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0. Basic notions

Any surjective mapping o of the set N of nat-
ural numbers onto a nonempty set A is called
a numbering of A.

Let o« and 3 be numberings of A and let X C
N. We say that numbering o is X-reducible
to numbering 3 (a <x B) if there exists a X-
computable function f such that a(n) = Gf(n)
for any n € N.

We say that the numberings o and 5 are X-
equivalent (in symbols, a =x ) if a <x @8 and

Béxoz.

Definition 1.(S.Goncharov and A.Sorbi) Num-
bering a of a family A C 9 is called 9—com-
putable if z € ay is X9—relation.

The set of all Zg+1—computable numberings
of a family A is denoted by Com®_ ;(A).
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Reducibility of numberings is a pre-ordering
relation on Com?_ ,(A) which induces in the
usual way a quotient structure R2+1(A) which
IS an upper semilattice called Rogers semilat-
tice of Zg+1—computable numberings of the
family A.

Every numbering « € Comp_ ;(A) induces a
degree deg(a) = {8 | B8=a} in RO_;(A).

Numbering o of A is called X-universal in
Com? ., (A) if

(i) a € Com2+1(A),

(i) 8 <x a for every g € Com)_ ;(A).

We usually omit X in our notations if X is
computable set.



Example 1. The family 22+1 has a univer-
sal numbering in Com?_ ; (X7, ;), namely the

relativization Wo(n) of the classical Post num-
bering W of the family of all c.e. sets.

Example 2. For every n, the set F of all finite
sets is obviously Zg_l_l—computable and has no
universal numbering in Com?_ ,(F). The lat-
ter holds by the relativized version of Lach-
lan’s condition: if any ZQH_l—computable fam-
ily has a universal numbering then it is closed
under unions of increasing Zg_l_l-computable
segquences of its members.



1. Complete numberings: preliminaries

Definition 2. Numbering o of an abstract set
A is called complete w.r.t. special object a € A
if for every partial computable function f(x)
there exists total computable function g(x) s.t.

{af(w) it (@) |,

otherwise.

Recursion theorem and fixed point theorem
both hold for any complete numbering.

Theorem 1 [Yu.L. Ershov]. Degrees of com-
plete numberings are not splittable.

Corollary [A. Lachlan]. m-degree of creative
set is not splittable.



2. Completion operator and its properties

Definition 3. Let K(x) be an unary universal
partial computable function, for instance,
K(<e,x>) = pe(x). Define

QK(w):{aK(:c) it K(z) |,

a otherwise.

Theorem 2 [Yu.L. Ershov]. For every num-
bering o, numbering aff IS complete w.r.t. a.
Important point: For everyZ +2—computable
numbering a of any family A € 39 R0 and for
arbitrary A € A, numbering of is also Zn—I—Q

computable numbering of A.

T herefore, mapping o« — af induces an oper-
0
ator on Rn+2(A).

To avoid incomputability in the case of the

families of Z?—sets we have to choose A = |

if A has the least element L under inclusion.
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Theorem 3. Let A be a family of 224—2 -sets,
let @ € Com?_ ,(A), and let A, B be any sets
of A. Then

1) afg =0 O;
2) a < af;
3) a < off iff o is not complete w.r.t. A;
4) if A% B then
inf(deg(al}), deg(a®s)) = deg(a).

Remark. Statements 1-4 remain true for off

in the classical case A C Z(l) provided A has
the least set 1.



Corollary 1. Every universal numbering in
Com?_ ,(A) is complete w.r.t. each element
of A.

Corollary 2. For every a € Com)_ ,(A), the
degree of af IS non-splittable in Rg_I_Q(A). In
particular, the degree of universal numbering
in Com?H_Q(A), if any, is never splittable.

Corollary 3. Index set of the special object A
relative to off is productive set.

Zg+2—computable Friedberg and positive num-
berings as well as all Zg_l_z-computable mini-
mal numberings which are built by method of
Badaev-Goncharov are all incomplete.



3. Relativization of the completion
operator

Definition 3. Let X C N. Numbering o of
a set A is called X-complete w.r.t. special
object a € A if for every partial X-computable
function f(xz) there exists total X-computable
function ¢g(z) s.t.

af(x) if  f(z) |,

a otherwise.

ag(z) = {

Theorem 4. For every Y <7 X, if number-
ings «, B are Y-equivalent and « is X-complete
w.r.t. a then @ is X-complete w.r.t. a.

Definition 4. Let X be an arbitrary subset
of N and let KX(< e,z >) = ¢X(x) for all
e,x € N. Define

X ozKX(:U) if KX(a?)l,
®  la otherwise.



Computability of completions

Theorem 5. Let A be non-trivial family of
>, 1-sets, and let a € Com) ;(A). Then

1) a%(m) S Com0+1(A) for every m < n and
each A € A;

2) «o 0( = Com0+1(A) iff A has the least set
1L and A= 1,

3) « 0( ") ¢ Com +1(A) for every m > n and

each A c A.
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Properties of the completion operator

Theorem 6. Let A be any set, a,b € A, and
let o, B be any numberings of A. The following
statements hold for every subsets X,Y C N:

2) a < of;
3) aX <x a iff o is not complete w.r.t. a;

4) for every v and every a # b, if v < X and
’yéozg( then v < ¢a;
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5) if Y <7 X, then numbering o is Y-complete
w.r.t. special object a;

7) if B8 <x aX then g < o

8) if Y <7 X then oX' = («X)Y. In particular
o@f/ is Y—complete with respect to any special

element b.

Corollary 1. If Y <p X then (aX)Y = oX.
In particular, the numbering 040( " s 0)—com-
plete with respect to a for all : < n.

(a()(n+1)>()(n) o(n+1)

Corollary 2. b = o , for all
o(n+1)

a,b. In particular, oY is 0()—complete with
respect to each element of the family and for
all = < n.
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Theorem 7. Let A be any non-trivial Zg+1—
computable family with n > 1. Then

(i) forevery Aec Aandeach I C {0,1,...,n—1}
there exists a numbering o € Com?_ , (A) such

that o is O(i)—complete with respect to A if
and only if 7 € I;

(i) if A has least set 1, and if it has a =0 |~

computable numbering which is not 0(")—com-
plete with respect to L then

for every set I C {0,1,...,n}, there exists a
numbering a € Comg_H(A) such that a is 0(1)—
complete with respect to L if and only if 2 € 1.
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4. Uniformly complete numberings

Definition 5. We say that a numbering 5 of
a set A is uniformly X-complete if there exists
a total X-computable function hA(z,m,x) such
that for every i,m,x

Blei(x))  if @it (x) |,

B(m) otherwise.

B(h(i,m,x)) = {

Theorem 8. For every set X and for every
numbering o of a family A, and for each a € A,
the numbering a?f’ is uniformly X-complete.
Corollary 1. For every a € Com2+3(A) there
exists a Zg+3-computable uniformly complete
numbering B such that a < 5.

Corollary 2. For every a € Com?_ 5(A) there
exists a numbering 8 € Com?_ 5(A) such that
a < B and g is complete with respect to every
element B € A.
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5. Interconnections between complete
numberings and universal numberings

Theorem 9. Let a be 0™ _yniversal number-
ing in Comp_ ;(A). Then:

(1) if m < n then « is 0(m)—complete with
respect to every element of A;

(2) if m < n and A has the least element L
then o is O(m)—complete with respect to L;

(3) « is not 0(™M-complete with respect to any
non-least element of A;

(4) « is not 00™)-complete with respect to any
Ac Aifm>n.
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Theorem 10. For every n, each finite family
A of ZSH_l—sets has a numbering a which is

0(™_universal in Comn+1(A)

Theorem 11. Let AC X7, be a finite family.
Then the following statements are equivalent:
(1) there exists a numbering of A which is uni-
versal in Comn_I_Q(A)

(2) A has a numbering which is 0(")-universal
in Comp  »(A);

(3) A contains a least element L under inclu-
sion.

Corollary. Let A be a non-trivial finite family
of Z,?H_Q—sets. Then

(1) if A has the least set L then for all m, A
possesses numberings which are 0(m)_universal
in Comn_|_2(A)

(2) if A does not contain the least set under in-
clusion then A has a numbering 0(m)_universal
in Com?_ ,(A) if and only if m >n+1.
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Definition 2. Numbering « of an abstract set
A is called complete w.r.t. special object a € A
if for every partial computable function f(x)
there exists total computable function g(x) s.t.

ag(x):{af(w) it f() 1,
a otherwise.

Definition 3. Let K(x) be an unary universal
partial computable function, for instance,

K(<e,x>)= pe(x). Define
{OzK(aj) it K(z) |,

a otherwise.

Definition 4. Let X be an arbitrary subset
of N and let KX(< e,z >) = ¢X(z) for all
e,x € N. Define

X aKX(a:) if KX(:c)l,
S P otherwise.
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Theorem 3. Let A be a family of Zg_l_z -sets,
let @ € Com?_ ,(A), and let A, B be any sets
of A. Then

1) osz =0 ;

2) a < ag;

3) a < off iff o is not complete w.r.t. A;
4) if A% B then

inf(deg(al}),deg(a®s)) = deg(a).
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Question. Is it true that
o(m) o) o)
= (a2

((a9™)9™y0 ™

().
)y 7

In particular, is it true that

(e = (ag)y)?

Answer [Zarif Khisamiev] Both possibilities are
valid.
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6. Distributive substructures of Rogers
semilattices

Let A be a non-trivial countable set. Denote
by L(A) the set of degrees of all numberings
of A with partial order induced by reducibility
of numberings. L£(A) is upper semilattice. For
any numbering a of A, let C(A), stands for the
subsemilattice of £L(A) which contains deg(«)
and is closed under completion operator.

Theorem 12[Z.Khisamiev]. If « is non-complete
w.r.t. some element of A then C(A)_, is infinite
distributive lattice with finite principal ideals.

S(A) = the set of the special objects of A.

Theorem 13[Z.Khisamiev]. Let «,3 be any
numberings of the sets A,B. Then C(A), =
C(B)g iff [S(A)| = |S(B)| and |A\ S(A)| = B\
S(B)|.
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Theorem 14[Z.Khisamiev]. For every non-
empty countable sets B C A, there exists a
complete numbering o whose special objects
are exactly elements of B.

Theorem 15[Z Khisamiev]. Let BC AC >0,
with the common L. For every a € Com%_ ,(A)
and 8 € Com?_ ,(B) there exists y € Com  ,(A)
S.t.

(1) a® B <,

(2) v is complete w.r.t. every element of B;
(3) v is not complete w.r.t. every element of

A\ B.
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Open questions on complete numberings

Question 1. Is any Zg+2-computab/e mini-
mal numbering of non-trivial family A always
incomplete?

Question 2. Let o € Com?, ,(A) be a num-
bering of a non-trivial family A and suppose
that o is not complete w.r.t. A € A. Does
there exist a numbering B s.t. a < < ak?

Question 3. Let o € Com? ,(A) be a num-
bering of a non-trivial family A and suppose
that o is not complete w.r.t. A € A. Does
there exist a non-splittable nhumbering (3 s.t.
a< (< ozif?

Question 4. Does every 22+2—Computab/e
family A have a Z?L+2—computab/e uniformly
complete numbering?
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6. Elementary properties and isomorphic
types of Rogers semilattices

The purpose is to show differences in the ele-
mentary theories of Rogers semilattices of arith-
metical numberings, depending on structural
invariants of the given families of arithmetical
sets.

Everyone who has ever dealt with the classi-
cal theory of computable numberings is well
aware that general facts about Rogers semi-
lattices of families of c.e. sets are very rare,
and at the same time it is very difficult to es-
tablish elementary properties that distinguish
given structures. Opposite to the classical case,
the elementary theories of Rogers semilattices
of arithmetical numberings for the level two
and higher seem more exciting. Now, we briefly
examine some algebraic and elementary prop-
erties of the Rogers semilattices R2+2(A) for

various A.
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Cardinality, Lattice Properties,
Undecidability

Theorem 16 [A.Khutoretsky]. For every fam-
ily A of c.e. sets, if the Rogers semilattice
R?(A) contains at least two elements then it
is infinite.

Theorem 17 [V.Selivanov]. For every family
A of c.e. sets, if the Rogers semilattice Rcl)(A)
contains at least two elements then it is not a
lattice.

Theorem 18 [S.Goncharov, A.Sorbi]. If a
> ,-computable family A is not trivial then
the Rogers semilattice R ,(A) is infinite and
is not a lattice.

Question 5. Under what conditions the Rogers
semilattice R(l)(A) of a family A of c.e. sets is
non-trivial?
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Let ¢* denote the bounded distributive lattice
obtained by dividing the lattice € of all c.e. sub-
sets of w modulo the ideal of all finite sets. We
will denote by 3 the principal ideal of RY_ ; (A),

B = {deg(y) | deg(y) < deg(B)}.

Theorem 19[S.Podzorov]. Let A be any ZQH_Q—
computable family. There exists a numbering
a € Comp_ ,(A) such that

(1) @ is isomorphic to e*\{ L} if the family A is
infinite;

(2) @ is isomorphic to * if the family A is fi-
nite.

Corollary. The elementary theory of every
non-trivial Rogers semilattice R ,(A) is hered-
itarily undecidable.

Question 6. Is the elementary theory of any
non-trivial Rogers semilattice of a Z(l)—computable
family hereditarily undecidable, or at least un-

decidable?
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Extremal Elements

Theorem 11[BGS]. Let A C =0, be a fi-
nite family. Then the following statements are
equivalent:

(1) R2+2(A) has a greatest element;

(3) A contains a least element L under inclu-

sion.

Theorem 20[BG]. For every n, if A is an in-
finite =) ,-computable family, then RY, ,(A)
has infinitely many minimal elements.

Remark. Theorem 20 does not hold for some
infinite families of c.e. sets and does hold for
other ones.

Question 7 [Yu.L.Ershov]. What is the possi-
ble number of minimal elements in the Rogers
semilattice RY(A) of a family of c.e. sets?
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T he Weak Distributivity Property

Definition 6. An upper semilattice (L,V, <) is
called distributive if for every aj,a>,b € L, if
b <aiVar then there exist b1,bo € L such that
b1 <ai,bo <ao and b =061V bo.

Theorem 21[BGS]. For every n and for every
finite family A C ¥9,, RY_;(A) is a distribu-
tive upper semilattice.

Theorem 21 does not hold for the infinite fam-
ilies if n > 1.

Definition 7. An upper semilattice £ = (L, <)
is weakly distributive if £, = (LU{L},<) is
distributive, where 1 ¢ £ and

< s<W(L,a)|lae LU{LY)
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Proposition[BGS]. An upper semilattice L is
weakly distributive iff for every aq,a5,b € L,
if b < a3 Vap and b £ ay,b £ ap then there
exist by,bo € L such that b1 < a1,b> < an and
b= b1V bs.

Theorem 22[BGS]. For every n, the Rogers
semilattice of any infinite Zg+2-computable fam-
ily is not weakly distributive.

Question 8. Does there exist a computable
infinite family A of c.e. sets such that R$(A)
is distributive? Does there exist a computable
infinite family A of c.e. sets such that R$(A)
is weakly distributive?
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Theorem 23[BGS]. For every n, there exist
infinitely many Zg+1—computable families with
elementary pairwise different Rogers semilat-
tices.

Theorem 24[BGS]. For every n there exist
m > n and a Zm+2—computable family B such
that no Rogers semilattice R2+1(A) of any
Zg+1—computable family A is isomorphic to

m—I—Q(B)

Theorem 25 [to be checked]. For every n
and every non-trivial Zn+6-computable family
A, RY 6(A) is not isomorphic to RY_ ;(B) of
any Zg+1—computable family B.

Question 9. Is it true that Rogers semilatti-
cies of any two non-trivial computable families
of the different levels of the arithmetical hier-
archy are not isomorphic?
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Question 10. Do the elementary theories of
the classes of the Rogers semilattices of differ-
ent levels coincide?

Question 11. Is it true that for every m #= n
there exist non-trivial Z%+1—computable fam-
ily A and Zn_l_l-computable family B s.t.

Th(RS,;1(A)) = Th(RE, 1(B))?

Question 12. Is it true that for every m #
n and for every non-trivial ZSH_l—computabIe
family A there exists Zn+1—computable family
B s.t.

Th(Rp+1(A)) = Th(Rp 1 1(B))?
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