categorical, but ceases to be after
naming a constant. It follows from Theorem
2 that such a structure is not relatively com-
putably categorical.
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Notions related to computable dimension

The computable dimension of a structure A is
the number of computable copies, up to com-
putable isomorphism. Similarly, the A9 dimen-
sion is the number of computable copies, up
to A9 isomorphism.
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Basic results from Numbering theory

For S C P(w) an numbering is a binary relation
v such that S = {v(i) : ¢ € w}, where v(i) =

{z: (i,z) € v}.

A Friedberg numbering of & is an numbering
v that is 1 — 1, in the sense that if + #= 5, then

v(i) #v(j).

Suppose v, u are two numberings of the same
family S.

We write v < u if there is a computable func-
tion f such that for all 7, v(i) = u(f(7))—we
can effectively pass from a v-index to a u-index
for the same set.

We say that v and u are computably equivalent
if w < v and v < u. Note that if u and v are
Friedberg numberings of S, then u < v implies
v < L.
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A family S C P(w) is discrete if for each A € S,
there exists ¢ € 2<% such that for all B € S,
cCxp iff B=A.

The family is effectively discrete if there is a
c.e. set £ C 2<% such that

(a) for each A € S, there is ¢ € F such that
o C xa, and

(b) forallc e Eand all A,B €S, if o C x4, XB,
then A = B.

Theorem 3 (Selivanov) There exists a fam-
ily S C P(w) which has a unique computable
Friedberg numbering, up to computable equiv-
alence, and is discrete but not effectively dis-
crete.
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Theorem 4 (Goncharov) For each finite n >

1 there is a family of sets with just n com-
putable Friedberg numberings, up to computable
equivalence.

Theorem 5 (Wehner) There is a family S C
P(w) with numberings in all non-computable

degrees but no computable numbering.

The numbering results of Selivanov, Goncharov,
and Wehner all relativize.
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Turning a family of sets into a graph

Let & be a family of sets. For each A € S, a
daisy graph G4 consists of one index point a
at the center, with ¢ — a, and, for each n € w,
a petal of the form a — ag — am — a, where
m=2n4+1ifn e A. In all, G4 has one cycle of
length 1, and, for each n, one cycle of length
either 2n 4+ 1if n € A. Now, let G(S) be the
union of a disjoint family of daisy graphs, one
for each A € S.
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Lemma 1l Let S C P(w).

(a) G(S) is a rigid graph,

(b) If S has a unique computable Friedberg
numbering, then G(S) is computably categori-
cal.

(c) If S has just n computable Friedberg num-
berings, up to computable equivalence, then
G(S) has computable dimension n.

(d) If S is discrete, then every element of G(S)
has a finitary existential definition with no pa-
rameters.

(e) Suppose S has a computable Friedberg
numbering, and is discrete but not effectively
discrete. Then G(S) does not have a formally
c.e. defining family.
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For S C P(w), we may also form a graph struc-
ture G*°(S) made up of infinitely many copies
of G4 for each A € §. This structure is not
rigid. Copies of the structure correspond to ar-
bitrary numberings of S—not Friedberg num-
berings.

Lemma 2 LetS C P(w). Then the degrees of
numberings of § are the same as the degrees
of copies of G(S).

Proof: If v is an numbering of §, then there
is a copy of G®°(S) computable in v. If H is a
copy of G°(S), then there is an numbering of
S computable in 'H, with indices corresponding
to index points.
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Results of Goncharov, Manasse, Slaman,
and Wehner

Here we shall re-work the basic results that we
plan to lift.

Theorem 6 (Goncharov) Thereis arigid graph
structure G that is computably categorical with
no formally c.e. defining family.

Theorem 7 (Manasse) Thereis acomputable
structure A with a relation R that is intrinsi-
cally c.e. but not relatively intrinsically c.e.

Proof: Consider the cardinal sum of disjoint
computable copies of the graph structure G
from Theorem 6, and let R be the unique iso-
morphism.
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Theorem 8 (Goncharov) For each finite n,
there is a rigid graph structure G with com-
putable dimension n.

Theorem 9 (Slaman, Wehner) Thereis a struc-
ture A with copies in just the non-computable
degrees.
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Coding a AY structure in a computable one

To lift the basic results of Goncharov and Man-
asse, we first relativize, producing a A9 graph.

We then pass to a computable structure, using
a pair of structures to code the arrow relation.
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Theorem 10 For a graph G, and a some pair
of structures B1, By, for the same relational
language, let G* = (GUU,G,U,Q,...), where

1. G is the universe of G,

2. G and U are disjoint,

3. QQ is a ternary relation assigning to each
pair a,b € G an infinite set U, p),

4. the sets U,y form a partition of U,

5. each relation in ... is the union of its re-
strictions to the sets U, p), and

6. for each pair a,b € G,

27



~ | By ifG=a—b
Uapy--) = { B> otherwise .

T here are conditions on the pair of structures
B; under which a A9 graph structure G gives
rise to a computable structure G*.



The standard back-and-forth relations <g on
the set of pairs {(i,b) : b € B;}, are defined
inductively as follows:

(i) (4,b) <1 (4,¢) if the existential formulas true
of ¢ in B, are true of b in B;.

(ii) for 8 > 1, (4,b) <g (4,¢) if for all € in B,

and all v such that 1 <~ < 3, there exists b in
B; such that (j,&,¢) <+ (i,b,b).
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Remark: By a result of Karp, (i,b) <g (j,¢) iff
all Mg formulas of Ly w formulas true of b in
B; are true of ¢ in Bj (not just the computable
Mg formulas).

A pair of structures (B, B>) is a-friendly if the
structures are computable and the standard
back-and-forth relations <g are c.e., uniformly
in 8 < a.

(To make this precise, we fix a notation a for

o in O and identify each ordinal 8 < o with its
unique notation b <p a.)
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Lemma 3 Let o« be a computable successor

ordinal. Let B1,By> be a pair of structures such
that

1. the pair (B1,B>) is a-friendly,

2. By, By satisfy the same T3 sentences (of
Lyw) for B < «,

3. each B; satisfies some computable I, sen-
tence not true in the other,

Then for any AY set S, there is a uniformly
computable sequence (Cp)new Such that

C. o2 B1 ifnelS
"7 ) B, otherwise .
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We need pairs of structures B; satisfying the
hypotheses of Lemma 3.

In addition, each B; will be uniformly relatively
AV categorical; i.e., given an X-computable
index for C & B;, we can find a A9(X) index
for an isomorphism from B; onto C.

We need some notation to describe some of
the structures. If Cq, Co are structures for the
same relational language, we write C1|Co for the
cardinal sum, where this includes unary predi-
cates for the two universes.
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Lemma 4 For each computable successor or-
dinal o, there is an a-friendly pair of structures
B1, B> such that

1. By and By satisfy the same T3 sentences
(of Ly w) for 8 < a,

2. each B; satisfies some computable I, sen-
tence not true in the other,satisfying the
conditions of Lemma 3,

3. each B; is uniformly relatively AQ-categorical.
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Proof:

For a =1, we let By, B> be orderings of types
w and w®.

For a = 2, we use w|w? and w?|w.

For a = 3, we use Z-w and Z - w2.

For o = 4, we use w?|w3 and w3|w?.
Fora=2n-+1, we use Z" -w and Z" . w*.
For o = 2n + 2, we use w"|w"T1 and w?t1jwn,
For a = w, we use w®|w* Tl and wvT1|wv.
Fora=w+4 1, we use Z% -w and Z% - w*.

For limit a, we use wo‘|wo‘+1 and wo‘+1|wo‘.
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For o+ 1, where o« is a limit ordinal, we use
Z%.w and Z% . w*.

For a + 2n, where « is a limit ordinal, we use
woz—l—nlwoz-I—n—l—l and wa—l—n—|—1|wa—|—n.

For a+ 2n + 1, where « is a limit ordinal, we
use Z¥Tn .y and Zwtn. w*.



We note that if « is a limit ordinal, then struc-
tures that satisfy the same I‘Iﬁ formulas for all
B < « also satisfy the same [, formulas.

Lemma 5 Suppose G is a graph structure, and
G* is constructed from G, B; in the way that
was described at the beginning of this section.

Then G has a AY copy iff G* has a computable
copy. More generally, for any X, G has a A9(X)
copy iffF G* has an X-computable copy.

In addition,

(a) if G has just one A9 copy, up to A iso-
morphism, then G* is AQ categorical,

(b) if G has just n AQ copies, up to A9 iso-
morphism, then G* has AS dimension n.

(c) ifG has no X0 Scott family made up of fini-
tary existential formulas, then G* has no for-
mally X9 Scott family.
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Lifting the basic results

Here is our lifting of the result of Goncharov
on structures that are computably categorical
but not relatively computably categorical.

Theorem 11 For each computable successor
ordinal o, there is a structure that is A9 cat-
egorical but not relatively Ag categorical(and
without X0—Scott family ).
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Here is our lifting of the result of Manasse on
relations that are intrinsically c.e. but not rel-
atively intrinsically c.e.

Theorem 12 For each computable successor
ordinal o, there is a computable structure with
a relation that is intrinsically X but not rela-
tively intrinsically 9.
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Here is our lifting of the result of Goncharov on
structures with finite computable dimension.

Theorem 13 For each computable successor
ordinal o« and each finite n, there is a com-
putable structure with AY dimension n.
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Here is our lifting of the result of Slaman and
Wehner.

Theorem 14 For each computable successor
ordinal o, there is a structure with copies in
just the degrees of sets X such that AY(X) is
not AQ. In particular, for each finite n, there
is a structure with copies in just the non-lowy

degrees.
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Problems

Problem 1 For a computable limit ordinal «,
is there a computable structure which is A9
categorical but not relatively Ag categorical?

Problem 2 For a computable limit ordinal «,
is there a computable structure A with a rela-
tion R that is intrinsically X0 but not relatively
intrinsically 9.

Problem 3 If A is A% categorical, must it be
relatively A1 categorical?
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Problem 4 For a computable limit ordinal o
and finite n, is there a structure with AS di-
mension n?

Problem 5 Is it true that for any computable
limit ordinal o, there is a rigid computable
structure which is A9 categorical but not rel-
atively A categorical?

For certain computable successor ordinals «,
we have a rigid structure which is AY categor-
ical but not relatively A9 categorical, because
we have a rigid pair of structures to use in
coding a AY graph.
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Intrinsically c.e. and intrinsically X9 rela-
tions

Definition 1 Let A be a computable struc-
ture, and let R be a relation on A.

1. R is intrinsically c.e. on A if in all com-
putable copies of A, the image of R is c.e.

2. R is relatively intrinsically c.e. on A if in all
copies B of A (not just computable copies),
the image of R is c.e. relative to B.

If, in the previous definitions, we replace c.e. by
>9, A1, M}, then we obtain definitions of in-
trinsically, and relatively intrinsically, X9, Al,
ni.

1
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Ash and Nerode gave a syntactical condition
sufficient for a relation to be intrinsically c.e.
on a structure A. They showed that, with
some added effectiveness, on a single copy of
A, the condition is also necessary. The syn-
tactical condition is in the following definition.

Definition 2 A relation R is formally c.e. on a
structure A if it is defined by a computable 21
formula; i.e., a c.e. disjunction of existential
formulas, with finitely many parameters in A.

Theorem 15 (Ash-Nerode) For a relation R
on a computable structure A, under some ef-
fectiveness conditions®, R is intrinsically c.e.
on A iff it is formally c.e. on A.

*It is enough to suppose that the existential diagram of
(A, R) is computable.
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By Ash-Knight-Manasse-Slaman, Chisholm it
IS shown that the syntactical condition by it-
self, with no added effectiveness, is necessary
and sufficient for a relation to be relatively in-
trinsically c.e. on A.

It would be pleasing if the intrinsically c.e. and
relatively c.e. relations coincided. Goncharov
and Manasse gave examples of relations R on
computable structures A such that R is intrin-
sically c.e. but not formally c.e., so by Theorem
4. R is not relatively intrinsically c.e. on A.
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Harizanov considered the degree spectrum of
R on A, where this is the set of Turing degrees
of images of R in computable copies of A. The
following is just one of her results.

Theorem 16 (Harizanov) Let R be a rela-
tion on a structure A, and suppose R is in-
trinsically c.e., while ~R is not. Then, under
some extra effectiveness conditions®, for any
c.e. degree d, there is a computable copy of A
in which the image of R has degree d.

Example: Let A be an algebraically closed
field of infinite transcendence degree—the char
acteristic may be either O or p. Let R be the set
of algebraic elements. Then R is defined by a
c.e. disjunction of polynomial equations, with
no parameters, so it is (relatively) intrinsically

*Again, it is enough to suppose that the existential di-
agram of (A, R) is computable.
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c.e. There is a copy of A satisfying the ef-
fectiveness conditions of Theorem 16. Apply-
ing the theorem, we can produce computable
copies of A in which the set of algebraic ele-
ments has any desired c.e. degree.

There are simple examples in which the spec-
trum consists of a single c.e. degree.

Example: If A is the standard model of arith-
metic, and R is a c.e. set, then in all com-
putable B = A, the image of R is always c.e.,
with the same Turing degree as R.



There are now many deep and interesting re-
sults, due to Harizanov, Goncharov and Khous-
sainov, Khoussainov and Shore, Hirschfeldt,
Khoussainov, Shore, Slinko, and others, illus-
trating further possible spectra for intrinsically
c.e. relations.

Barker lifted the Ash-Nerode Theorem to arbi-
trary levels in the hyperarithmetical hierarchy.
Here is the natural extension of the syntactical
condition formally c.e.

Definition 3 A relation R on a structure A is
formally X0 if it is definable by a computable
2> o formula, with finitely many parameters.

Theorem 17 (Barker) For a structure A and
relation R, under some effectiveness conditions,
R is intrinsically 39 iff it is formally 9 on A.
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Ash-Knight-Manasse-Slaman, Chisholm proved

Theorem 18 For a relation R on a computable
structure A, R is relatively intrinsically ~9 on
A iff it is formally X9 on A.
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Intrinsically Ai and intrinsically N} rela-
tions

Soskov gave results characterizing the intrinsi-
cally A relations and the relatively intrinsically
I‘I% relations. In this section, we first rework
Soskov's results, and then give our characteri-
zation of intrinsically My relations.

Intrinsically A} relations

Theorem 19 (Soskov) Suppose A is computable,
and R is a A7 relation that is invariant under
automorphisms of A. Then R is definable in

A by a computable infinitary formula, with no
parameters.

47



Corollary 1 For a computable structure A, and
a relation R on A, the following are equivalent:

1. R is intrinsically A1 on A,
2. R is relatively intrinsically A} on A,

3. R is definable in A by a computable infini-
tary formula, with finitely many parame-
ters.
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Intrinsically M] relations
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Definition 4 A relation R on A is formally M1
on A if it is defined in A by a N} disjunction
of computable infinitary formulas, with finitely
many parameters.

I. Soskov proved a result that may be restated
as follows.

Theorem 20 (Soskov) For a computable (or
hyperarithmetical) structure A and relation R
on A, the following are equivalent:

1. R is relatively intrinsically N on A,

2. R is formally M} on A.
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Theorem 21 Suppose A isa computable struc-
ture, and let R be a relation on A that is I‘I% and

invariant under automorphisms of A. Then R

is formally I‘I%. Moreover, there is a definition

with no parameters.

Corollary 2 For a computable structure A and
relation R, the following are equivalent:

1. R is intrinsically N1 on A,
2. R is relatively intrinsically M} on A,

3. R is formally M} on A.
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A relation is properly M1 if it is M and not 1.

We have seen that if a relation R on a com-
putable structure A is invariant and i, then
it is intrinsically MNi.

Moreover, if there is some computable copy of
A in which the image of R is Al, then it is
intrinsically A%. This shows the following.

Corollary 3 If a relation R on a computable
structure A is invariant and properly I‘I%, then
the image of R in any computable copy is also
properly 7.
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The next result produces computable copies of
a given structure A with the same intrinsically
N} relation, but with no hyperarithmetical iso-
morphism. Again, for B = A, we write RB for
the image of R in B.

Theorem 22 Let A be a computable struc-
ture, with an invariant I‘I% unary relation R.
Suppose that for any invariant A7 relation R C
R and any A1 set g of computable infinitary
formulas, there is a computable structure, not
isomorphic to A, but with the same universe
A, such that the identity function on R’ pre-
serves satisfaction of all formulas in I'g. Then
the identity function on R extends to an iso-
morphism from A onto a computable copy B,
where A and B are not hyperarithmetically iso-
morphic.
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Proof: Since R is MNi and invariant, there is a
formally Mi definition, with no parameters—
say P is the I‘I% set of disjuncts. We use the
fact that O is m-complete M} . Let f be a
computable function witnessing that P <;, O.
For each a € O, let P, be the set of all n such
that f(n) <p a. We can pass effectively from
a € O to a computable infinitary formula 14 (x)
equivalent to the disjunction of the formulas in
P,.

We describe B by a I‘I% set ' of computable
infinitary sentences, in a language with added
constants for the elements of A.

1. We include a sentence saying that B is a
computable structure with universe A.

2. To guarantee that B = A, we include all
computable infinitary sentences true in A
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(in the language without the constants from
A).

. To guarantee that RB = RA, we include,
for each a € A, sentences y,(c) if A =

Ya(c), and —pq(c) if A= —pg(c).

. To guarantee that there is an isomorphism
that acts as the identity on R, we include
o(¢), for each tuple ¢ in R and each com-
putable infinitary formula o(Z) such that

A= ¢(2).



The hypotheses yield a model for any A% sub-
set of . Then, by Barwise-Kreisel Compact-
ness, [ has a model. We have a computable
structure B that is isomorphic to A, such that
for all a € O, Y5 = ¢4, and the identity func-
tion on R preserves satisfaction of all com-
putable infinitary formulas. For each a € O,
if we expand A and B by constants for all el-
ements satisfying v,, the resulting structures
are hyperarithmetical, and since they satisfy
the same computable infinitary sentences, they

are isomorphic.

We must show that there is an isomorphism
from A onto B that acts as the identity on
all of R. Let A* be the structure (A, A, B),
with separate relations for the two structures.
Then A* is computable. We form a I‘I% set
/\ of computable infinitary sentences, in a lan-
guage with a new binary relation symbol F', in
addition to the symbols of the language of A*.
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We include a sentence saying that F' is an iso-
morphism from A onto B, and sentences for
all a € O saying that F' acts as the identity on
the set of elements satisfying 1q(x). It follows
from the previous paragraph that for any A}
set A/ C A, there is an expansion of A* sat-
isfying A’. Then there is an expansion of A*
satisfying all of A.



Examples

Here are some examples of computable struc-
tures with intrinsically I‘I% relations.

Example 1. A Harrison ordering is a com-
putable ordering of type w{#(1 4 7). Recall
that n is the order type of the rationals, and
for orderings A and B, A-B is the result of re-
placing each element of B by a copy of A. Har-
rison showed the existence of such orderings.
In fact, he showed that for any computable
tree T C w<¥, if T has paths but no hyper-
arithmetical paths, then the Kleene-Brouwer
ordering on 7' is a computable ordering of type
wa(l—I—n)—I—a, for some computable ordinal «.
Let A be a Harrison ordering, and let R be the
initial segment of type w?K. T his set is intrin-
sically I‘Il, since it is defined by the disjunction
of computable infinitary formulas saying that
the interval to the left of «x has order type g,
for computable ordinals 3.
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Example 2. A Harrison Boolean algebra is a
computable Boolean algebra of type I(w?K(l—l—
n)). Recall that for an ordering C, the interval
algebra I(C) is the algebra generated, under
finite union, by the half-open intervals [a,b),
(—o0,b), [a,o0), with endpoints in C. Let A be
a Harrison Boolean algebra, and let R be the
set of superatomic elements—those contained
in one of the Frechet ideals. This is intrinsi-
cally I‘Il, since it is defined by the disjunction
of computable infinitary formulas saying that
x is a finite join of a-atoms, for computable
ordinals c.
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Example 3. Recall that a countable Abelian p-
group G is determined up to isomorphism by its
Ulm sequence (ua(g))a</\(g), and the dimen-
sion of the divisible part. A Harrison p-group
iIs a computable Abelian p-group G such that
AG) = w?K, ug(a) = oo, for all a < w?K, and
the divisible part D has infinite dimension. A
Harrison group is a Harrison p-group for some
p. Let A be a Harrison group, and let R be
the set of elements that have computable or-
dinal height—the complement of the divisible
part. Then R is intrinsically M{ on A, since
it is defined by the disjunction of computable
infinitary formulas saying that = has height ¢,
for computable ordinals «.
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The Scott Isomorphism Theorem says that for
any countable structure A (for a countable
language), there is an Ly, sentence o such
that the countable models of o are exactly the
copies of A. In the proof, Scott assigned an
ordinal to the structure. There is more than
one definition of “Scott rank”.

We can involve a sequence of expansions of
A. Let Ag = A, let A, 4, be the result of
adding to A, predicates for the types realized
in Aq, and for limit «, let A, be the limit of the
expansions Aﬁ, for 8 < . For some countable
ordinal «, Aq is atomic. The least such « is
the rank. For a hyperarithmetical structure A,
the maximum possible rank is w{® + 1.

Another possible rank, for a hyperarithmetical
structure A, is the least ordinal o« such that
for each tuple @ in A, there is some 5 < «
such that the set of all computable ', formulas
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true of @, for v < B, defines the orbit of a
under automorphisms. These definitions are
not equivalent, but they agree to the extent
that if the one rank is a computable ordinal,
or Wi, or W{K + 1, then so is the other.



A hyperarithmetical structure A has rank w§ 5 +
1 just in case there is a tuple @ in A whose or-
bit under automorphisms is not defined by any
computable infinitary formula.

In the three examples of intrinsically I‘I% re-
lations described above, the structures have
Scott rank w{® + 1. Below, we describe a
general class of examples arising in computable
structures of this rank.

Proposition 1 Let A be a computable struc-
ture of Scott rank w¢% +1. Leta be a tuple in
A whose orbit is not defined by any computable
infinitary formula, and let R be the comple-
mentary relation. Then R is intrinsically M1,
and not Af.
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T he structures in Examples 1, 2, and 3 above
all have Scott rank w{® + 1, but the intrinsi-
cally I‘I% relations that we described above are
not complements of single orbits.

We can apply Proposition 1 to obtain further
intrinsically I‘I% relations on these same struc-
tures. In particular, in the Harrison ordering, if
a IS an element outside the well-ordered initial
segment, then the orbit of a is not defined by
any computable infinitary formula.

Say a is first in its copy of w{®. Then the orbit
of a consists of the elements that are first in
their copy of w{®, but not first over-all. By
Proposition 1, the complement of this orbit is
intrinsically Mi. It is not Af.
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