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0. Basic notions

Any surjective mapping α of the set N of nat-
ural numbers onto a nonempty set A is called
a numbering of A.

Let α and β be numberings of A and let X ⊆
N . We say that numbering α is X-reducible
to numbering β (α 6X β) if there exists a X-
computable function f such that α(n) = βf(n)
for any n ∈ N .

We say that the numberings α and β are X-
equivalent (in symbols, α ≡X β) if α 6X β and
β 6X α.

Definition 1.(S.Goncharov and A.Sorbi) Num-
bering α of a family A ⊆ Σ0

n is called Σ0
n–com-

putable if x ∈ αy is Σ0
n–relation.

The set of all Σ0
n+1–computable numberings

of a family A is denoted by Com0
n+1(A).
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Reducibility of numberings is a pre-ordering

relation on Com0
n+1(A) which induces in the

usual way a quotient structure R0
n+1(A) which

is an upper semilattice called Rogers semilat-

tice of Σ0
n+1–computable numberings of the

family A.

Every numbering α ∈ Com0
n+1(A) induces a

degree deg(α) = {β | β ≡ α} in R0
n+1(A).

Numbering α of A is called X-universal in

Com0
n+1(A) if

(i) α ∈ Com0
n+1(A),

(ii) β 6X α for every β ∈ Com0
n+1(A).

We usually omit X in our notations if X is

computable set.
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Example 1. The family Σ0
n+1 has a univer-

sal numbering in Com0
n+1(Σ

0
n+1), namely the

relativization W 0(n)
of the classical Post num-

bering W of the family of all c.e. sets.

Example 2. For every n, the set F of all finite

sets is obviously Σ0
n+1-computable and has no

universal numbering in Com0
n+1(F). The lat-

ter holds by the relativized version of Lach-

lan’s condition: if any Σ0
n+1-computable fam-

ily has a universal numbering then it is closed

under unions of increasing Σ0
n+1-computable

sequences of its members.
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1. Complete numberings: preliminaries

Definition 2. Numbering α of an abstract set

A is called complete w.r.t. special object a ∈ A
if for every partial computable function f(x)

there exists total computable function g(x) s.t.

αg(x) =





αf(x) if f(x) ↓,
a otherwise.

Recursion theorem and fixed point theorem

both hold for any complete numbering.

Theorem 1 [Yu.L. Ershov]. Degrees of com-

plete numberings are not splittable.

Corollary [A. Lachlan]. m -degree of creative

set is not splittable.
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2. Completion operator and its properties

Definition 3. Let K(x) be an unary universal
partial computable function, for instance,
K(< e, x >) = ϕe(x). Define

αK
a (x) =





αK(x) if K(x) ↓,
a otherwise.

Theorem 2 [Yu.L. Ershov]. For every num-
bering α, numbering αK

a is complete w.r.t. a.

Important point: For every Σ0
n+2-computable

numbering α of any family A ∈ Σ0
n+2 and for

arbitrary A ∈ A, numbering αK
A is also Σ0

n+2-
computable numbering of A.

Therefore, mapping α → αK
A induces an oper-

ator on R0
n+2(A).

To avoid incomputability in the case of the
families of Σ0

1-sets we have to choose A = ⊥
if A has the least element ⊥ under inclusion.
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Theorem 3. Let A be a family of Σ0
n+2 -sets,

let α ∈ Com0
n+2(A), and let A, B be any sets

of A. Then

1) αK
A ≡0′ α;

2) α 6 αK
A ;

3) α < αK
A iff α is not complete w.r.t. A;

4) if A 6= B then

inf(deg(αK
A ),deg(αK

B )) = deg(α).

Remark. Statements 1-4 remain true for αK
⊥

in the classical case A ⊆ Σ0
1 provided A has

the least set ⊥.
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Corollary 1. Every universal numbering in

Com0
n+2(A) is complete w.r.t. each element

of A.

Corollary 2. For every α ∈ Com0
n+2(A), the

degree of αK
A is non-splittable in R0

n+2(A). In

particular, the degree of universal numbering

in Com0
n+2(A), if any, is never splittable.

Corollary 3. Index set of the special object A

relative to αK
A is productive set.

Σ0
n+2-computable Friedberg and positive num-

berings as well as all Σ0
n+2-computable mini-

mal numberings which are built by method of

Badaev-Goncharov are all incomplete.
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3. Relativization of the completion
operator

Definition 3. Let X ⊆ N . Numbering α of
a set A is called X-complete w.r.t. special
object a ∈ A if for every partial X-computable
function f(x) there exists total X-computable
function g(x) s.t.

αg(x) =





αf(x) if f(x) ↓,
a otherwise.

Theorem 4. For every Y 6T X, if number-
ings α, β are Y -equivalent and α is X-complete
w.r.t. a then β is X-complete w.r.t. a.

Definition 4. Let X be an arbitrary subset
of N and let KX(< e, x >) ® ϕX

e (x) for all
e, x ∈ N . Define

αX
a =





αKX(x) if KX(x) ↓,
a otherwise.
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Computability of completions

Theorem 5. Let A be non-trivial family of

Σ0
n+1 -sets, and let α ∈ Com0

n+1(A). Then

1) α0(m)

A ∈ Com0
n+1(A) for every m < n and

each A ∈ A;

2) α0(n)

A ∈ Com0
n+1(A) iff A has the least set

⊥ and A = ⊥;

3) α0(m)

A /∈ Com0
n+1(A) for every m > n and

each A ∈ A.
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Properties of the completion operator

Theorem 6. Let A be any set, a, b ∈ A, and

let α, β be any numberings of A. The following

statements hold for every subsets X, Y ⊆ N :

1) αX
a ≡X ′ α;

2) α 6 αX
a ;

3) αX
a <X α iff α is not complete w.r.t. a;

4) for every γ and every a 6= b, if γ 6 αX
a and

γ 6 αX
b then γ 6 α;

11



5) if Y 6T X, then numbering αX
a is Y -complete

w.r.t. special object a;

6) if α 6X β then αX
a 6 βX

a ;

7) if β 6X αX
a then β 6 αX

a ;

8) if Y ≤T X then αX′
a ≡ (αX′

a )Yb . In particular

αX′
a is Y–complete with respect to any special

element b.

Corollary 1. If Y ≤T X then (αX
a )Ya ≡ αX

a .

In particular, the numbering α0(n)
a is 0(i)–com-

plete with respect to a for all i ≤ n.

Corollary 2. (α0(n+1)
a )0

(n)

b ≡ α0(n+1)
a , for all

a, b. In particular, α0(n+1)
a is 0(i)–complete with

respect to each element of the family and for

all i ≤ n.
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Theorem 7. Let A be any non-trivial Σ0
n+1–

computable family with n ≥ 1. Then

(i) for every A ∈ A and each I ⊆ {0,1, . . . , n−1}
there exists a numbering α ∈ Com0

n+1(A) such

that α is 0(i)–complete with respect to A if

and only if i ∈ I;

(ii) if A has least set ⊥, and if it has a Σ0
n+1–

computable numbering which is not 0(n)–com-

plete with respect to ⊥ then

for every set I ⊆ {0,1, . . . , n}, there exists a

numbering α ∈ Com0
n+1(A) such that α is 0(i)–

complete with respect to ⊥ if and only if i ∈ I.
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4. Uniformly complete numberings

Definition 5. We say that a numbering β of

a set A is uniformly X-complete if there exists

a total X-computable function h(i, m, x) such

that for every i, m, x

β(h(i, m, x)) =





β(ϕX
i (x)) if ϕX

i (x) ↓,
β(m) otherwise.

Theorem 8. For every set X and for every

numbering α of a family A, and for each a ∈ A,

the numbering αX′
a is uniformly X-complete.

Corollary 1. For every α ∈ Com0
n+3(A) there

exists a Σ0
n+3-computable uniformly complete

numbering β such that α 6 β.

Corollary 2. For every α ∈ Com0
n+3(A) there

exists a numbering β ∈ Com0
n+3(A) such that

α 6 β and β is complete with respect to every

element B ∈ A.
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5. Interconnections between complete

numberings and universal numberings

Theorem 9. Let α be 0(m)-universal number-

ing in Com0
n+1(A). Then:

(1) if m < n then α is 0(m)–complete with

respect to every element of A;

(2) if m 6 n and A has the least element ⊥
then α is 0(m)-complete with respect to ⊥;

(3) α is not 0(n)-complete with respect to any

non-least element of A;

(4) α is not 0(m)-complete with respect to any

A ∈ A if m > n.
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Theorem 10. For every n, each finite family

A of Σ0
n+1-sets has a numbering α which is

0(n)-universal in Com0
n+1(A).

Theorem 11. Let A ⊆ Σ0
n+2 be a finite family.

Then the following statements are equivalent:

(1) there exists a numbering of A which is uni-

versal in Com0
n+2(A);

(2) A has a numbering which is 0(n)-universal

in Com0
n+2(A);

(3) A contains a least element ⊥ under inclu-

sion.

Corollary. Let A be a non-trivial finite family

of Σ0
n+2-sets. Then

(1) if A has the least set ⊥ then for all m, A
possesses numberings which are 0(m)-universal

in Com0
n+2(A);

(2) if A does not contain the least set under in-

clusion then A has a numbering 0(m)-universal

in Com0
n+2(A) if and only if m ≥ n + 1.

16



Computability in Hierarchies and

Topological Spaces (INTAS-00-499)

Siena (Italy), July 20-23, 2004

Complete Numberings II

Serikzhan Badaev

(jointly with Sergey Goncharov,

Zarif Khisamiev, Sergey Podzorov

and Andrea Sorbi)

Kazakh National University,

Almaty(Kazakhstan)

e-mail: badaev@kazsu.kz

17



Definition 2. Numbering α of an abstract set

A is called complete w.r.t. special object a ∈ A
if for every partial computable function f(x)

there exists total computable function g(x) s.t.

αg(x) =





αf(x) if f(x) ↓,
a otherwise.

Definition 3. Let K(x) be an unary universal

partial computable function, for instance,

K(< e, x >) = ϕe(x). Define

αK
a (x) =





αK(x) if K(x) ↓,
a otherwise.

Definition 4. Let X be an arbitrary subset

of N and let KX(< e, x >) ® ϕX
e (x) for all

e, x ∈ N . Define

αX
a =





αKX(x) if KX(x) ↓,
a otherwise.
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Theorem 3. Let A be a family of Σ0
n+2 -sets,

let α ∈ Com0
n+2(A), and let A, B be any sets

of A. Then

1) αK
A ≡0′ α;

2) α 6 αK
A ;

3) α < αK
A iff α is not complete w.r.t. A;

4) if A 6= B then

inf(deg(αK
A ),deg(αK

B )) = deg(α).
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Question. Is it true that

((α0(n)

a )0
(n)

b )0
(n)

a ≡ (α0(n)

a )0
(n)

b ?

In particular, is it true that

((αK
a )K

b )K
a ≡ (αK

a )K
b )?

Answer [Zarif Khisamiev] Both possibilities are

valid.
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6. Distributive substructures of Rogers

semilattices

Let A be a non-trivial countable set. Denote

by L(A) the set of degrees of all numberings

of A with partial order induced by reducibility

of numberings. L(A) is upper semilattice. For

any numbering α of A, let C(A)α stands for the

subsemilattice of L(A) which contains deg(α)

and is closed under completion operator.

Theorem 12[Z.Khisamiev]. If α is non-complete

w.r.t. some element of A then C(A)α is infinite

distributive lattice with finite principal ideals.

S(A) ® the set of the special objects of A.

Theorem 13[Z.Khisamiev]. Let α, β be any

numberings of the sets A,B. Then C(A)α ≈
C(B)β iff |S(A)| = |S(B)| and |A \ S(A)| = |B \
S(B)|.
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Theorem 14[Z.Khisamiev]. For every non-

empty countable sets B ⊆ A, there exists a

complete numbering α whose special objects

are exactly elements of B.

Theorem 15[Z.Khisamiev]. Let B ⊆ A ⊆ Σ0
n+2

with the common ⊥. For every α ∈ Com0
n+2(A)

and β ∈ Com0
n+2(B) there exists γ ∈ Com0

n+2(A)

s.t.

(1) α⊕ β 6 γ;

(2) γ is complete w.r.t. every element of B;

(3) γ is not complete w.r.t. every element of

A \ B.
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Open questions on complete numberings

Question 1. Is any Σ0
n+2-computable mini-

mal numbering of non-trivial family A always

incomplete?

Question 2. Let α ∈ Com0
n+2(A) be a num-

bering of a non-trivial family A and suppose

that α is not complete w.r.t. A ∈ A. Does

there exist a numbering β s.t. α < β < αK
A?

Question 3. Let α ∈ Com0
n+2(A) be a num-

bering of a non-trivial family A and suppose

that α is not complete w.r.t. A ∈ A. Does

there exist a non-splittable numbering β s.t.

α < β < αK
A?

Question 4. Does every Σ0
n+2-computable

family A have a Σ0
n+2-computable uniformly

complete numbering?
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6. Elementary properties and isomorphic

types of Rogers semilattices

The purpose is to show differences in the ele-

mentary theories of Rogers semilattices of arith-

metical numberings, depending on structural

invariants of the given families of arithmetical

sets.

Everyone who has ever dealt with the classi-

cal theory of computable numberings is well

aware that general facts about Rogers semi-

lattices of families of c.e. sets are very rare,

and at the same time it is very difficult to es-

tablish elementary properties that distinguish

given structures. Opposite to the classical case,

the elementary theories of Rogers semilattices

of arithmetical numberings for the level two

and higher seem more exciting. Now, we briefly

examine some algebraic and elementary prop-

erties of the Rogers semilattices R0
n+2(A) for

various A.
24



Cardinality, Lattice Properties,

Undecidability

Theorem 16 [A.Khutoretsky]. For every fam-

ily A of c.e. sets, if the Rogers semilattice

R0
1(A) contains at least two elements then it

is infinite.

Theorem 17 [V.Selivanov]. For every family

A of c.e. sets, if the Rogers semilattice R0
1(A)

contains at least two elements then it is not a

lattice.

Theorem 18 [S.Goncharov, A.Sorbi]. If a

Σ0
n+2-computable family A is not trivial then

the Rogers semilattice R0
n+2(A) is infinite and

is not a lattice.

Question 5. Under what conditions the Rogers

semilattice R0
1(A) of a family A of c.e. sets is

non-trivial?
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Let ε∗ denote the bounded distributive lattice
obtained by dividing the lattice ε of all c.e. sub-
sets of ω modulo the ideal of all finite sets. We
will denote by β̂ the principal ideal of R0

n+1(A),

β̂ ® {deg(γ) | deg(γ) 6 deg(β)}.

Theorem 19[S.Podzorov]. Let A be any Σ0
n+2-

computable family. There exists a numbering
α ∈ Com0

n+2(A) such that
(1) α̂ is isomorphic to ε∗\{⊥} if the family A is
infinite;
(2) α̂ is isomorphic to ε∗ if the family A is fi-
nite.

Corollary. The elementary theory of every
non-trivial Rogers semilattice R0

n+2(A) is hered-
itarily undecidable.

Question 6. Is the elementary theory of any
non-trivial Rogers semilattice of a Σ0

1-computable
family hereditarily undecidable, or at least un-
decidable?
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Extremal Elements

Theorem 11[BGS]. Let A ⊆ Σ0
n+2 be a fi-

nite family. Then the following statements are

equivalent:

(1) R0
n+2(A) has a greatest element;

(3) A contains a least element ⊥ under inclu-

sion.

Theorem 20[BG]. For every n, if A is an in-

finite Σ0
n+2-computable family, then R0

n+2(A)

has infinitely many minimal elements.

Remark. Theorem 20 does not hold for some

infinite families of c.e. sets and does hold for

other ones.

Question 7 [Yu.L.Ershov]. What is the possi-

ble number of minimal elements in the Rogers

semilattice R0
1(A) of a family of c.e. sets?
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The Weak Distributivity Property

Definition 6. An upper semilattice 〈L,∨, 6〉 is

called distributive if for every a1, a2, b ∈ L, if

b ≤ a1∨ a2 then there exist b1, b2 ∈ L such that

b1 ≤ a1, b2 ≤ a2 and b = b1 ∨ b2.

Theorem 21[BGS]. For every n and for every

finite family A ⊆ Σ0
n+1, R0

n+1(A) is a distribu-

tive upper semilattice.

Theorem 21 does not hold for the infinite fam-

ilies if n > 1.

Definition 7. An upper semilattice L = 〈L, 6〉
is weakly distributive if L⊥ = 〈L ∪ {⊥}, 6⊥〉 is

distributive, where ⊥ /∈ L and

6⊥®6 ∪{(⊥, a) | a ∈ L ∪ {⊥}}.
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Proposition[BGS]. An upper semilattice L is

weakly distributive iff for every a1, a2, b ∈ L,

if b ≤ a1 ∨ a2 and b � a1, b � a2 then there

exist b1, b2 ∈ L such that b1 ≤ a1, b2 ≤ a2 and

b = b1 ∨ b2.

Theorem 22[BGS]. For every n, the Rogers

semilattice of any infinite Σ0
n+2-computable fam-

ily is not weakly distributive.

Question 8. Does there exist a computable

infinite family A of c.e. sets such that R0
1(A)

is distributive? Does there exist a computable

infinite family A of c.e. sets such that R0
1(A)

is weakly distributive?
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Theorem 23[BGS]. For every n, there exist

infinitely many Σ0
n+1-computable families with

elementary pairwise different Rogers semilat-

tices.

Theorem 24[BGS]. For every n there exist

m ≥ n and a Σ0
m+2-computable family B such

that no Rogers semilattice R0
n+1(A) of any

Σ0
n+1-computable family A is isomorphic to

R0
m+2(B).

Theorem 25 [to be checked]. For every n

and every non-trivial Σ0
n+6-computable family

A, R0
n+6(A) is not isomorphic to R0

n+1(B) of

any Σ0
n+1-computable family B.

Question 9. Is it true that Rogers semilatti-

cies of any two non-trivial computable families

of the different levels of the arithmetical hier-

archy are not isomorphic?
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Question 10. Do the elementary theories of

the classes of the Rogers semilattices of differ-

ent levels coincide?

Question 11. Is it true that for every m 6= n

there exist non-trivial Σ0
m+1-computable fam-

ily A and Σ0
n+1-computable family B s.t.

Th(R0
m+1(A)) = Th(R0

n+1(B))?

Question 12. Is it true that for every m 6=
n and for every non-trivial Σ0

m+1-computable

family A there exists Σ0
n+1-computable family

B s.t.

Th(R0
m+1(A)) = Th(R0

n+1(B))?

32


