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Preface

Workshop ”Computability and Models” is a part of the international joint
research  projects INTAS-RFBR-97-139 COMPUTABILITY AND
MODELS and INTAS-00-499 COMPUTABILITY IN HIERARCHIES AND
TOPOLOGICAL SPACES. It is organized under the aegis of the Kazakh
National University and the Institute of Mathematics of the Ministry of
Education and Science of Kazakhstan.

The three earlier INTAS workshops on computability and models (No-
vosibirsk, May 4-6, 2000; Heidelberg, January 18-19, 2001; Novosibirsk,
September 24-26, 2001) have established a tradition of inviting a wide spec-
trum of specialists in computability theory, and its applications to logic,
mathematics, and computer science. This workshop is the final one for the
project INTAS-RFBR-97-139, and some talks summarize the results of the
researches over the previous three years. The workshop is mainly devoted to
the computability theory and its applications to logic and computer science,
and includes also several talks on model theory.

Proceedings of the workshop contain abstracts of the talks or extended
reflection of the talks or their parts prepared as articles. Abstracts and
articles were preliminary refereed, nevertheless they should be considered
only as publications "as is”.

We thank to A.Sakhauev, A.Altaeva, R.Zhumakhanova who assisted

with the preparation of this volume.

Serikzhan Badaev

Yerzhan Baisalov

Editors
June 21, 2002



IIpenucioBue

[Tkoma Mo BBIUYUCAUMOCTH W MOJETIAM TIPELYCMOTpEHa MporpamMMa-
MU IBYX MEKIYHAPOTHBIX UCCIEIOBATETLCKIX MPOCKTOB EBpotmeiickoro co-
obmectsa UHTAC-HO®U-97-139 COMPUTABILITY AND MODELS n
NHTAC-00-499 COMPUTABILITY IN HIERARCHIES AND TOPOLOG-
ICAL SPACES. Ona oprammsoBara na 6asze Kasaxckoro HammoHaJIbHOTO
yauBepcutera u WucturyTa Maremaruku MwunucTepcTBa 0bpasoBaHus U
Hayku Kaszaxcramna.

Hpensiayime mkonst UHTAC no serauncinmoctn u momernsam (Hosocu-
oupck, 4-6 mas 2000 t.; lefimensbepr, 18-19 suBapa 2001 r.; HoBocubupck,
24-26 cenrsabps 2001 1.) 3a7M0KWIM TPAIANINIO TPUBIEIEHNA K PaboTe IIKO-
JIBI TIUPOKOTO KPYTa CHEMUATICTOB TT0 TEOPUN BBIYUCIUMOCTH U €€ MPUJIO-
KEeHWAM B JoTuKe, MareMatnke u computer science. Hacrosmas mrkoma
sBagercd 3akmoantenabroii mo npoekty UHTAC-HOPU-97-139, u mosTo-
MY HEKOTOpbIE TOKJIABI TOCBAIIEHBI NTOTaM PabOThI IO 3TOMY TPOEKTY 3a
npembiayiiue Tpu roga. HaboTa MIKOJIBI TOCBAIIEHA TIIaBHBIM 00pa30M MTpO-
OJIeMaM TeopwH BBIYUCINMOCTI U €€ TPUJIOKEHUAM B JIOTHKE U B computer
science, B TO Ke BpeMs PAI [TOKJIAJI0B OTHOCUTCH K TEOPUH Moesieil.

Tpynsr 1mrkosbl comepxkaT Kak aDCTPaKThl TOKIAIOB, TaK U pa3Bep-
HYTO€e W3JIOKEHUE [TOKJIA0B WM WX JacTeil, opopMIEHHOE B BUIE CTaTeil.
XoTs Bce abCTpaKThl U CTATHU MPOIILIHN MPeIBAPUTETBHOE PENEH3UPOBAHNE,
UX JIydlle pacCMaTpUBaTh Kak MyOauKamum ~as is” .

Mpsr Beipaxkaem Omaromapuocth A.Caxayesy, A.Anraesoii, H 7ZKymaxa-
HOBOII 3a& MOMOIIb TTOATOTOBKE 3TOTO COOPHUKA.

Henaktopsr

C.A. Hanaes

E.H Haiicanos

21 mrona, 2002 .
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Program of Workshop
”Computability and Models”

Monday, June 24, 2002

Sergey Goncharov (Russia), Computability and Autostability
Julia Knight (USA), Isomorphism Problems

Dieter Spreen (Germany), On the Effective Continuity of Effective
Multifunctions

Pavel Alaev (Russia),Computable Homogenious Boolean Algebras

Asylkhan Khisamiev (Russia), Computable Imbeddability Condition
and Degrees of Abelian Groups and Boolean Algebras

Yerzhan Baisalov (Kazakhstan), On Erdos-Woods Conjecture
Oleg Kudinov (Russia),

Perdebek Dosanbai (Kazakhstan), Definability in Arithmetical Struc-
tures

Tuesday, June 25, 2002

John Case (USA), A Computability-Theoretic Learning Theory Sam-
pler

Frank Stephan (Germany), Learning Classes of Approximations to
Non-Recursive Functions

Iskander Kalimullin (Russia), The Jump Operator Is Definable in the
Enumeration Degrees

Marat Arslanov (Russia), Relatively c.e., n-c.e. and Fixed-point Free
Degrees



Program of Workshop

Nazif Khisamiev (Kazakhstan), Vitalii Roman’kov (Russia), Construc-
tive Matrix and Ordered Groups

Anna Romina (Kazakhstan), Autostability of Models in Admissible
Structures

Dzhamalbek Tusupov (Kazakhstan), Generalized Computability on
Countable Atom Boolean Algebras

Thursday, June 27, 2002

John Case (USA), Machine Learning for a Genomics Analogy Problem

Klaus Keimel (Germany), Domain Theoretical Models for Probability
and Measure

Serikzhan Badaev (Kazakhstan), Arithmetical Numberings

Vyacheslav Dobritsa (Kazakhstan), On the Limitly Constructible Mod-
els

Pavel Semukhin (Russia), Spectrum of the Atomless Elements Ideal

Kuanysh Meirembekov (Kazakhstan), Ryll-Nardzewski Function of
Countably Categorical Theories

Beibut Kulpeshov (Kazakhstan), On Some Properties of Weakly o-
minimal Theories

Stanislav Bereznyuk (Russia), On Hyperarithmetical Numberings

Friday, June 28, 2002

Mikhail Peretyat’kin (Kazakhstan), Lindenbaum Algebra of Predicate
Logic and Its Structure

Sergei Podzorov (Russia), Algebraic Properties of Rogers Semilattices
of Arithmetical Numberings

Asel Altaeva (Kazakhstan), Precomplete Arithmetical Equivalences

Zarif Khisamiev (Kazakhstan), On Completion of Arithmetical Num-
berings
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Pavel E. Alaev

Computable homogenecous Boolean algebras

Pavel Alaev

Novosibirsk, Russia

Abstract

We propose a criterion indicating when a homogeneous Boolean
algebra has a computable copy. Andrei Morozov proved that
such an algebra can be described by an invariant which is a
subset of the set of natural numbers. We introduce a hierarchy
of A% -sets which generalizes Feiner’s hierarchy. A countable
homogeneous Boolean algebra has a computable copy if and only
if its invariant belongs to a class of this hierarchy. A way to
pass from a hyperarithmetical quotient Boolean algebra to a
computable Boolean algebra is also considered.

In 1970 Feiner introduced a hierarchy of A2-functions (Feiner’s hierar-
chy): suppose that f : w — w and a,b € w. f belongs to the class (a,b)
if

f(n) =g (n)

for some k € w. The idea can be formulated as follows: to compute f(n),
we fix a Turing machine but use an oracle which depends on n.

We can also consider functions f such that f(n) = k(h(n))(n), where h
is a computable function, not necessarily linear (this generalizes the Feiner’s
hierarchy). To describe the computable homogeneous Boolean algebras, we
use a more general approach: the oracle in the computation of f(n) depends

on n and f(0),..., f(n—1).
Let g : w — w be a computable function such that g(z) > 1 for z € w,

and let (-,...,-) : w<¥ — w be the standart function. The class AJ
consists of all functions f : w — w such that for some k € w,

f(n) =827 (s)
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Pavel E. Alaev

where s = (f(0),..., f(n —1)).
Aset M € A, if xar € AD .
The class Eg’g consists of all sets M C w such that

XM(n) 1o ¢2(9(S)—1)(8) !

where s = (xm(0),... ,xm(n —1)).
Examples. (1) if g(z) = m for all z € w, then A) , = A} and
20 — 20 . ’
w,g m?
(2) if g((zo, ... ,Zn-1)) = an+b+1, where a,b € w, then AJ  is a Feiner’s
class.
The following proposition says that these classes have a usual property.
Proposition. Let ¢;,90 : w — w be computable functions such
that 1 < g1(z) < g2(z) for all z € w. Suppose that g2((zo,...,Zn)) <

92((Zoy ... yZn, Tpy1)) for all zo,... ,Zpy1 € w. Then there exists an M €
AS}:QZ \ 28&91'
By algebra we mean a countable Boolean algebra. Let

ch(A) = (chi(A),cha(A),chs(A)) be the elementary characteristic of an
algebra A, where ch;(A) € w U {o0}. A. Morozov proved (1982):

(1) if A is a homogeneous algebra and ch;(A) < oo, then A has a com-
putable (even decidable) copy;

(2) if A is a homogeneous algebra and ch;(A) = oo, then A can be defined up

to isomorphism by a sequence of invariants t(A), po(A), p1(A),... ,pn(4),...

where t(A) € {1,2,3}, po(A4) € {0,1} for n € w.
Theorem. Let A be a homogeneous algebra such that ch;(A) = oo.
The following are equivalent:
(1) A has a computable copy;
(2) {n | pn(A) = 1} € B ,, where g((Zo,... ,Zn)) =4+ 3(n + 1) + 20 +
oot z,.
As a corollary, we obtain a strong version of a Feiner’s result:
Corollary. There is a AJ-computable homogeneous algebra having no
computable copy.
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A. A. Altaeva

Precomplete arithmetical equivalence
relations

Assel Altaeva
al-Farabi Kazakh National University, Almaty

Abstract

We study arithmetical equivalence relations (a.e.r.) on w and
investigate the possibility to modify main results for positive equiv-
alence relations concerning reducibility, completeness and properties
of equivalence relations for relations in arithmetical hierarchy consid-
ering Z?z-l—l — equivalence relations generated by some function com-
putable with @¥~1. Particularly, such approach allows us to show
that precomplete arithmetical equivalence relations are computably
isomorphic to each other.

Introduction

Our primary goal in this paper is to develop comprehensive theory for
reducibility among a.e.r., to study different notions of completeness for a.e.r.
and properties of precomplete a.e.r.

The research work was to a large extent motivated by the theory of
computably enumerable equivalence relations (positive e.r.) rather devel-
oped by Ershov[1],Visser[2], who studied examples of precomplete positive
e.r. in logic, Bernardi and Sorbi[3] investigating universality of positive e.r.
and Lachlan [4] who showed that precomplete positive e.r. are computably
isomorphic to each other. He also considered another natural notion of com-
pleteness (called e-complete) and demonstrated nice properties and natural
examples of e-complete positive e.r. There are direct connections between
positive e.r. and a.e.r. as positive e.r. are just a subcase of a.e.r., so the
general methodology we employ in the current investigation is much similar
to the theory of positive equivalence relations.

The most interesting applications of the theory of equivalence are of-
ten classification problems for various kinds of structure in mathematics.
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Furthermore, to classify a structure is usually meant to obtain a complete
set of invariants for the structure. What we are investigating about a.e.r.
under reducibility can then be viewed as an abstract framework for a study
of the possibilities to effectively compute complete invariants. In this sense
our reducibility is more natural than the reducibility among sets.

An a.e.r. can be viewed as a Y., ,; — partitioning of the w. Hence the
reducibility among a.e.r. as equivalence relations generalizes various notions
of simultaneous reduction of sequences of sets. Also, natural non-universal
a.e.r. are easy to construct(similar to positive equivalence relations) . This
is in contrast with situation in computability theory for sets, where sophis-
ticated constructions are usually needed to ensure existence.

Definition 1. An equivalence relation R on w is arithmetical if R is a
Z?H_l —relation for some n.

Definition 2. For two a.e.r. R; and R,, we say that R; is m-reducible
to R, and denote Ry <,, R, if there is a computable function f such that
for any z,y € N,zR1y & f(z)R2f(y).

Further we omit the prefix and say that R; is reducible to R;. When
we do this, the reducibility is meant to be many-one.

Note that this reducibility is a stronger notion than the ordinary re-
ducibility among sets. Thus the following notion of ”"completeness” is
stronger than the corresponding concept for sets.

Definition 3. Non-trivial >, ; — relation R is called precomplete if
for every partial computable function ¢, there is a total computable function

F such that, o(n)RF(n) for all n € dome.

Ershov in [1] observed that, if ¢ is a universal unary partial computable
function and R is the least equivalence relation containing graph of ¢,then
R is precomplete.

Visser [2] pointed out that natural examples of precomplete equiva-
lence relations occur in the context of A-calculus and Peano arithmetic.
In particular, if m—A,,is an effective numbering of the 3% —sentences of
any sufficiently strong axiomatizable first-order theory T, then the rela-
tion ~,={(l,m) :FrA; & An} is precomplete. Let m— By, be an effective
numbering of all sentences of T and ~r={(l,m) :FrB; B, }. Howev-
er Bernardi and Sorbi showed that ~7 is not precomplete, since negation
affords a total recursive diagonal function for ~r (see [3, p. 534]).

Indices for a.e.r.

If ¢ is a partial computable function and n € w, then Y™ denotes partial
computable function obtained by n iterated compositions of . This can be
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defined precisely by induction on n: ¥°(z) = z and ¥"(z) = ¥(¥™)(z),
for any z € w.
For every n € w the set of all 3-0-equivalence relations is 3 _o-computable.
Let R, be arithmetical equivalence relation generated by the set {(z,y)|(z, y)
€ WO}, where W2 -enumerable set, computable with 07! oracle.
There are other procedures which can generate all a.e.r. from 30 class.
Following Ershov’s [1] notations we define a.e.r. as:

Definition 4. For each function f computable with 0" oracle, define
the a.e.r. ny by znyy = In, m(f*(z) = f™(z) 1), z,y € w.

Then 7y is a.e.r. generated by the graph of f, if e is an index for f,then
we also write 7y as 7., and we call e the iterative 3 o- index for 7.

We note below that these two indexing systems are essentially the same.

Definition 5.Equivalence relations R,S are computably isomorphic
(R =2 §) if there exists a computable permutation H such that zRy iff
H(z)SH(y).

Proposition.

There is a computable isomorphism p such that 7. = R,).

Proof. From the proof of Ershov’s result follows, in fact it is not hard
to see directly, that 31 — 1f(k, e) 0" *-computable function: Re = 9g(k,e)
for any k,e € w. Similarly, there is a one-one computable function g(k,e)
such that 7. = Rge) for any k,e € w. With this padding property it
is then routine to define a computable isomorphism p by a back-and-forth
construction as follows.

Let p(0) = f(0,0). If f(0,0) = O then p~*(0) to be g(k,0) where
k is the least such that g(k,0) # 0. In general suppose both p and p~*
are defined for ¢« < k. If k& € {p71(0),..., p7 (k — 1)} then p(k) is already
defined. Otherwise let p(k) be f(m,k) where m is the least such that
f(k,n) ¢ {p(0),...,0(k — 1)}. Then in similar way define p~(n). The

resulting p is one-one,onto and computable. O

Theorem 1. Any two precomplete Z?L_l_l-equivalence relations are com-
putably isomorphic.

Proof. We follow Lachlan’s ideas and notations from [4]. Let R, S
be precomplete 32 nt1- €quivalence relations. Suppose given a simultaneous
enumeration with 0" *-oracle of R and S such that at each stage exactly one
pair is enumerated in either R or S but not both and such that (z,7) with
1 # 7 is enumerated in R or S only if both (z,7) and (7, 7) have already been
enumerated in R or S respectively. Let ¢, ¥ be partial computable functions.
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The fixed point theorem allows us to find unary computable functions F,G
such that F' "makes ¢ total” with respect to R and G "makes 9 total” with
respect to S.We will effectively enumerate the graphs of permutation H
and unary partial computable functions ¢, 1. The finite approximations to
H, ¢ and 9 which have been enumerated by the end of stage k are denoted
Hy, pr and .

In stage k we define equivalence relations Ry & R on domH and
S © S on rngHy, such that Hy is an isomorphism between (fldRy, R) and
(fld Sk, Sk). Each equivalence class of R(Sk) will be designated as left or
right in such a way that C is a left class of Ry iff Hy(C') is a left class of Sk.
If ¢ is a left (right) class of Rg(Sk) a number ¢ is associated with C such
that F(c) € C(G(C) € C) and ¢ ¢ domyp(domy). At any stage of the
construction ¢ is associated with at most one left class of R; and with at
most one right class of Sk.

Let ag,a1,b0,b1 be chosen such that (ag,a;1) € R and (b, b1) ¢ S.
In Stage 0. Let everything be empty.

Stage k+1. Let (z,p) be enumerated in R or S at stage k. If (2,p) €
Ry or Sg respectively, do nothing at stage k 4+ 1. The other cases are:

Case 1. 1 = p and (1,1) is enumerated in R. Let ¢ be the least number
such that 9i(c) is undefined, ¢ is not associated with any right class of Sk
and j -~ G(C) Qé I‘Ilng. Let Hk_|_1 = HkU<’L’,j>,Rk+1 = RkU<7;,7;>,Sk+1 =
SkU(7,7), and {j} be a right class of Sg41 with associated number c.Let
everything else be the same as at the end of stage k.

Case 2. 1 # p and (¢,p) is enumerated in R. By choice of the enu-
meration of R and S, (z,1) and (p,p) have already been enumerated in R.
Therefore 1, p € fidRy. Let C, D be the Rg-classes of 2, p respectively. Let ¢
be the number associated with C or Hg(C') according as C' is a left or right
class. Let d be the number associated with D or Hi(D) according as D is
a left or right class.

Subcase 2.1. C and D are both right classes. Let Hy.1 = Hy, Riy1 be
the least equivalence relation on fldRy such that Rgy1 2 Ri U (2, 0), Sgr1 =
Hiy(Rit1), Yue1 = Yr U (d,G(c)), and ¢ry1 = ¢r. Let ¢ be the number
associated with the new equivalence class H(C U D) which is designated as
a right class of Sky1. The other classes are designated as at the end of stage
k.(Note: Making ¥(d) = G(c) forces G(c)SG(d). Since G makes ¥ total
for S).

Subcase 2.2. C and D are both left classes. Let ¢ri1(c) = ao
and ¢ry1(d) = ay.( Since 1, F(c) € C;p,F(d) € D and tRp, we obtain
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F(c)RF(d). This contradicts F' making ¢ total for R. Thus we need go no
further, because, use of the fixed point theorem prevents this happening)

Subcase 2.3.C is a left class and D is a right class. Let Hpy; = Hg,
Ryy1 be the least equivalence relation on fldRy such that Rgy; 2 Ri U
{60}, Ser = Hi(Riwn) $ees = % U {(d HEO)}, and fen = b,
Let ¢ be the number associated with the new equivalence class C' U D of
Ryy1 which is designated a left class. The other classes are designated as at
the end of stage k. ( Note: Making ¥(d) = H(F(c)) forces H(F(c)SG(d)
so that H(C U D) will be included in an equivalence class of §).

Subcase 2.4. C is a right class and D is left class. Let everything be
as in the previous subcase ¢ and d interchanged and C and D interchanged.

Case 3. 1 = p and (7,1) is enumerated in S. Similar to Case 1.
Case 4. 1 # p and (2, p) is enumerated in S. Similar to Case 2.

This completes the construction. Cases 1 and 3 ensure that
domH=rngH=w. Since Hy is 1-1 for all k, H is a recursive permutation.
Let R, denotes U{Ry : k < w} and S, denotes J{Sk : & < w}. Cases 2 and
4 ensure that R € R, and S € S,. Further in parenthetical remarks at
the end of the various subcases we explained why Rg.; € R and Sk € S.
Finally, it is easy to check that the rules of association are true after step
k + 1. This completes the proof. O
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Serikzhan Badaev

Spectrum of minimal numberings for the
families of arithmetical sets?!

Serikzhan Badaev
al-Farabi Kazakh National University, Almaty

Abstract

We give complete description of minimal arithmetical numberings
spectrums for the families of arithmetical sets.

1 Preliminaries

We refer to [1-3] for the basic notions of the theory of algorithms and
the theory of numberings.

Let us remind necessary definitions. A numbering o of a family A of
c.e. sets is called computable if the binary relation ¢ € ay is c.e. In paper
[4] of S. Goncharov and A. Sorbi, the notion of computable numbering was
generalized towards the families of arithmetical sets as follows. A numbering
a of a family A C &), is called 5, — computable if the binary relation
z € ay is XY, ,—predicate. If n = O then A consists of c.e. sets and
39— computability of & coincides with the classical computability of a.

A numbering a is called reducible to a numbering B (symbolically,
a < B)if a =0 o f for some computable function f. The two numberings
are called equivalent if they are reducible each to other. In what follows,
"number of numberings” of some type is considered up to the equivalence
relation of numberings.

Usually, generalized computable numberings are considered with re-
spect to the classical reducibility. =~ We also use a reducibility via
0 —computable functions with 7 > 0 to construct 2 o~ computable num-
berings.

! Partially supported by grant INTAS-RFBR-97-139
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Proposition 1. For every n and every @ < n, if a numbering o is
o1 —computable and B = ao f for some 00 —computable function f then

the numbering B is LY, — computable too.

Proof. Really, for all z,y € w,
y€Pr<— J2(z=f(z) &y € az)

and therefore y € Bz is &), ; —relation.

A numbering a of a family A is called minimal if for every numbering
B of the same family, 8 < a implies @ < 8. A numbering a of an infi-
nite family A is called Friedberg numbering if each set of A has exactly one
a—index. Let 8, stands for the equivalence {(n,m) | an = am}. A num-
bering a is called positive numbering (decidable numbering) if 6, € X9
(respectively, 8, € A?). Each decidable numbering of an infinite family
is equivalent to some Friedberg one [5]; both Friedberg and positive num-
berings are minimal [6]. The class of computable decidable numberings is
a proper subclass of the class of computable positive numberings and the
latter is a proper subclass of the class of computable minimal numberings
[1].

At the end of 60-th Yu.L. Ershov formulated the problem of finding
a possible number of computable minimal numberings for a given family
of c.e. sets. The problem of Ershov is still open, we refer to [7,8] for the
further information on that problem.

Our aim is to describe a possible number of X} | ,— computable minimal
numberings of each type for any given family of X9, ,—sets, n € w.

It is well known that every finite family has the least numbering under
reducibility and that the least numbering is decidable [1]. Due to this, we
can consider only infinite families of arithmetical sets.

2 Number of Friedberg numberings.

Friedberg numberings were introduced versus to Godel numberings. In
[9], R. Friedberg proved that the family of all unary partial computable
functions and the family of all c.e. subsets of w have such numberings.
Friedberg numberings were studied by many famous specialists in the com-
putability theory: A.Lachlan, M.B. Pour-El, H. Putnam, A.I. Mal’tsev,
Yu.L. Ershov, S.S. Marchenkov, A.B. Khutoresky, M. Kumer and others.
Besides the problem of finding conditions for a family to have Friedberg
numberings, they studied the question on number of Friedberg numberings
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for various families of c.e. sets. For a long time, it were known only the
families with either 0 or 1 or w computable Friedberg numberings. At the
beginning of 80-th S.S. Goncharov [10] established close connection between
number of computable Friedberg numberings of the families of c.e. sets and
algorithmic dimension of computable models. Well-known Goncharov’s the-
orem shows an existence of the families of c.e. sets with exactly 2, exactly
3, and so on computable Friedberg numberings [11].

Thus, the set {0,1,2,...,w} completely describes all possible numbers
of computable Friedberg numberings in the classical case of the families of
c.e. sets. Naturally, the problem on number of X2, ,— computable Friedberg
numberings of the families of XY, ,—sets arises for an arbitrary n.

First of all, let us consider a question on an existence of infinite sets
without Friedberg numberings.

Proposition 2. For every n, there exist infinite B2, — computable families
of B9, —sets without B2, —computable Friedberg numberings.

Proof. Let n be an arbitrary number and let A be a set of the class
Zo \II2,,. For every z € w, let

if A
am:{{m} if z¢d4,

A otherwise.

Then a is numbering of the family A = {az | ¢ € w}. Since for all z, v,
ycarz<—zc=yvVyc A&z c A,

it follows that a is &7, ; — computable numbering.

If we would assume that A has a %} ;- computable Friedberg number-
ing B with 80 = A then we obtain

y€ |J Pz < Jz(z > 0&y € Pz)

x>0
and, therefore, A = J,50 0z is %o 1 —set. Contradiction.
O
An existence of the families of &) ,—sets which have infinite number of
5 o~ computable Friedberg numberings follows easily from the known facts
of the theory of numberings. Let A be any computable family of c.e. sets
which has infinitely many computable Friedberg numberings, for instance,

let A be the family of all c.e. subsets of w [12]. Obviously, such numberings
are B2 ,—computable Friedberg numberings of A for all n too.
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We obtained now that both 0 and w can be realized as the number
of B2, ,—computable Friedberg numberings of some family. Our goal is to
prove that there is no other possibilities for the desired number.

By proposition 1, if & : w — A is a %) ,—computable Friedberg
numbering and f is a 0’ —computable permutation of w then 8 = a o f is
2o o~ computable numbering of A. Obviously, 8 is Friedberg numbering.
Note that if f is not computable then @ is not reducible to a.

Let f* stands for k-th iteration of permutation f: fO(z) = z,
fE(2) = f(fW(z)), z € w.

Proposition 3. There exists 0' —computable permutation p such that p*)
is not computable for all k > 0.

Proof. Let A be any infinite set and 0 € A, and let A = {g(0) <
9(1) < g(2)...}. Define function h as follows: h(0) = g(0), A(n + 1) =
h(n) +2g9(n + 1),n € w. For every n, let p(h(n +1) — 1) = h(n) and let
p(2) =14 1 for every ¢ such that h(n) <t < h(n+1)—1.

It is easy to check that the following five statements are equivalent:
(i) A is computable set,
(ii) g is computable function,
(iii) A is computable function,
(iv) p® is computable permutation for all k € w,

(v) p®) is computable permutation for some & > 0.

Now, by letting A be the complement of any non-computable c.e. set we
obtain 0' ~computable permutation p satisfying the statement of proposition

3.

Corollary. If a family A C E ., has at least one X9 ,— computable Fried-
berg numbering then A has infinite number of such numberings.

Proof. Let a be a XY, ,—computable Friedberg numbering of A.
Let permutation p satisfy conclusion of proposition 3. The numberings
aop® k € w, are pairwise non-equivalent, and each of them is DIRGI
computable Friedberg numbering of A.

Thus, for every n and for every infinite family of 9, ,—sets, the number
of X9, ,— computable Friedberg numberings is either 0 or w.
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Theorem 1. For every n, a family A C B2, has %9, —computable
Friedberg numbering if and only if for some B, | — computable numbering o

of A, the set
F,={z | (Vy < z)(ay # az)} is 0"

computably enumerable.

Proof. Necessity is evident since if A has X9~ computable Friedberg
numbering o then F, = w.

Sufficiency. Let F, be 0 —computably enumerable set for some
%o, —computable numbering a of A. Let f be any injective 0™ —com-
putable function with rng(f) = F,. Define numbering 8 of Aas 8 =ao f.
Proposition 1 implies that 8 is X}, ;~ computable Friedberg numbering.

4

Remark 1. Theorem 1 gives also a criterion for infinite X2, ,— computable
family A to have X9  ,— computable positive numbering. This follows imme-
diately from a fact of S.S. Goncharov and A. Sorbi [4]. They had shown that
if an infinite family of X&) ,—sets has X2 ,— computable positive numbering
then it has X2, ,— computable Friedberg numbering.

3 Number of positive numberings.

Likewise to Friedberg numberings, positive numberings were also stud-
ied by many authors (A.l. Mal'tsev, Yu.L. Ershov, S.S. Goncharov, V.V.
V’jugin, S.A. Badaev, S.S. Marchenkov, A.B. Khutoresky, V.L. Selivanov
and others). There are known a lot of structural conditions for a family of
c.e. sets to have computable positive numberings (see [1], [7] for references).

Note that ”identifying” the sets is a typical tool to construct com-
putable positive numberings. For illustration the identifying procedure, lets
us consider the family of all singletons and let an = {n},n € w, and choose
a non-computable c.e. set A. It we "identify” all the sets with a—indices
from A then we obtain computable positive numbering

ﬁn_{an if neA,

A otherwise

of the family {8n | n € w} without computable Friedberg numberings.

Note that the identifying procedure is often used also to construct non-
positive numberings too. Indeed, we used it in the proof of proposition

2.
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It seems, that an existence of computable positive numberings is not
strongly connected with the structural properties of the families. There is
no any structural conditions both necessary and sufficient for the families of
c.e. sets to have computable positive numberings. Due to this, S.A. Badaev
[13] suggested some computational approach to find criterion of positive
computability. Essentially, this criterion describes conditions under which
the sets of a family could be identified. Besides, it could be easily generalized
to the case of the families of arithmetical sets.

Theorem 2. For every n, a family A C B2,., has %9, —computable
positive numbering if and only if for some X2 |~ computable numbering o

n+1)

of A, equivalence 4 is 0 —computable.

Proof is direct relativization of the proof given in [13] for the classical case
n = 0.

Remark 2. It does not seem realistic to search for the structural conditions
of existence of X2, ,—computable positive numberings since proposition 2
gives us an example of the effectively discrete family (see [1] for the notion
of effectively discreteness) without any X2 ,— computable positive number-
ings.

Proposition 4. [t an infinite family has a TY,,— computable Friedberg
numbering then it has infinitely many 32 ,—computable positive but not
decidable numberings.

Proposition 4 as well as theorem 3 below are proved in the joint paper
[14] of S.A. Badaev and S.S. Goncharov.

Thus for every infinite family of X9, ,—sets, the number of X ,—com-
putable positive but not decidable numberings is either 0 or w. Remind
that in the classical case the set of possible numbers of computable posi-
tive numberings is {0,1,2,...,w}. Likewise to Friedberg numberings, the
most complicated cases of computable families of c.e. sets with 2,3,4,...
computable positive numberings were found by S.S. Goncharov (see [15]).

4 Spectrum of minimal numberings.

Theorem 3[14]. Fvery infinite B, computable family A C %), has
infinite number of B2, — computable minimal but not positive numberings.

Let AC %Y., be a X9, ,— computable family of %7 ,—sets. Let
§ be number of Z2-computable decidable numberings of A;
7 be number of L0- computable positive but not decidable numberings of
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A;
@ be number of £2— computable minimal but not positive numberings of A.
The triple (8,7, 1) is called by spectrum of minimal numberings of A.

Theorem 4. Let A be X, computable family. If A is finite then the
spectrum of minimal numberings of A is equal to (1,0,0) otherwise the
spectrum is equal to either (w,w,w) or (0,0,w).
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On Erdos—Woods Conjecture
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Two sequences of positive integers a,a+1,...,a+kand b,b+1,...,b+k
are called Erdos—Woods pair if for each 0 < 1 < k the integers a + ¢ and
b+ 1 have the same prime factors; in this case we say also that the pair have

a depth k.

The following is known as Erdos —Woods Conjecture: for some positive
integer k there is no any Erdos—Woods pair of depth k.

Woods proved that this purely number-theoretic conjecture is closely
related to some questions of the formal arithmetics and its fragments.

I will discuss on this conjecture.
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A Computability-Theoretic
Learning Theory Sampler

John Case (case@cis.udel.edu)
University of Delaware (USA)

This talk is about algorithmic learning (or inference) of programs for
computational objects — from data about those objects. It provides a
sampler of results in three settings (together with a list of other settings
that might have been presented). The three settings:

1. For learning or inferring programs for computable functions, presented
are some delicate tradeoffs between the generality of an algorithmic learning
device and the quality of the successful programs it converges to. There are
preliminary results to the effect that, with small increases in generality
of the learning device, the computational complexity of some successfully
learned programs is provably unalterably suboptimal. There are also results
in which the complexity of successfully learned programs is optimal and the
learning device is quite general, but some of those optimal, learned programs
are provably unalterably information deficient — in fact, deficient as to
safe, algorithmic extractability of even the fact that they are approximately
optimal. For these results, the safe, algorithmic methods of information
extraction will be by proofs in arbitrary, true, computably axiomatizable
extensions of Peano Arithmetic.

2. A number of child cognitive development phenomena follow the U-
shaped form of: first learning, then unlearning, and subsequent relearning.
One can ask if U-shaped learning is an evolutionary accident or essential.
For learning grammars (or r.e. indices) from positive data for r.e. languages,
there are classes which are learnable with syntactic convergence in the limit
to successful grammars but not without U-shaped learning. In this formal
setting, W-shaped learning is provably not essential.
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3. Closed computable games model reactive process-control problems. Clo-
sed implies that, if Player I does not lose at any finite point in the playing
of the game, Player I does not lose (in the limit). Examples include discrete
regulation of room temperature with Player [ as thermostat. A master of a
closed computable game plays an algorithmic winning strategy for Player I.
Presented are results about advantages for Player I watching the behaviors
(not programs) of masters. It can be shown that: selected masters enable
learning to win more process-control games than arbitrary masters; for each
kind of master, it’s better to learn ones own winning strategy instead of try-
ing to copy the master’s; and, for each kind of master, one can learn more
process control games with m + 1 than with m masters. Discussed will be
the connection to behavior cloning in applied machine learning.
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Machine Learning for a Genomics
Analogy Problem

John Case (case@cis.udel.edu)
University of Delaware (USA)

This talk will introduce machine learning in bioinformatics by means
of the example of one empirically-based and preliminary study.

Orthologs are genomic strings evolutionarily derived from a common
ancestor and having the same biological function. Ortholog detection is bi-
ologically interesting since it indirectly informs us about protein divergence
through evolution, and, in our particular study, has potentially important
agricultural applications.

In our context (to be explained in the talk), we indicate how we arrived
at particular (fixed size) attribute vectors to represent genomic string data
and show how we conceive ortholog detection as an analogy problem. The
attributes are based on both the typical string similarity measures from
bioinformatics and on a large number of differential measures or metrics,
many new to bioinformatics. Many of these differential metrics are based
on evolutionary considerations, both theoretical and empirically observed,
in some cases observed by the authors.

Our study employed Quinlan’s machine learning algorithm called C5.0.
It 1. fits a sequence of decision trees to known classification data by means
of an information-theoretic heuristic, where each tree beyond the first is
concentrated on correcting the errors of its predecessor; and 2. employing
so-called boosting to make the final classification decisions by weighted ma-
jority vote of the trees, where higher voting weights are assigned to trees
with fewer errors. We applied C5.0 to sets of known ortholog classification
data and tried it out on larger sets of such data.

The results we will report are encouraging for complete cDNA strings,
and we describe our hopes for future extensions of this study.

This is joint work with Ming Ouyang and Joan Burnside.
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On the Limit Constructible Models?
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Abstract

We suggest to consider a generalization of the notion of com-
putable model by letting the predicates and the functions of a count-
able model be computable with respect to zero-prime oracle. We call
such models limit constructible models and study their autostability
as well as generalized autostability (automorphism representable by
zero-prime computable functions).

Let 9 = (M; o) be an at most countable model of a finite or enumer-
able signature. If there exists a numbering v : N — M of the universe M
of the model M such that:

l.VfeodfreAy:
Vi, .ntn € N v(f*(z1,...,24)) = f(v(z1), ..., v(zn)),
2.VPeo dP* e AY:
Vi, .Htm €N P*z1,..,2m) & ME Pv(z1),...., ¥(Tm)),

where f is an m-ary function, P is an m-ary predicate, then the model 9
is called I-constructible (limit-constructible).

In this case the numbering v is called I-constructive (limit-constructive)
and the pair (9, v) is called I-constructive (limit-constructive) model. It is
clear that each constructive model, in the sense of A.I.Mal’tsev definition,
is [-constructive.

Theorem 1 There exists an l-constructible, but not constructible algebraic
system.

?Partially supported by grant INTAS-00-499
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Theorem 2 The direct product of l-constructible models is an l-construct-

tble model.

It is natural to consider the limit-reducibility of I-constructive enumer-
ations for [-constructive algebraic systems, which had been introduced by
S.S. Goncharov for constructive enumerations of models. Let (91, 4) and
(O, v) be l-constructive models. We say that the l-constructive number-
ing v is l-reducible (limit-reducible) to the numbering u, if there exists an
isomorphism ¢ : 9 — 9 and the AJ-function h(z) such that the equality
o(v(z)) = u(h(z)) holds. We denote the limit-reducibility by <.

Two [-constructive numberings p and v of the same model are called
[-equivalent if they are limit-reducible to each other. It is denoted by =,.
Model M is called I-stable (limit-stable) if all its I-constructive numberings
are pairwise [-equivalent.

Theorem 3 There exvists a limit-constructible, but not limit-stable model.

Theorem 4 There exists a limit-stable, but not autostable constructive
model.

Denote by v~1(9,) the set of all v-numbers of elements of submodel
Moy C M, where v is an [-constructive numbering of model 9.

Theorem 5 [f My is a submodel of model M, v is a limit-constructive
numbering of M and the set v=(My) € A, then My is a limit-construct-
ible model.
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On Degrees of Uncountably
Categorical Theories with
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One of the themes of computable model theory is concerned with the
following two questions. Let T be a first order consistent theory. Does there
exist a computable model of T'7 If T' has a computable model then what is
the Turing degree of T'7 It’s well known that if T' is decidable then T has a
decidable model. On the other hand, if theory T has a computable model
then T' is computable in 0. Goncharov and Khoussainov proved that for
any natural number n > 1, there exist N; -categorical computable models
with the theories Turing equivalent to 0. We use a modified construction
to obtain the following result.

Any arithmetical Turing degree can be realized as the computability-theoretic
complexity of N; -categorical theory with computable model.
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Computability and autostability

Sergey Goncharov (gonchar@math.nsc.ru)
Novosibirsk State University (Russia)

We intend to talk about the autostability problem of computable mod-
els and definable relations on computable models. The classification prob-
lem of computable models has deep interrelations with the problem of com-
plexity of definable relations. This approach is closely connected with a
choice of a language in which a suitable description of computable number-
ings is considered. We will also discuss some open questions on complexity
of the theories with recursive models.
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The jump operator is definable in the
enumeration degrees

Iskander Kalimullin (Iskander.Kalimullin@ksu.ru)
University of Kazan (Russia)

We show that the jump operator in the enumeration degrees is order-
theoretic definable in the enumeration degrees. This solves a question posed

by S. B. Cooper.

Namely, for all e-degrees u and z the following is equivalent: 1) z > v/,
2) z > u and for all e-degrees @ > u, b > u and ¢ > u if each of pairs (a,b)
and (a,c) is u-e-ideal, then bUz = c U z.

(We say that a pair of e-degrees (a,bd) is u-e-ideal iff every e-degreel
z > u is the greatest lower bound of e-degrees a U z and b U z.)

Thus, the class of e-degrees above u' is definable by an AEA-formula
(in the language of ordering).

Furthermore, we show that for all e-degrees u and z the following is
equivalent: 1) z < u' 2) there exists a triple of e-degrees a > u, b > u
and ¢ > wu, such that each of pairs (a,b), (a,c), (b,¢) is u-e-ideal, and
z<aUbUc.

Thus, the class of e-degrees below u' is definable by an EAE-formula
(in the language of ordering).

Hence, the map u — u' is definable in the e-degrees by a formula
which is a conjunction of an AEA-formula and an EAE-formula. Also,
by Friedberg Completeness Criterion we can define the class of all total
e-degrees above (7 as the image of the jump operator.
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Let K be a class of structures closed under isomorphism. In a meeting
in Kazan in 1997, Goncharov gave a talk on computable structure theory. He
stated a large number of problems calling for the classification of computable
members of various classes. At the end of the talk, Shore asked what would
convince Goncharov to give up. In model theory, there are “many models”
theorems. In descriptive set theory, there are Borel completeness theorems.
Goncharov and I considered different approaches to classification and non-
classification for computable structures, eventually settling on one as most
productive.

Let I(K) be the set of computable indices for members of K. Let
E(K) be the set of pairs (a,b) such that a,b € I(K), and the structures
with indices a and b are isomorphic. Assuming that I(K) is A}, E(K)
is always B1. If E(K) is not Al, then there cannot be simple invariants
distinguishing among computable members of K. (It follows that there is no
computable bound on Scott ranks of computable members of K, and there
is no hyperarithmetical Friedberg enumeration of computable members of
K, up to isomorphism.)

It is well-known that if K is the class of linear orderings, Boolean
algebras, or Abelian p-groups, then E(K) is £} complete. (Proofs may be
extracted from a 1989 paper of Friedman and Stanley, but the results may
be older.) Calvert has shown that for the class K of undirected graphs,
fields of a fixed characteristic, or real-closed fields, E(K) is &1 complete.
For the class K of vector spaces over a fixed infinite computable field, or
algebraically closed fields of a fixed characteristic, B(K) is II3 complete.
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On some properties of Ny-categorical
weakly o-minimal structures

Beibut Kulpeshov

Abstract

We prove some properties of Ng-categorical weakly o-minimal
structures. First we present a criterion for goodness of each self-
definable subset of an Ng-categorical weakly o-minimal structure
of convexity rank 1 (Theorem 13). Further we give a descrip-
tion of all No-categorical binary weakly o-minimal theories of
convexity rank 1 which generalizes A. Pillay and Ch. Steinhorn
result for No-categorical o-minimal theories [1] (Theorem 16).
Lastly, at the end of the paper we present a criterion for holding
the Exchange Principle for algebraic closure in an Ng-categorical
binary weakly o-minimal theory (Theorem 19).

Let L be a countable first-order language. Everywhere in this paper we
consider L-structures and assume that L contains a binary relation symbol
< that is interpreted as a linear ordering in these structures. For arbitrary
subsets A, B of a structure M we write A < B if a < b whenever a € A and
be B.If AC M and £ € M then we write A < z if A < {z}. For any sub-
set A of a structure M At :={b € M|A<b}and A~ :={b € M|b < A}.
For an arbitrary complete type p we denote by p(M) the set of realizations
of the type p in M.

An open interval I in a structure M is a parametrically definable subset of
M oftheformI ={ce M : M = a < ¢ < b} for some a,b € MU{—00,00}
with a < b. Similarly, we may define closed, half open-half closed, etc., in-
tervals in M, so that for instance a point of M is itself a (trivial) closed
interval. A subset A of M is converifa <c<bAa,bé A= céE A. Thus,
a set is convex if it is an interval whose endpoints are now allowed to lie in
the order-completion M of M.

This paper concerns the notion of weak o-minimality first introduced by
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M. Dickmann in [2]. A weakly o-minimal structure is linearly ordered struc-
ture M = (M, =,<,...) such that any definable (with parameters) subset
of M is a finite union of convex sets in M. Recall that such a structure M is
said to be o-minimal if every definable (with parameters) subset of M is a
finite union of intervals in M. Thus, weak o-minimality is a generalization of
o-minimality. A. Pillay and Ch. Steinhorn have described all No—categorical
o-minimal theories [1]. Ng—categorical weakly o-minimal theories were in-
vestigated independently in [3] by using the notions of ultrametric and C'-
relation. Here we investigate No—categorical weakly o-minimal theories by
using Baizhanov’s technique which he has elaborated for classification of
one-types in weakly o-minimal theories [4], [5].

Definition 1 Let M be a linearly ordered structure, A,B C M, n € w.

1. We will say A is n-indiscernible over B in M 1f for any properly
ordered n-tuples @, b € A" tp(a/B) = tp(b/B).

2. We will say A is indiscernible over B in M if for any n € w A is
n—indiscernible over B in M.

In the following definitions M is a weakly o-minimal structure,

A, BC M, M is |A|t-saturated, p,q € S1(A) are non-algebraic.

Definition 2 [5] We will say p 1is non-solitary if there are an A-definable
formula H(z,y) and a,71,7: € p(M) such that H(M,a) # 0 and 7, <
H(M,a) < 7.

Convexity rank of a formula with one free variable was introduced in [6].
In particular, a theory has convexity rank 1 if there is no definable (with
parameters) equivalence relation with infinitely many convex infinite classes.
It is obvious an o-minimal theory has convexity rank 1.

Theorem 3 [7] Let T be an Ro—categorical weakly o-minimal theory. Then
the following conditions are equivalent:

(1) T has convexity rank 1.

(2) For any M =T for any A C M every non-algebraic type p € S1(A)
is solitary.

(3) For any M =T for any A C M for any non-algebraic  type
p € S1(A) p(M) is indiscernible over A.
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Corollary 4 Let T be an Ro—categorical o-minimal theory. Then for any
MET forany ACM for any non-algebraic  type p € S1(A) p(M) is

indiscernible over A.

Definition 5 [5] Let M be |A U B|t—saturated. By a neighbourhood of B
in the type p we shall call the following set:

Vy(B) := {y € M | there is a formula H(z,b,a),b € B,a € A,

so that v € H(M,b,a) and there are 7,7, € p(M) such that
m < H(M,b,@) < 7,}.

Definition 6 [5] Let M be |A|T-saturated. We will say p is almost ortho-
gonal to g (p —* q) if there is a € p(M) such that V,(a) = 0.

Definition 7 [5] Let M be |A|T—saturated. We will say p is weakly or-
thogonal to q (p =" q) if for any A-definable formula H(z,y) for any
a € p(M) the following holds:

[H(M,o)ng(M) #0 = g(M)C H(M,a)]

Definition 8 [5] We will say a weakly o-minimal theory T is almost o-mi-
nimal if for any M =T for any A C M for any non-algebraic types
p,q € S1(A) the following holds:

p-"q o p-"q¢
Fact 9 Any o-minimal theory is almost o-minimal.

Earlier we had proved a theorem which describes all No—categorical almost
o-minimal theories of convexity rank 1:

Theorem 10 /8] Let T be an No—categorical almost o-minimal theory of
convexity rank 1, M =T, |M| = Ro. Then there exist

(i) a finite C = {co,... ,cn} C M (MU {—00,4+00}, if M does not have
a first or last element), consisting of all of the O—definable elements in M
(with the possible exceptions of —oo,+00), such that M = ¢; < ¢; for all
1 < 3 < mn and for each 7 € {1,...,n} either M E —~(Jz)c;1 < z <
cgorlj ={z e M:MIEc.1 <z <c;}isadense linear order
without endpoints and there are k; € w and ol ... ,pij € 51(0) so that
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I = Uszl pi(M);
(ii) an equivalence relation B C ({s : 1 < s < k})?, where {ps | s < k <
w} is an arbitrary enumeration of all non-algebraic 1-types over @, such
that for each (1,7) € E there is a unique O—definable monotone bijection
fi; + pi(M) — p;(M) so that f;; = idpny and fixo fi; = fir for all
(%,9), (4,k) € B,

so that T admits elimination of quantifiers down to the language

{=,<}U{e i <n}U{U, s <KYULS, (7)€ B},

where the ¢; are interpreted in M by c;, U, by ps(M), L‘j by fij for (1,7) €
E. In particular, T is binary. ’

Moreover to any ordering with distinguished elements as in (i) and any
suitable equivalence relation E as in (ii), there corresponds an No—categori-
cal almost o-minimal theory of convexity rank 1 as above.

From the theorem follows that almost o-minimal theories of convexity rank
1 essentially don’t differ from o-minimal theories in the No—categorical con-
text, i.e. are "almost” o-minimal.

Definition 11 [9] Let A C M where M is an arbitrary first-order struc-
ture. We say that A is self-definable if A is definable in M with parameters
which are elements of A.

Definition 12 [9] Let M be an Ng-categorical structure. We call a self-
definable subset A of M good if for each n < w every n-type over A realized
in M 1is isolated.

Now we present a criterion for goodness of each self-definable subset of an
No-categorical weakly o-minimal theory of convexity rank 1:

Theorem 13 Let T be an No-categorical weakly o-minimal theory of con-
vexity rank 1. Then the following conditions are equivalent:

(1) T is almost o-minimal

(2) For any model M of T each self-definable subset A C M is good.

Proof of Theorem 13.

(1) = (2). It follows by Theorem 10.

(2) = (1). Suppose that T is not almost o-minimal. Then there are a finite
set A C M and non-algebraic 1-types py,p2 € S1(A) such that p; 4% pa,
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p1 —% pa. Let Ay :=dcl(A) U pi(M). It is obvious that A; is self-definable.
Consider an arbitrary element b € po(M). It can understand that tp(b/A;)
is not isolated.

4

Corollary 14 Let T be Ng-categorical o-minimal theory. Then for any
model M of T each self-definable subset A C M s good.

Observe that in Theorem 13 the hypothesis ”a theory has convexity rank
17 is essential. Indeed, consider the following example:

Example 15 Let M = (M, =,<,U;, U}, E* R?) where (M, <) has an or-
der type @. The universe M is the disjoint union of U; and U, with a < b
whenever a € Uy, b € U,, and each predicate U; hasn’t endpoints in M.
E is an equivalence relation which partitions U;(M) on infinite convex
classes so that the induced order on E-classes is a dense order without
endpoints. To define R, identify U, with @ for each + < 2, and for any
a € U; and b € U, we have R(a,b) &b <a++/2.

It is obvious that Th(M) admits elimination of quantifies. It can prove that
Th(M) is an Rg-categorical almost o-minimal theory of convexity rank 2.
Let A := Uy(M). It is obvious that A is self-definable. Consider an arbi-
trary element b € Uy(M). It can understand that tp(b/A) is not isolated.

Observe that Ng-categorical binary weakly o-minimal theories of convex-
ity rank 1 aren’t almost o-minimal in general. Nevertheless we can de-
scribe these theories. The following theorem completely characterizes No—
categorical weakly o-minimal theories of convexity rank 1 that are binary.

Theorem 16 Let T be an No-—categorical binary weakly o-minimal theory
of convexity rank 1, M =T, |M| = Ro. Then there exist

(i) a finite C = {co,... ,cn} C M (MU {—00,4+00}, if M does not have
a first or last element), consisting of all of the O—definable elements in M
(with the possible exceptions of —oo,+00), such that M = ¢; < ¢; for all
1 < 3 < mn and for each 7 € {1,...,n} either M E —~(Jz)c;1 < z <
cgorlj ={z e M:MIEc.1 <z <c;}isadense linear order
without endpoints and there are kj € w and pi,... ,pij € 51(0) so that
I; = Ulscjzl pi(M);

(ii) equivalence relations By, By C ({s:1 < s < k})?, where {ps | s <k <
w} is an arbitrary enumeration of all non-algebraic 1-types over O, such that
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o for each (1,7) € Ey there is a unique O—definable monotonic bijection
f” : pz(M) — p;(M) so that fi; = 1dp, ) and fixo fi; = fix for all
(7’7.7)7 (.77k) € El)

o for each (1,3) € Ey there is a unique O—definable formula R, j(z,y
such that for any a € pi(M) R;j(a,M) C p;(M), R;;(a,M)” =
pi(M)~, R, j(a, M) is convex and open and g; j(z) := sup R, ;(z, M)

is strictly monotonic on p;(M)
o for each (1,7) € E1 we have (1,7) € Ey and R, j(z,y) =y < fij(z)

so that T admits elimination of quantifiers down to the language {=, <}
U{Qz ) S n} U{Qs 28 S k} U{iz’] : (7’7.7) S El}U{Ez,] : (7’7.7) S E2 \ El})
where the ¢; are interpreted in M by ¢;, U, by ps(M), L] by fij; for
(1,7) € Ex, BR;; by Ryj for (3,7) € By \ Ey.

Moreover to any ordering with distinguished elements as in (i) and any
suitable equivalence relations Ey, Ey as in (i), there corresponds an No—
categorical binary weakly o-minimal theory of convexity rank 1 as above.

Definition 17 Let M be a linearly ordered structure, A C M, p € S1(A).
Convexity rank of I-type p is infimum of the set {RC(¢(z)|¢(z) € p} and
it is denoted by RC(p), i.e.

RC(p) := inf{RC(¢(z)|¢(z) € p}

The Exchange Principle for algebraic closure holds in o-minimal case [1].
However it fails for weakly o-minimal case in general:

Example 18 [10] Let M be a structure (M, <, P!, f!). Here P is a unary
predicate and f is a unary function with Dom(f) = - P, Ran(f) = P (so,
formally, M is 2-sorted). The universe M is the disjoint union of P and
-P, with ¢ < y whenever ¢ € P and y € ~P. To define f, identify P
with @ (where @ is the ordering of the rational numbers) and - P with
@ x @ (ordered lexicographically), and for any m,n € @ let f(m,n) = n.

It is obvious that M is an Ng-categorical binary weakly o-minimal structure
and the Exchange Principle for algebraic closure does not hold. Let p(z) :=
{=P},q(z) := {P}. It is obvious that p,q € S1(0), f is O-definable mapping
p(M) on g(M), RC(p) =2, RC(q) = 1.
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Theorem 19 Let T be Ny-categorical binary weakly o-minimal theory, M =
T. Then the following conditions are equivalent:

(1) The Exchange Principle for algebraic closure holds in M.
(2) For any p,q € S1(0) whenever there is an O-definable mapping p(M)

on q(M) we have RC(p) = RC(q).
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Abstract

We study the interrelations between constructivizations of a com-
mutative associative ring K with unit and the matrix groups GLy(K),
SLp(K) and UT,(K). We also study constructible ordered groups
in the signature of ordered groups.

Introduction.

In [1] A.I. Mal’cev initiated studying of constructible groups with de-
scribing of all constructible abelian torsion free groups of rank 1. He posed
general problem: "What constructible numerations are admitted by some
kinds of abstract groups?”. Yu.L. Ershov proved in [2] that every construc-
tivization of a nilpotent torsion free group G can be uniquely extended to
its Q-completion G?. Some other results about constructible groups can
be found in the papers [3-6]. The foundation of the theory of constructible
models can be found in the monographs [7] by Yu.L. Ershov, and in [8] by
Yu.L. Ershov and S.S. Goncharov. About facts in the group theory see [9].

We are studying the relations between constructivizations of a commu-
tative associative ring K with unit and the matrix groups GLn(K), SL,(K)
u UT,(K). Also we are studying constructible ordered groups in the signa-
ture of ordered groups.

3Supported by RFFI, grant 01.01.00674.

44



V.A. Romankov, N.G. Khisamiev

§1 ON CONSTRUCTIBLE MATRIX GROUPS

Let K be a commutative associative ring with unit. As usual GL,(K
denotes the group of all invertible, (resp. SL,(K) — special, UT,(K) -
unitriangular) matrix of size n over K.

Let firstly G = UT,(K). As C; (1 = 0,1, ...) we denote i-th member of
the central series in G : Co = 1, C} is the center of G, C,y; is the preimage
in G of the center of G/C; (+ = 0,1,...). It is well known (see [9]), that C;
consists of all matrices, that haven—1—1 (2 = 1,2,...,n—1) zero diagonals
from the main one. Thus C,,_; = G.

Proposition 1 If the group G = UT,(K) is constructible, then subgroup
C; is computable for every 1 =0,...,n — 1.

Note that a group UTy(K) is isomorphic to the additive group of K.
It follows that UT3(K) is constructible iff the additive group of K is con-
structible. Thus in the general case the constructibility of UTy(K') does not
imply constructibility of K. In [11] N.G. Khisamiev proved that the field of
all primitive recursive real numbers is not constructible. The additive group
in this case is complete torsion free abelian group. Hence it is constructible.

Theorem 1 The group G = UT,(K) n > 3 over commutative associative
ring K with unit is constructible iff the ring K is constructible.

In the proof we used the well known Mal’cev’s relation between groups
and rings from [10].

Note 1 Theorem 1 is true even in the case when K is not commutative.

Theorem 2 The group G = GL,(K)(SLn(K)) over a commutative asso-

ciative ring K with unit is constructible iff the ring K is constructible.
§2 ON CONSTRUCTIBLE ORDERED GROUPS

Let (A, <) be ordered group and v : w — A be some numeration.
Structure (A <,v) is called orderably constructible if there is an algorithm
defining for n,m, s € w either vn-vm = vs, vn < ym are true in A, or not.
A group A is called constructible ordered group, if it can be equipped with
order < and numeration v such that the structure (A4, <, v) is constructible.
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We study the question: "What groups are constructible ordered?” We
prove that the following groups belong to this class: constructible torsion
free abelian, finitely generated torsion free nilpotent, free nilpotent, a group
UT,(K) of all unitriangular matrices of size n over constructible ordered
associative commutative ring K with unit.

Also, it is established that the quotient G/C of a constructible group
G by the center C = C(G) is finitely generated, then the C' is computable,
and G/C is constructible.

The class of constructible ordered groups scarcely has been studied yet.
We have no example of an orderable constructible group which doesn’t ad-
mit constructible order. Note that Yu.L. Ershov (see [8], page 100) proved
that there exists an ordered constructible field that has not any construc-
tivization in which this order is computable.

Theorem 3 Fuvery constructible abelian torsion free group A is constructible
ordered group.

Proof. By the Dobritsa-Nurtazin’s result [4, 5] there exists such con-
structivization v of A, that (A,v) contains a recursive enumerable ba-
sis @p,Q1,.... Then each element £ € A can be uniquely written as ¢ =
(noao + ... + nxax)/m, where m,ny # 0,n; € Z,m € w,(ng, ..., Nk, m) = 1.
Define z > 0, if the first nonzero coefficient n; > 0. It is not hard to check
this relation orders the group A, and the system (A, <,v) is ordered con-
structible group.

Theorem 4 Let K be ordered constructible associative commutative ring
with 1. Then for every n € w, n > 0, the group UT,(K) is orderable
constructible group.

Corollary 1 FEvery finitely generated torsion free nilpotent group is order-
able constructible.

Corollary 2 FEvery free countable nilpotent group is orderable constructible.

Proposition 2 Let (G, v) be a group with numeration, and the quotient
G/C of G by the center C = C(G) is finitely generated. Then C is

G, —recursive.

Corollary 3 Let (G, v) be constructible group, and the quotient G/C is
finitely generated. Then the center C is computable in (G, v), thus the
group G/C' is constructible.
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Research on the computability for abstract data types has become wide-
spread of late. From this standpoint, the notion of definability in hereditar-
ily finite structures is of particular interest, for all the now known ways of
constructing new data are well interpreted in these. Moreover, hereditarily
finite superstructures are the least admissible sets over a model.

The groundwork for our reasoning is the Y -definability approach pro-
pounded by Yu.L. Ershov. Along its lines, here we study the definability and
the autostability of Boolean algebras in hereditarily finite superstructures.
Example is constructed for an admissible set in which the atomless Boolean
algebra is not autostable.

Definition 1 Two A -constructivizations, vy and vy, of M are said
to be equivalent if there exist a ), -predicate R(z;y) and an automorphism
@ of M such that vy (M) C §R&(V(z,y) € R)(z € vo ' (M) < (y €
v (M)&vo(z) = @(vi(y))))-

Definition 2 A model M is said to be A -autostable if its any two A
-constructivizations are equivalent.

Example 1 Let © be a constructivization of an atomless Boolean alge-
bra (which is an A -constructivization for any admissible set A; [3]). Let B
be an abstract atomless Boolean algebra. Then © and 1ds are not equivalent
in A= HF(*B).

We also consider some problems concerning Al -autostability of
A} -constructivizable models.

It’s easy to prove, that for each constructivizable model 9 the class of
constructivizations 9 is A iff there is a constructive ordinal o such that

for each constructivizable model 9T 9% =* DT — M = N.
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A notion of the degree spectrum of a relation on a computable structure
was first introduced by V.S. Harizanov in [1]. The definition is following:
let U be a relation on a computable structure A, then the degree spectrum
(or simply the spectrum) of U is the set

Spec(U) = {degr(U") : 3 computable A" = A with U' the image of U},
where degr(U) denotes the Turing degree of U.

J.B. Remmel [2] studied the spectrum of a set of atoms of computable
Boolean algebra. In particular, he proved that if computable Boolean alge-
bra has a computable presentation with an infinite computable set of atoms,
then the spectrum of the set of atoms consists of all c.e. Turing degrees. In
this work the following results about the spectrum of atomless ideal were
obtained.

Theorem. 1 Given a computable Boolean algebra B with a computable
non-principal atomless ideal Al. Then there is a sequence of a computable
Boolean algebras {B"}nen such that B™ = B for all n and Al* L1 Al for
all v # 7, where Al™ is the atomless ideal of B™.

Theorem. 2 Given a computable Boolean algebra B with c¢h(B)=(1,1,0)
and with computable set of atoms. If Al is the atomless ideal of B, then
Spec(Al) consists of all Turing degrees that contain T13 sets.
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Strong enumeration reducibilities

Boris Solon (solon@jicti.ivanovo.su)
Tvanovo University (Russia)

We will call a binary relation <, on the 2* by the reducibility of sets if it
is reflexive and transitive. If A <, B — A <. B for any sets A and B then
<4 1s called enumeration reducibility and if A <o, B — A <7 B then <, is
called decision reducibility. We will say that <, is stronger than <gif A <,
B — A <4 B for any sets A and B. It is clear that there are at least 2%
many such different reducibilities. Naturally we consider such reducibilities
which have an intuitive base related with the effective computability. Some
reducibilities are enumerable and decidable simultaneously. For example the
reducibilities of the truth-table type <;,, <., <4, <;, and also corresponding
bounded reducibilities <pe, <pq, <pp are the same.

In the article [1] the digraph of enumeration reducibilities is construct-
ed in which an oriented edge joins more and less strong reducibilities. In
addition the new reducibilities <j., <ge, <pe are located in this Cooper’s
digraph. We note if <,,...,<g is a finite sequence of reducibilities from
which at least one is a enumeration reducibility then the relation <, g on
the 2“ such that for any A and B

A<apB < A<aA---NA<sB

is the enumeration reducibility. In the article [2] 19 new reducibilities are
formed by such way.

S.D. Zaharov proposed yet two enumeration reducibilities:
A Snpm B «— EIAl, AZ[AZ —ce. NA= Al U A2 A Al Spm B]

and <, which results as <;,m by replacement <,, on <,. In [3] the
new enumeration reducibility <ypm, was introduced which was called weak
partial m-reducibility

A<ypm B <= (JA1,..., Ap)[A=UA U--- U A/
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NAL <pm BA -+ N Ak <pm BJ.

Obviously <, is a stronger reducibility than <y, and the converse
is not true. Let Dypm = {duwpm(4) : A C w} be a partial ordered set of
wpm-degrees.

Theorem 1 Dy, is the upper semilattice with the least element 0= dypm (W)
where W # 0 is c.e.

Theorem 2 Dy, is not elementary equivalent Dypy,.
Theorem 3 The reducibility <ypm ts located in Cooper’s digraph.

With the help of such "weakening” of pm-reducibility it is possible to at-
tempt to define new reducibilities. More exactly, let <, be a reducibility,
we define

AgfaB — (HAl,...,Ak)[A:AlLJ"'UAk/\
NA <4 B N AN Ap <, Bl

It appears that in the case <; and <; will not be new reducibilities, and
<wpe 18 not a reducibility at all.
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On the Effective Continuity of
Effective Multifunctions

Dieter Spreen (spreen@informatik.uni-siegen.de)
University of Siegen (Germany)

Multifunctions have turned out to be an important concept in com-
putable as well as computational analysis. In this talk we consider effective
multifunctions in the framework of effective topological spaces and study
their effective continuity. The results extend earlier results on effective
maps.
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Learning Classes of Approximations
to Non-Recursive Functions

Frank Stephan (frank.stephan@urz.uni-hd.de)
University of Heidelberg (Germany)

Blum and Blum (1975) showed that a class B of suitable recursive
approximations to the halting problem K is reliably EX-learnable but left
it open whether or not B is in contained in some recursively enumerable
class of total functions. By showing B is not included in such a class, we
resolve this old problem.

Moreover, variants of this problem obtained by approximating any giv-
en recursively enumerable set A instead of the halting problem K are stud-
ied. All corresponding function classes U(A) are still EX-inferable but may
fail to be reliably EX-learnable, for example if A is non-high and hypersim-
ple.

Blum and Blum (1975) considered only approximations to K defined
by monotone complexity functions. We prove this condition to be necessary
for making learnability independent of the underlying complexity measure.
The class B of all recursive approximations to K generated by all total com-
plexity functions is shown to be not even behaviorally correct learnable for
a class of natural complexity measures. On the other hand, there are com-
plexity measures such that B is EX-learnable. A similar result is obtained

for all classes Tj(A)

For natural complexity measures, B is shown to be not robustly learn-
able, but again there are complexity measures such that B and, more gen-
erally, every class U(A) is robustly EX-learnable. This result extends the
criticism of Jain, Smith and Wiehagen (1998), since the classes defined by
artificial complexity measures turn out to be robustly learnable while those
defined by natural complexity measures are not robustly learnable.

This is joint work with Thomas Zeugmann, Medizinische Universitat

Libeck
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O cTpoenun onpemeIiMo
cJIo>KHeilniero rpada

H.T.Hocantaii (dosanbai@mail.ru)

Kazazxcrxuli navuonasvrodi ynusepcumem um. Aav-Qapabu

Anunoranmua

B noknane roBopuTcs o BeIpazsuTesbHbIX BO3MOKHOCTAX HEKOTO-
pbiX parMenToB apudMETHKN. IDTH BOUPOCH NPUMBIKAIOT K pabo-
tam Hx. Dobuncon, H. Dumapa u U. Kopena. [laercsa orBer Ha
ofuH Bompoc u3 cnucka M. Koperna.

Hycts N = {1,2,...} - MHOXKecTBO HaTypaiabHbIX uncena. Torma crpykry-
pa (N; Py, ..., Pm, fi,..ey f&yC1, ..., Cs) HA3BIBACTCH aAPUPMEMUYECKUM, ECITH
IpeInKaThl, GYHKINA U KOHCTAHTDI 3TOH CTPYKTYPhI ABAAIOTCH apudMeTH-
YECKUMM, T.€. BBIPAKAIOTCA Yepe3 CJIOKeHNe U YMHOKEHNE B A3bIKe JIOTHKH
mepBOTO Topsnka. Apudmerndeckas CTPYKTypa Ha3bIBAETCA onpedeaumo
caooicHetiueti, ecm depe3 B JaHHOW CTPYKTYpPe MOKHO BBIPa3uTh ollepa-
muu caoxenns u ymuoxenusa. Ciaenys [1] onpenenum orwouenne R wa N
CIENYIONIM 00pa3oM:

Ry =z #yA(z|lyvylzvy=s(z)Vz=sy)),

rae | - orHolulenue menenus, a s — dyHKIUA caemosBanusg. B [1] saman
crenyfornii Bompoc: " ABngerca nmm apudmerndeckas ctpykrypa (N; R)
onpenenuMo ciaoxueiimeii?” B mpemiaraemoil pabore maeTcs yTBEpIATE b
HBIl OTBET Ha TOT BOIIPOC.

Hpe:x e Bcero saMeTum, 4TO €IUMHUIA U OTHOIIEHHE PaBeHCTBa OIpe-
JeJUMbl B JaHHOI curHarype. [lajee, BBemeM HeKOTOpble HEOOXOIUMbIe
0003HaYCHUA:

tEBy=z|yuwmy|z
Sy =1t =s(y) num y = s(z).
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O6osnaanm depes supp(T) MHOKECTBO MPOCTHIX Henauteneii z. OrHoure-
s E S HashiBatoTCsHA, COOTBETCTBEHHO OTHOIIEHUAME CPABHUMOCTH (IO
NEeJTMMOCTH ) 1 cocencTBa. 1orma

tRy <= z #y A (zEyV zSy).

Jlemma. [llamypaavrve wucaa 1 < z < y Asaarwomes cmeneHamu odnozo
UMO20 HCE NPOCMO20 YUCAL Mo2da U Moavko mozda, koeda ony ydosaemeo-
parom caedyroweti dsymecmnoti gopmyae:

o(z,y) = ¢ # LAR(z,y)AJuv(uRyAvRyAVE(t # unt # vAtRy — tRz).

HokazareabctBo. (=) Hycts (z,y) = (p*,p°) 1 0 < a < . Torma
MOMOXKUM U =Y —1lmv=y-+1.

(<) Hyers z w y ynorersopsior dopmyie ¢(z,y). Tak kax zRy, Heob-
XOINMO PacCMOTPeTh Bo3MoxkHOCTH THY m 5Yy.

Cayuait zSy. Ecm ¢ = y — 1, momoxum ¢ = Yy - p Ijd HEKOTOPOTO
npoctoro 4uciaa p > z. Torma tRy m —(tSz). Tak kak t = y-p =
z-p+p=pZ0( modz), To 7(tEz), re. ~(tRz). Hosromy nanubie z u
Y He yIOBJETBOPAIOT yKas3aHHO (opMysie. AHAJIOIMYHO paccMaTpUBaeTCs
BrOpOil cayuaii ¢ = y + 1. Takum obpasom, dmcia, yHOBIETBOPIIONLIE
dbopmyre o(z,y), He MOTYT OBITH COCEIAMIL.

Cayuait zEy. HaccmorpuM mBe BO3MOIKHOCTH.

1. z nemutca wa y. Torma nna moboro mpoctoro p Bre supp(z) dumciio
t = y - p ynosierBopser coorHouienusM tRy u —(tRz). Hostomy >ty
BO3MOKHOCTB MOYKHO OTOPOCHTH.

2. ¢ menwr y. 3aMeTHM,UTO MOXKHO Tperanosararh supp(z) = supp(y).
Ecaum »10 He Tak, To cymectyer mpocroe dnciao p € supp(y) \ supp(z).
Teneps, ecim B KadecTBe t BosbMeM dncio t = y - p, To tRy, Ho ~(tRz
nporuBopedne ¢ dpopmynoii ¢(z,y). Teneps, Tak xKak supp(z) = supp(y
o |supp(z)| = |supp(y)|. Hycrs [supp(z)| = |supp(y)| > 1. Torma mra
HEKOTOPOTO IPOCTOTO P, YUYACTBYIOIUIETO B Pa3/IOKEHHAX MTaHHBIX 9HCET,
JIJIs COOTBETCTBYIOMINX cTeneneii o n G u3 pa3noxenus T u y nmeem G—a >
0. Torma nns t = pP momyunm tRy, wo —(tRz). 3naumt, |supp(z)| =
|supp(y)| = 1. A rtax xax z gemwut y, umeem (z,y) = (p%,p°) nw a < G.
Jlemma nokasata.

)7
)

Y

Temepn ompenennM oTHOIIEHHE T - MIPOCTOE UUCTIO .
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CaencrBue 1. i) T — npocmoe wucao mozda u moavko moeda, koeda T
ydosaemeopsem gopmy.ae

p(z) = Jyp(z,y) A ~32(z # 1 A p(z,2)).

i) wucao z asagemes cocedom npocmozo wucaa p mozda u moavko mozda,
koeda z ydosaemeopsem dopmyae

Y(p,z) = (p=2Az=1)V(pRz A ~¢(p,z)).

iii) npocmoe wucao p deaum wucao v moeda u moavko mozda, koeda oHu
ydosaemeopsiom popmy.ae

6(p,v) = v #1A~Y(p,v) A[pRvV p=v].

I/ICHOJH)3yH JIEMMY U CJIENCTBUE 1 MBI MOKeM Oolpene/inTb OTHOIIEHM A
CPaBHUMOCTH 110 OEJICHUIO U COCENCTBA.

CaencrBue 2. i) zEy Torna w T0JbKO TOTIA, KOTIA T 1 Y YIOBJIETBOPATOT
dbopmye

r=yVz=1vy=1V[zRyAdz(p(z) ANd(2,y) Nd(z,v))]
ii) Sy Torma m TOMBKO TOTMA, KOTHa T 1 Y YIOBIETBOPAIOT (BopMyJie

zRy N ~(zEYy).

Takum obpasom, otrotrenus S u B onpenennmbt yepes ornouienne R. B [3]
OBLIIO YCTAHOBJIEHO, UTO depe3 F MOKHO BBIpa3suTh OTHOIIEHNE IETUMOCTH
| . B pabore [4] nokasano, ato ctpykrypa (N; S,|) ABagercs onpenennmo
crmoxuefimeii. Torma us »Tux GakTOB U BBIIEYCTAHOBIEHHBIX PE3YIbTATOB
KaK CJIEJICTBUE TIOYIaeTCsA CIEMYIONas

Teopema. Apudmemuueckas empyxmypa (N; R) asasemes onpedeaumo
caoxcretiuet.

B paGore [1] ormeuaercs, 4To cyliecTByeT IpuUMep OMPENeTUMO CI0KHefi-
mrero apmdmerndeckoro rpada Ha HaTypaJbHBIX dUCIaX ¢ HyJIeM, HO OH
He npusoguTcs B [1], mockosbKy ero omucanue He npocto. C MOMOIIBIO
ctpykTyphl (N; R) MOKHO MOTYIUTh GoJlee TPOCTOl TIPUMED OTIPEIeT MO
croxkHeliero apudmerndeckoro rpada Ha MHOKECTBE HEOTPUIIATETBHBIX
[EJIBIX YUCEJI, 9TO ObLIO 3aMedeHo B [1].
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Oyakiuu IIkinb-IlapazeBckoro
CUYETHO KaTerOpUYHBIX TeOpuU

K.A. Meiipembekos (meirembekov@yahoo.com)
Kasazxcxuii nayuonarvnuti ynusepcumem um. asv-Papabu

Bce paccmarpuBaembie Teopun ABIAIOTCS TEOPUAMEI TEPBOTO MOPAIKA
B KOHETHOM YHnCTO pessannonroM a3bike L. Ecmm teopus T cuetno Karero-
puana, To dyakuneii fr(n) Heus-Hapasesckoro teopun T onpenenera Kak
KOJIMYIeCTBO aToMOB OyieBoil anredpsr Fp,(T') Jluanenbayma-Tapckoro sroif
teopun. Kak m3BecTHO, ecu Teopus 1’ paspemnMa U CIETHO KaTETOPUIHA,
TO €é cUeTHas MOJeNh aBTOYCTOWYINBa B TOM M TOJIBKO B TOM CIydae, €CIn
dbyurmmsa Heums-Hapasesckoro pexypcusHa.

OmarM W3 MOTIHBIX METOIOB MOCTPOEHUA CUETHO KATETOPWIHBIX TEO-
puii ssnsercs meron Ppaucce [2]. Ecnu K kiaace tunos uzomopdusma Ko-
HEYHBIX Mojeseil A3bika L mMerolmii Hacaenctsennoe cpoiictso HP, cBoii-
cTBO coBMecTHOTO Byoxkenus JEP u coiictBo amambramupoBanusa AP, To
CYIIeCTBYET OTHO3HAYHO oNpelesieHHad cueTHas Momuenb My, Teopus Ko-
TOpOil CUeTHO KaTeropuyHa, MMeeT 3JIMMUHAINIO KBAHTOPOB W €€ BO3PacT
age(Mg) cosnamaer ¢ K. Knacc momeneii K co coiicrsamu HP, JEP, AP
HasbiBaeTcsa Kiaccom ®Ppamcce, a momens Mg — reHepudeckoil s 3TOTO
kiacca. Obosuaanm depes Tk TEOPHUIO 3TOW MOIIEJIH.

Koneunyio momens A sa3bika L HazoBeM 3amnperHoit ms kKiaacca Ppa-
ncce K, ecim A € K, Ho smrobast eé cobcTBeHHAs MOAMONEb JekuT B K.
CymectByet »ddekTuBHAA TPOIENypa TEPETUCTEHNS BCEX TUTOB W30MOP-
dpusma xorewHBbIX Momeneil curaarypbsl L. CemeiicTBO HEKOTOPHIX THUIIOB
n30MOppM3Ma KOHETHBIX MOJIeNIell PEKYPCUBHO TEPETUCTUMO, ECTTU OHO Pe-
KYPCHBHO TIePeTnCInMO B 3T0fi Hymepannu. Hepes k(n) obosHaunm qrcso
N-3JIEMEHTHBIX Mogmesieli w3 Kiaacca K m k masoBem ¢yHKImeil Bo3pacta
9TOTO KJIacca.
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Teopema 1 Ecau T meopus eenepuseckoli modeau das xaacca @Ppaucce

K, mo

o T paspewuma mozda u moavko moeda, xKoeda cemelicmeo 3anPEMHHT
korewHuxr Modeaeti das K pexypcusHno nepevucaumo;

o dynryusa [av-Tlapdsescroeo fr(n) meopuu T pexypcusna mozda u
moavko moeda, xoeda pynryua sozpacma k(n) xaacca K pexypcusna.

B cBaA3m ¢ usBectubiM Bomrpocom HeperaTbKrHa O CYIIECTBOBAHUT Pa3-
peumMoil cHeTHO KaTeropuiHoit KOHeYHOaKCHOMaTu3npyeMoil Teopun ¢ He-
pekypcusnoit dyukiueit Hoinb-Hapmsesckoro [3] npemcrasiaser unrepec
ero JIOKaJIu3aliia Ha COOTBETCTBYIOIINE TEOPUN FeHepUIecKUX Mojeselt s
kJstaccoB Pparncce.

Bonpoc 1 Bepro au, wmo 0as xaxcdotl K6a3u KOHEYHOAKCUOMAMUIUPYE-
Mofli cuemmo xamezopuuroti meopuu T cywecmeyem K6a3u KOHEUWHOAKCU-
OMAMUUPYEMAA CUEMHO Kame20punHas meopus Ty ¢ saumurauueti K6aH-
mopoe maxas, umo ¢yuxyuu Iao-Ilapdsescrozo amux meoputi cosnada-
rom?
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Crenenun a.TII‘e6paI/I‘—IeCKI/IX CHUCTEM U
E-OHPGJ],GJII/IMOCTI>4

A H. Xucamwuesn

HaccvarpuBatorest TOIBKO cUeTHBIE airedpandeckue CHCTEMbI KOHEU-
wbix curnaryp. JI. Huxrtep B [6] BBemeno ycioBue BbraucauMoil BIOKM-
MOCTHU aJIredpandecKkoil CHCTEMBI U MOKa3aHO, UTO €CJN [Jis CIeTHON He
KOHCTPYKTUBU3UPYEMOII CHCTEMBI CIIPABEIJINBO YCIIOBUE BBITUCIUMON BJTO-
JKUMOCTH, TO OHa HE NMeeT crenenn. B mamuoit pabore mokasano: abeseBa
p-rpynma (Gysnea anrebpa) 2 yIoBIETBOPAET YCIOBUIO BBIUUCINMON BIIO-
KUMOCTH; Jf0bas He KOHCTPYKTHBU3MpyeMas abereBa p-rpymnma (Oymesa
anrebpa) 20 He WMeeT CTENEHW; eciU aHTUCUMMeTpPUIHas CBA3aHHAA MO-
nmesb 1 L-ompenennMa B HACTEICTBEHHO KOHETHOM TOMYCTUMOM MHOKe-
crBe HF (2) wan cuernoii 6ymeBoii anrebpoii A, 1o I KOHCTPYKTUBU3UPY-
ema; ecin L — nuneitasiii mopsanor L-onpenenumbiii 8 HF(2() Han caerHoii
6ymeBoit anrebpoit A, 10 L — KOHCTPYKTUBU3UPYEM.

Bce ucnombsyemblie n meonpenesnseMbie MOHATHA comepxarca B [1, 2,
3]. Mpr mpuBemem auinb HekoTopble W3 HuX. HycTh mama asnrebpamde-
ckas cucremMa A curHaTypbl 0 1 Ag — TTOIMHOKECTBO OCHOBHOTO MHOKECTBA
|2(]. Torma gepes (2, Ag) obosHaunm oboraiierne cucteMbl A KOHCTAaHTAMM
{a |a € Ay} u nomaraem a®4°) = a. Ecu Ay = {ao,... ,an_1}, TO (A, Ag)
Oyaer Takxe obosHauarh depes (A, a).

Hycts nawmwr koneunbsie monenn ‘B, € curaarypst ¢ u B C €. Hycrp
|B| = {bo, ... bn1}u |C|\|B| ={co,...,cr—1}. Torna gepes ®¢(b,) 06o-
3HAYNM KOHBIOHKIINIO BCEX ATOMHBIX U OTPHUIAHUS ATOMHBIX MPEII0KeHMIA,
MCTUHHBIX B MOJIETN <€,5,E>. Hycts ¢ : B — 2 — Bnoxenne momenn B
B 2. Yepes Ay, obozHaunm ceMeiicTBo Bcex KoHeuHbIX Mognesein & ns
KOTOpBIX cyliecTByeT Bioxenne Y momenu € B 2 Takoe, ato ¢ [ B = .
Hycrs We(b') = 32 (Y, Z), e @b, = bl, 1 < n.

Hycts 3adukcupoBana remenesa Hymeparus Y Bcex hbOpMysT CUTHATY-
por o U{by,... b, ;}. Homepom momerm € O B nasosem HOMED HOPMYIIBI

4PaboTa BEIIONHeHa IpH Hommep:xkke rparta UP TAC-00-499
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(D). Hycrs 2 — nokaabho KoHedHas cucTema, B — KOHeuHas CHCTeMa I
@B — A~ proxenne. Yepes Asg , 0603HATNM MHOKECTBO BCeX KOHEU-
HBIX cucteM & TakwWX, 9TO cylecTByeT Bioxkenue ¥ 1 € — A, pacmmpsiiorniee
©, 10 ecTh Y [ B = ¢.

Mpr mokaxem, uro ecim 2A — abeseBa p-rpynma (GyseBa aarebpa), To
cemeiictBo Reg , BBAECTIMO. OTCIONA W M3 aHAJOTA CTETYIONETO Pesy.ib-
tata [6] Oymer ciaenoBarh, 4To Jiobas CYeTHas He KOHCTPYKTUBU3UDYeEMas
abesreBa p-rpymnma (6ynesa anrebpa) He mMeer cremern. s OyneBbx aJ-
rebp 310 oTMedeHo (6e3 mokasarTesnbcTBa) B pabore [6]. B §2 misa momHOTH!
U3JI0KEHUsA TPUBOAUTCA TOKA3aTeIbCTBO 9TOTO yTBepKaenus. Hycts A
HeKoTopas cueTHas cucrema. B [6] mamo

Omnpenenenne 1 [6] Ecau das awbvx xonewnol modeau B u saoxcenus
@ B — A cemeticmeo AUg , 6BLUUCAUMO, MO 2060pAM, YMO Oar Mmodeau A
CNPABEJAUBO YCAOBUE BBUUCAUMOT BAOHCUMOCTIU.

Teopema 1 [6] Fcau das cuemmnoti ne xonempyxmususupyemoti modeau
CNPABEJAUBD YCAOBUE BBUUCAUMOT BAOHCUMOCTIU, O OHE HE UMEEM CME-
nexu.

Hycts 2 — smokanbHO Koneunas cuctema. BBemem ciemyromnit anaaor
omnpeneyienns 1.

Onpenenenue 2 Fcau das awobuz xonewrol cucmemst B u 6.400CEHUS Q :
B — A cemeticmeo Uy, 6BLUUCAUMO, MO 2060pam, WMo Oas Mmodeau A
CNPABEJAUBO YCAOBUE BBHUCAUMOT BAOHCUMOCTIU CUCTEM.

N3 nokaszarenbcTBa TEopeMmbl | ciemyer
CnenctBue 1 Fcau He KoHCMPYKMUSUZUPYEMAA CUEMHAA AOKAADHO KO-
Heunas cucmema A ydo6aemeopiem yeao6uw 6bHUCAUMOT GAOHCUMOCTIU
cuCmeM, mo OHA HE UMEEM CMENEHU.

81. AGeneBbl pP-TrpyIIIbI

B nanbHeiiem mon cjioBoM Tpylina MOHMMaeTcs abeseBa p-rpymiia.
Bsemem mekotopnie obosmauenus. Hycrs G — rpynma m g € G. UYepes
|g| obosnagaercs mopsaAmok snementa g, p"G = {g € G | 39:(9 = p"g1)},
G[p"] = {9 € G | p"g = 0}. Munumanbuoe uucio p"* Takoe, uro p"G = 0
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Ha3bIBaeTCA MOpsAIKoM rpymnibl G u oboznavaercs depes |G|. Ecau takoro
qucTa He CYIIECTBYET, TO ToBopAT, uto G He orpanmdera. Borcotoii ha(g)
sJIeMeHTa ¢ Ha3bIBAaeTCA TaKoe Hanbosbiiee ancsio m > 0, uro 8 G uctunana
bopmyna Jz(g = p™z) & Vy(g # p™y). Ecom rakoro m wer, to hg(g) =
00. Zyn — UMKJINYECKas rpylna nopagka p”. JIoboit nzomopdusm rpymst
Go B G maswiBaerca BiaoxenueM Gy B G. Hambonpmmii obmmit mesmrenn
qucess n u m obosnagaercd (n, m).

Jemma A Iycmv A — npoussoavras abeaesa 2pynna (ne obazamenvro
p-epynna), a B — xoneunan cepsanmuas nodepynna. Toeda B ewvdeasemes
NPAMBM CAAZAEMBIM.

Ipengoxenue B [5, crp. 83] Ecau pedyyuposannan epynna G neoepa-
Huvera, mo G umeem nNPAMOE CAUAEMOE, ABAANULUECA HEODUHUYEHHO
npamotl cymmolt yurauveckut 2pynn.

U3 nokasarenbcrBa npemmnoxenus 27.1 [4, crp. 139] cnenyer

Ipenaoxenue C [Tycmv nopadox epynnw C pasen p®, ¢ € C, |c| = p™ u
nodepynna B C C maxas, wmo BN(c) = 0. Tozda cywecmsyem nodepynna
E D B maxas, wmo C = E @ (c).

Teopema 2 Jlas awboli cuemnoti epynnoe G cnpasedaueo ycaosue 6vi4u-
CAUMOT BAOHCUMOCTIU CUCTNEM.

HoxkazarenscTtBo. Hycts B — koneunas rpynmna u ¢ : B — C —
Baoxkenne. Mssectro, uto G = R @ D, tne R — penyumpoBannas, a D
— nenumas dactu rpynnbl G. Ecnum rpynma R orpanudena, 1o G cuib-
HO KOHCTpyKTuBm3upyema. OTcioma Jerko ciemnyer, 4to mada rpymnmst G
CIpPABETUBO YCJIOBUE BBIUUCIMMON BIOKUMOCTH CHUCTEM. lemeph MyCcTh
pemynmpoBaHHas dacTh rpynnsl G Heorpanmdena. Torma Teopema Hemo-
CPENCTBEHHO CJIEIyET U3

IIpennoxenue 1 [lycmv G cuemnas epynna ¢ neoepanuverrol pedyyu-
posarroti wacmovro, B, C — xoneunne epynnw, B C C v : B - G
asasemes eaoncernuem B 6 C. Toeda cyuecmeyem eaoocenue i : C — G
moezda u moavko mozda, xoeda Oas awboeo snemenma b € B enpasedauso
HEPABEHCTNE0
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ho(b) < ha(b), (1)
ede b =1,

HoxkasareabcTBo. HeobxommmocTh oueBmIHA.

HokazaTeabcTBO TOCTATOYHOCTHU MPOBENEM WHIYKITHEN MO THCTY 3JIe-
mentos rpynnbl C. Hycrs mopsnok |C| rpynnsr pasen p™, 1o ectb Ve €
C(p"c = 0), u ¢ € C rakoii, uro |c| = p"”. Homyctum, aro (¢) N B = 0.
Torma no mpennoxenuto C cyiectByer nonrpynna B C C rtakas, 4To
C =(c)® En E D B. Ho nnaykunu cyuiectByeT BIoxenue o : B — G,
Yo | B = ¢. Ho npennonoxenuio B cyliecTByeT ajeMeHT ¢ Takoii, 4To
(¢YNE =0, || =p" tne E' = 9)oE. OueBunto, 910 9¥o MOKHO TPOIOI-
®Kuth g0 9P 1 C — G, monoxus Yc = ¢'. Hosromy MoxKHO cumTarh, 4TO
(c)n B #0.

s kaxmoro smemenTa ¢ mopanka p” depes k. 0003HAYNM TaKoe Haul-
MembIree umcyio, 1To pFec € B. Hycts ¢y € C[p"] Taxoii smenment, 4to ke,
nMeeT HamMeHblee 3Hadenne. Homoxum ¢ = ¢o, k = ke, .

Hyctp

k
p°c = bo. (2)
Hokazewm, 9To cymecTByeT Takoil amement ¢', uto pFc’ = b, tme pby = b},
u s moboro s < k sepuo p°c’ ¢ B'.

Tak kax momrpynmna (¢) ceppantha B C, 10 he(bo) = k. Hostomy B
G cymecTByeT »JIeMeHT go Takoil, uto pFge = bi. HycTp s MummMasbHOE
Takoe dncyo, 9ro p°go € B'. Ecim s = k 1o ¢’ = go uckombIil s71eMeHT.
Hycts s < k. Ho npemmoxenuio B cymectByer »meMenT ¢; € G Takoii,
ato |g1] = p* u (g1) N Go = 0, tne Go =rp(B’, go). Homowmus ¢’ = go + 1.
Torma mveen pFc’ = bl Hoxasxem, uto nya moboro s < k septo p°c’ ¢ B'.
IeiicTrBuTebHO, yCTh, HAIIPOTHB, s HEKoToporo § < k Bepro p°c’ € B'.
Torma p°go + p°g1 = b € B'. Orciona 0 # p°g; € Go. Hporusopeune.

Hycrs H =rp(B,c), H =rp(B',c'). Omupenensioiine coOTHOUIEHNHA
rpynnbl H OyayT cOOTHOIIEHUs MeXKIy 3JeMeHTaMu Ipymnnbl B u coor-
nomerne pfc = b. Ompenendiomne cooTHomeRHA rpynnel H' Takme xe.
Otcrona cymecrsyer usomopdusm f : H — H' takoii, uto f | B = ¢.

Hyctp
C = (C) o L. (3)
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Hycto Eo =npg(B), To ectb Fg — poeKIms moarpynibl B #Ha Bropyio
KoopauHary ns pasnoxennsd (3). Hycts e € Eg. Torna Haiimercs siemeHT
b€ B u uncio § € w Takme, 9TO

b=rpiac+e, (a,p)=1. (4)

Hokaxem, aTo

ho(e) < ha(e'), (5)
rue ' = fe.
Hycts he(e) = r. Hokaxewm, uro qmbGo e € B, nubo CIpaBeminBo
HEPaBEHCTBO
r<s. (6)

Ecau s > k, 10 u3 (2), (4) crenyer, uro e € B.

Hyctp s < k. Hokaxewm cupasemnusocts (6). lomycrmm mporusHoe,
r > s. CymectByer asnement e; € E takoii, uro e = p"e;. Orcrona
u u3 (4) umeem b = p*(ac + p"~®e;). Tak kak (a,p) = 1, To 2yeMeHT
¢y = ac + p"*e; umeer nopsanok p" u k., < k. Hro mporuBopeunt BHIOOpY
snemMenta ¢. Hostomy (6) crpaBeminBo.

Tak kax f: H — H' usomopdusm, To cipaBeinBo paBeHCTBO

b =plac’ +e€'. (7)
Hokaxem, aro mmeeT mMecTo

hole) > . (3)

Ecau e € B, 10 (8) cienyer u3 ycJoBUA TPENTOKEHUA W ONPeTeTe s
f.

Hycts e ¢ B. Torna cnpasennuso HepasercTBo (6). Orciona u us (4)
mveeM he(e) = hg(b) = r. Cnenosarensuo hg(b') > r. Orciona w u3 (7)
mveeM: hg(e') > min{hg(b'), s} > r, To ecth HepasercTBO (5) MOKA3aHO.

Broxenne ¢o = f | Eg nonrpynnst Ey 8 G u noarpynmst Ey C E yno-
BrerBopser ycaosuio (1) mpemnoxkenus. Ho maaykumm cyuiectByer BJio-

xerme Yo : B — G Takoit, ato 9o | Ey = 9. Hokaxem, uro BepHO
pPaBEHCTBO
YoE N () =0. (9)
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Homyctum mpoTtusHOe, TO ecTh cyiiectsyer € € E. e # 0 Takoii, uro
Poe = p°c. (10)

Mozxwuo cuurarh, uro |e| = pu s > k. [Helicrsuresnsro, eciu s < k, 10

u3 (10) mmeem
,(popn—s—le — pn—lcl‘

Orciona n u3 k < n — 1 cienyer, 4To B KauecTBe 3JeMEHTa € MOKHO
B3aTh p"*"le. Takum obpasom |e| = p m s > k. Hokaxkem, 4To MOKHO
npennosnararh, 9ro e € Fg. [lefictsurensro, nonycrum e ¢ Fo, ho(e) =
hg(e) = m u p™e; = e na HeKoTOpOTO 2eMenTa e € E. Honrpymnma (e;)

cepBanTHa B E, a mostomy cyutectByer noarpynna E; C E takas, 410
B = (61) b El.

Tax xax e ¢ Ep, To np(e,;) B = 0. Orciona un u3 (3) crenyer, 4ro
C=(c)®d(e1)®E, uwBC(c)®E;. Ho npennoxkennto B nns mokasaresb-
CTBA TIPEIJIOKEHNs JTOCTATOYHO BJAOKUTH noarpymnny (¢) @& E; 8 G. Hro
BO3MOXKHO 110 mHAyKnnu. HosTomy Oymem cumrarh, uto € € Hg. Orciona n
u3 (10) mmeem

Yoe = poe = fe = p’c’ = "7ty (11)
Ho onpenenenuio usomopdusma f : H — H' umeem
Fp° b0 = @p*~Fbo = p° 8. (12)

Ns (11) u (12) nomyamm, ato
e = p*Fb.

Orciona e € (¢) N E, 9o HeBosmoxkHo. Hosromy pasenctso (9) crpasen-
muBo. Otcroma Bnoxernne f @ (¢) — (¢') w Yo : E — G npomosnxkarorcs
1o tpebyemoro Bnoxkenns ¥ : C — G. Hpemnoxenue, a BMmecTe ¢ HUM 1
TeopeMa HOKa3aHbL.

4

BaMernM, 4TO CyIECTBYIOT MEPHOAMYEecKre P-TPYIIbl W TPYINbI 0e3
Kpy9eHNUsA, KOTOpble He ABJIAIOTCA JIOKAJbHO KOHCTPYKTUBHU3UPYEMBIMIA.
HeiicTBUTENBHO, MyCTh S He BBIYHCINMO IIepPEedncINMOe MHOMKECTBO IIPO-

_ sl
cthix uncen u Go = GEBS Zy,, G1 CQu Gy _rp{g | p € S}. Jlerko mpose-
p

puth, uro I-reopun Go n <G1, 1> He BBIUMCINMO Tepeuncianmbl. 3 Teope-
MBI 2 7 crieicTBusA 1 monydaem
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CaenctBue 2 Jlobas cuemnas HE KOHCMPYKMUSUSUPYEMAA 2PYNNA HE UME-
em cmenexu.

§2. TlysieBbl asireGpsbl

Hpusenem mekoTopbie 0003HaUEHUsA W U3BECTHBIE PE3YJIbTAThI O OyJie-
Bbix asarebpax. Hycts 2 — Gynesa anrebpa u a € A. Torma @ = {z €
A | z < a}. @ - GyneBa anrebpa enuuuiieli Koropoii aBigerca a. Hie-
MEHT @ Ha3bIBAeTCs CYIEepaTOMHBIM, ecJn & cyleparoMHa. OpamHaIbHBIM
tumoM p(a) 3eMeHTa @ Ha3bIBaeTCs OpAMHAIBHbIN THIT anreGphl &, TO eCTh
p(a) = o(a).

Hycts F() unean ®pertre anrebpsr A. Ecaun snevent a € F() apis-
eTcs OObEIUHEHUEM ATOMOB 7, . . . , &y, TO TOPAIKOM |G| 2JI€eMeHTa @ Ha3bI-
BaeTCs INUCTIO N, TO ecTh |a| = n. Ecim xe a ¢ F(2l), To nonaraem |a| = w.
Ecau @ = (ao, ... an-1), a; € A, 10 nomanredpa, MOPOKIEHHAA dTEMERTAMM
a;, obosnauaerca A(a). HocremoBarembHoOCTh 31€MEHTOB G, . . . , &y Ha3bI-
BAETCA IM3BIOHKTUBHOM, econ s J00bIX 2,7 < N, ¢ 7 ) BepHO a; Aa; =0
na;V...Va, = 1. aobosHagaeTcs IONOJHEHHUE DJIEMEHTa a.

Jlemma B. Ecin mociaemoBareIbHOCTh 971€MEHTOB &, . .. , Gy, OyIeBOil aj-
reOpol | U3 BIOHKTUBHA, TO JTI000# 31eMeHT T € 2 mMeeT eIMHCTBEHHOE
npeacTaBieHue B BUAE T = T1 V ...V Ty, THe T; € G5.

Hycts 21 — cuernas 6ymeBa anrebpa, B, € — KoHedHble OyIeBbHI asre-
opsI, @ 1 B — A —Broxenne u by, ... ,b,_1 —aromsr anrebpsr B, @(b;) = b,
1< n.

Jdevmma 1 [lyscsa anzebpa € npunadaeacum A , mozda u moavko moezda,
koeda |b;| < |bl| dan arwbozo 1 < m.

HokaszarenbctBo. Hycrs anrebpsr b, ... b, ; — KOHETHBI U 9UCTO
—

atoMoB anrebpnr b; pasmo 75 m by, ... , ~ OECKOHETHBI.

n—1
Hyctp € € Ay, Tak kax bA] n3oMopdHa nomasrebpe KonedHoi Oyre-
BOil anrebphI bA’j, TO YHC/I0 ATOMOB b; He IPEBOCXOIUT 9HC/IA ATOMOB bA’j, TO
ectb |b;| < |05, 7 < k. Hockompky bl — Geckomednsr 114 1 > k, To b = w.
TokazKeM mocTaTodHoCTb. HycTh qmesio aTroMoB 6yieBoil aareGpsr b;
paBHO €;, t < mwue; < r;, 7 <k, uC; = {Ci1,...,Cie,} — MHOKECTBO
aToMoB anrebpsr b;. Hokazxem, ato cylecTByer Broxenue ¥; : by — bl
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1. Hyctb 2 < k. B aToMm corygae Bmecto ¢ 6yaem nucars . Ho ycmoButo
/ . . — . .
b KoHeuHa W WHCIO ee aToMoB papHO 7. Hycts D; = {dji,...,dj,}
— MHOXKeCTBO Bcex ee aromoB. Ompenennm otobpaxenune ¥; @ C; — D,
crenyfornm obpasoM. Ecnm e; = 75, 1o ¥j(cj) = dje, t < e;. Ecme; < 1y,
T0 MOMOKEM P;(cje) = dje, t < €j, Y;(cje;) = 03\ U djt. Orobpaxenne ¥,
t<e;

MOZKHO TPOIOJIKHATH [0 BIOKeHUA ¥; 1 b; — by m 9;(b;) = bl

2. Hyetp @ > k m ancio aromos OyieBoit anrebpsr b pasHo a;. Ecam
9TO UUCJIO HECKOHETHO, TO &; = w. Femm e; < a;, To TakKe Kak W B caydae
1 MOKHO MOCTPOUTH BJIOKeHue P, : b; — bl

Honycrum e; > a;. Yepes D; = {d;1, ... ,din, } 0603HAUUM MHOKECTBO
Bcex aToMoB anrebpnr b mwd = djo V ...V din,. Torma d — Gesaromuas as-

re6pa. Hycts e; — a; = n; > 0. Boibepem B d IU3BIOHKTHBHBIC 3J1eMEHTbI
di,...,dn,. Onpenenum orobpaxenue ¥; : b; — b; ciaenyomum ob6pasom:
Yi(cit) = dit, ecom t < a; 1 Yi(Ciag41) = A1y -+, YiCie;) = A, Ozo6pa>1<e—

o~

HUE 1); MOKHO TPOIOJIKUTH 10 TpebyeMoro Bioxenus ¥; : b, — bl.

Ho smemme B Bhoxenus ¥;, 1 < m, olpenesdioT TpebyeMoe BJIOKEHIe
Y € = A Cnenosarensuo € € Ay .

4

U3 nemwmbr 1 coenyer

Teopema 3 Jlasa awboli cuemnotli 6yaesoti anzebpu A cnpasedauso ycao-
GUE GUHUCAUMOT GAONCUMOCTIU CUCTNEM.

Otcroma u ciaemcTsusa 1 mosrydaeM

CanencrBue 3 Jlobas cuemnan He KOHCMPYKMUSUIUPYEMaa OYae6a anze-
bpa He umeem cmeneHu.

s teopemsr 1 [8] n semmbr | BbITeKaer

CaencrBue 4 [lycmv 2y, 1 = 0,1 — 6yaesw areebpu u z; € HF(,).
Tozda caedyrouwue Yeao6us IK6UGAAEHTIHDL:

1. <HF(Q{0),$0> =1 <HF(Q{1),$1>

2. Cywecmsyrom wucao n u aaemenm » € HF(n), nocaedosamenvro-
cmu P; = <p6,... ,p;_1>, P € A u amomm ug, ... ,us, ; aneebp Ai(P;),
noposicdennvie p;, maxue, wmo t; = x(P;), |u3| = |uj|, u omobpasicenue
f i Ao(Po) — As(P1), onpedenernoe pasencmeamu f(u?) = u}, ecmv uzo-
wopduis u £(Bo) = B,
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Cremytolas JeMMa ecTh aHAIoOT 3aMedanus | [7].

Jlemma C. [Tycmo M uM' — modeau odroti cuznamyput, npurem N acaa-
emea N-onpedeaumoti 6 M dopmyaamu @, %o, ..., ede Po — onpedeasem
akeusaseHmmocmo 1 ¢ napamempamu & € M. Ilycmo cyuweemeyem b usz
M' maxot, wmo (IM,8) =, <9ﬁ’ 5> u omnowenue T C MY x M* ma-
woe,wmo T(Z,§) — (M,a,2) =, (M,b,§), V& € M*3Ig € M'T(3,7) &
Vy e M¥3z € M“T(Z,9) u T(Z,9) — T(z4,¥:), npurem

L T(e,y) & T(a',y) & p(z) > Yo(s, )

2. T(z,y) & T(z,y') & ¢(z) = ¥o(v, ¥"),
ede Yl noaywaemesa us Yo zamenoti @ na b. Toeda 6 M' onpedeauma N
nocpedemeom @', g, ..., xomopwe noayuaromes us @, Yo, ... 3aMeHol &
Ha b.

JIemma 2 Fcau saemenm a He cynepamommuuiti, mo 0as 106020 n cyuie-
CIMEYIOM INEMEHMBL C1, . . . ,Cp MAKUE, 4O |¢;| = W ua = ¢ V...V Cy,
ciNc;=0,1#£7.

Hycre ans momgern N currarypsr (P?) cripaBemubbl ycaoBus:
1. M = Vevy(P(z,y)V P(y, z)).

2. N = VeVy(P(z,y)&P(y,z) > z = v).

Canenyromas Teopema 0b6obiaer Teopemy 2 [7].

Teopema 4 [Iycmov A — cuemnas 6yaesa arzebpa u modeav N L-onpede-
auma 6 HF(A). Tozda N xonempyrmususupyema.

HokasarensctBo. Hycrs momens N B-onpenernva 8 HF(A). Econ an-
rebpa 2l KOHCTPYKTHUBU3UpyEMa, TO W MOHETh Y1 KOHCTPYKTUBU3UpYyEMA.
Hostomy moxkmO cunrars, uro A #He KoHCTpyKTHBU3UpyeMa. OTcioma cire-
IIyeT, 9TO CIPaBEIJINBO ycCJoBUe: ecyn OyseBa anrebpa 2 cymeparommua,
To ee opauHaabHbI THT O(”A) > 3. Onpemenum GyseBy anrebpy ‘B cie-
nytorum obpaszom. Ecaum 2 atomuas amredbpa, 1o B = B,s. Ecam A me
ABJIAETCA aToMHO#, T0 B = Bz @ B, rue 1 cIeTHHI IOTHBIN THHERHBIIH
mopsAnok 0e3 koumnos. Ho semme C' mocTtaTodHo MOCTPOUTH COOTBETCTBUE
T:HF () — HF(®B) KoTOpOE yIOBIETBOPAET YCIOBUAM TON JIEMMBI.
Onpenenum gactwawbiii wsomopbusm f 1 A — B crenyrommm obpa-
soM. Hyctp anrebpa 2 we asnserca aromuoi. Hycrs U = {uq,... ,up}
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— MHOZKECTBO BceX aroMoB OysreBoii anrebpsr 2(a). Ompenennm otobpaxe-
mue fo : U — B, fo(u;) = vi. [usbroHKTHBIE 27€MeRTHI U; ONpenensem
TakK, 9TOOBI BBINOJHAIACH cjemyommne ycaosus. Haccmorpum Bo3sMozKHbIe
CIyuamn:

1. u; — cynepaToMHbBIil 3JIeMEHT.

Torma, ecnn T(u;) < (3,1), To 7(v;) = 7(u;).
Ecaum xe 7(u;) > (3,1), o 7(v;) > (3,1).

2. U; — aTOMHBI, HO He CyTepaTOMHBIH.
Torma 7(v;) > (3,1).

3. u; = ul Vul tne u) — aromubiii wan up = 0, a u) — Ge3aTOMHBII.
Torma v; = vl V vl, tme v, onpenensercsa mo U, TaKXKe KaK U B caydadx 1,
2, a v} —6e3aTOMHBI DTIEMEHT.

4. Cnygan 1-3 He mmerorT MecTa.

Torma v; = v, V vy, te 7(v;) > (3,1), a v;’ —Ge3aTOMHBII 37€MEHT.

Ecnm ke 2 sBisiercs aromHoil, To MOTYyT OBITH TOJIBKO Coaydanm 1, 2.
Torma anements! v; € B onpenenseM TakkKe, KaK OHH ONpPEIeJeHbl B CJIy-
Jaax 1, 2.

Otobpaxenne fo MOKHO TMPOTOTKUTH 10 W30MOPQPHOTO BIIOKeHNsA f !
(@) — *B. Homaraem b, = f(a;). Hycrs wactwunsiii msomoppusm f* :
HF () — HF(B) npononxaer f m b = f*(a). Ho crencrsuio 4 mveem
(HF(),a) =, <HF(‘B),Z_)> TleficTBUTEIbHO, IYCTD Ui = a3t A...Aay* =
a%, rne €; = 0,1. Torma v; = f(u;) = f(@%) = b%. Cnenosarenbho v;
ABJIAETCA aToMOM OyJesoil anrebpnr B(d) m u3 ompenerenna Gynkmmn f
caenyet, uro |u;| = |v;].

Onpenenum coorserctsue T @ HF(A) — HF(B) cnenyromnm obpa-
som. Hyers 2 € HF(21), y € HF(B). Honaraem T(z,y) Torna m ToapKo
TOra, Korfa CyIIecTByeT dacTudubiii nsomopdusm g 1 HF(A) — HF(*B)
YJIOBJIETBOPAIOUINI yCTOBHAM:

1. g mpomomxkaer f*.

2. Ecmm ¢ = #(p), o y = g(z) = »#(q).

3. CymecTBytoT aToMbl Zj, ... ,Tp X Y1, ... , Y COOTBETCTBEHHO OyJie-
sbix anrep A(a, p) u B(b,q) raxue, uto |zi| = [y:| w g(z:) = vi, 9(p;) = ¢
IJTS TIOOBIX 1, 7.

Hokazxkem, 9TO 15 COOTBETCTBHA T CIIpaBe/IMBbI BCE YCJIOBHSA JIEMMBbI

C.

JIemma 3 Jlaa wasncdoeo snemenma z € HF () cywecmeyem saemenm

y € HF(*B) maxot, wmo T(z,y).
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HoxkazareabcTBo. Hycrsp anredpa 2 me aromma. [Hpyroit caywait
paccMmarpuBaercs aHagorndno. HycTs i, ... ,Z, aTroMbl OyJIeBoil aarebpbl
2A(a,p). Hna kaxnoro sieMeHTa T; ONpeIETUM 3JEMEHT Y; CIELyFOIINM
obpasom. Hycts nms ompemesmennoctun ¢ = 1w %y = 27 V ...V Ty, TIe
9JIEMEHTBI Uj, U; TaKKe XKe, Kak 1 npu onpenenennn orobpazxenns f. Hac-
CMOTPUM BO3MOZKHBIE CJTYTam:

1. u; — aTomHbIi »memMenT. Eciu Xe u; — CcymepaTOMHBIL, To U U;
— cyneparoMHbIii. Torma cymecTByer Takoe pasOueHHe »JeMeHTa U; Ha
Yty Yt, ut0 |25 = |ys|, 1 <2 <t Ecawm xe u; — He cyneparoMusbliii, To
v1 Takoit, aro 7(v;) > (3,1). Torma omats cymectsyer {y;}, 910 |T;] = |y4].

2. Hyers ug = uf V uf, tme v} — aromusrit, a v} — 6esaromusrii. Torma

z, =z, Vz! tme z, =z, Nul, = =z, Au] manement v; = v] V vy, tHe v}
— aToMHBI 1 v] — Gesaromubiii. Torma mo ciaywaro 1 MOXKHO HailTi Takwme
sneMenTsl Y.}, aro |zt| = |yi|. Haszobbem snement vy na {y.} rax, uro
z) =0¢ vy =0. Homoxmm y; = y; V ;.

3. Hycrs we Bomosnenst caydan | w 2. Torma u; comepxur Gecko-
HEeTHOE YHCJIO aTOMOB W Oe3aToMHBI »sement. Torma vy = v) V vy, rme
T(v) > (3,1), v{ — GesaromHublii smement. Boibepem pasouenne {y;} s7e-
MeHTa vp cienyfomnm obpasom. Hycers z;, — atommbrii snement. Torma
cyutecTByeT y; < vy, 9to |z, = |y;|. Homycrum z; = 2}V 2, rne 2} — atom-
HBI 1 ! — Ge3aToMHBI sstemenThl. Torma MoxHO HaliT y; = Y,V Y, Takoii,
9TO YL — aToOMHBI, Yi — 6e3aToMubIil asementht u |25 = |yi|. Homyctum ns
T; He BBITOJHEHBI IpenirecTByfoline caydan. Torma Haiimem y; = y; V Y,
Takoil 4To Y. — aroMubIil, yi' — GesaToMHbIH s7eMeHTbI U |TL| = |yL|.

Takum 06pasoM, ONPeIeNeHbl Y, . .. , Y¢; IEMEHTBI Ypi1, ... , Yn OTPE-
NeJATOTCA AHATOTHIHO.

4

JIemma 4 Jlasa xaocdozo saemenma y € HF(B) cywecmeyem saemenm

z € HF () maxot, wmo T(z,y).

Hoxkaszarensctbo. Hycrs B = B, P*B,. Torna anredpa A e arom-
Ha. Hycts v3 = y; V...V y;. Onpenenum zi,...,z; u3 A. Hacemorpum
BO3MOZKHBIE CJTYTam:

1. Hyctp v € B,s. Torna zy, ... ,z; onpenenstorcsa Kak u B ciaydae |
JeMMBbI 12.

2. Hycrs v; € 9B,,. Torna u; — Gesaromusiii anement. Haszbuenune {z,}
sJIEMEeHTa U TaKoe, UTO BBIMOJTHEHa dKBWBAJEHTHOCTh T; = 0 & y;, = 0,
OyIeT MCKOMBIM.
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— ! " ! "

3. Hyctp v1 = v; V vy, v € Bys, vy € By,

Torma paccMoTpUM BO3MOZKHBIE CJIyYaM:

1. Hyers uy = uf Vul, tne u} — atomusiii, ] — 6e3aToMHbBI 57€eMEHTBI.
Ecmu 7(vy) < (3, 1>, TO »eMeHT U cymeparoMubiii  T(uy) = 7(v]). Ho-
STOMY, €Tl Y; = Yi V YY, To U} MOXKHO pa3outh Ha {Z,}, Tak 4To0 |} = |yi|.
Ecau xe 7(vy) > (3,1), To nmubo u) cymeparomusiii u 7(u)) > (3,1), mu-
60 aToMHBbIii, HO He cymeparoMHubiii. W3 memmbr 2 cremyer, uto B J1060M
caydae cylecTByer Takoe pasbuenue {z!} snementa uj, uro |zi| = |yi|.
HHGMGHTBI Tl aABpAtOlIIECH pa36I/IeHI/IeM ul ompemensroTCA W3 YCIOBUA:

=0 & y/ =0. Haements: z;, = 2, V 2! OyIyT HCKOMBIMI.

2. Hyctp He Boimonwen caydaii 1. Crenosarensto T7(vy) > (3,1) n non

U; mMeeTcss GeCKOHEYHOe MHOJKEeCTBO aTOMOB W Oe3aTOMHBIN 37TeMeHT U).
, )

Hycrb y; = yiVyl uys, ..., Ypr_1 Takue, aro Y| < w, < T U Yp,... , Yt Ta-

kue, 9to |y;| = w, 7 > r. Torma mycTs amementst T; < uy, Takme 91O |T)| =

|y£|, 1 < 7. Ha3o6beM SJ€MEHT U; Ha 27eMenThl Tf,... , T8 | T, ... T4 g
TaK, uro i = 0 & y =0, 1 < r. Oupenenum z; = uy \ (V z; V uf).
1<r
Taxnum 0bpasom, onpenesiennr Ty, ... , Lt DTEMEHThI Liy1, ... , Ly ONPE-

AEJIAIOTCA aHaJIOT'MYIHO.

0
Jlemma 5 Feau T(Z,9), mo T(zi, ;).

HokasarensctBo. Hycts 2, = »4(D;), p; = <pi, . ,pf%>, 1=1,...,k.

Torma y; = »(3) n g(pi) = §. Horaxem, nisa onpenereHHOCTH, YTO
k ki .

T(z1,v1). Hycrb S = ‘Ul ‘Ulpf = {p1,... ,0s,C1y-.-, Gt U P = p1, ...,
j=1i=

Py, = Ps. Hokaxem, uro cymectsyer usomopdusm g; : A(a, p1) — B(b,q:)

u g1(P1) = @1 Aromamu anrebper A(@, P, C) 6ynyT Tz = a° A PAT =

afp°c?, roe €;, 8,7 = 0, 1. Ho onpenenenmio T(Z, §) mmeem, uto g(zz ﬁ) =

b°g8d7, re g(c;) = di. Aromamu anrebpsr A(a,p1) Oynyr T3 = Ua ser.
Torna g(z:5) = U b°q GPd = Yz3- Jlerko sameTwuTh, 9TO BIEMEHTHI yeﬁ ABJIA-
IOTCST ATOMaMMI aJIFe6pBI B(b,q,). Hnement p; = U{Cﬂeg | B; = 1}. Ho ompe-

nenernto orobpakenus g mveem g(pr) = g(pi) = U{yeﬁ |B: =1} =q; = q}.

Cnenosarenvro, g(p1) = §i. Jlerko mposeputs, uto |2:3| = |yz53|. Torma
g1 = g | A(@,p1) asnsgercsa mckombiM. HycTh gacTwansiii msomopdusm
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g7 : HF(A) — HF(*B) npononxaer g;. Jlerko mpoBepurb, 910 g7 VIO0-
BJIETBOPAET BCeM ycaoBuaAM omnpenenenus T(zp,y;). Awnamormano BepHo
T(zs, yi)-

0

I/I3 onpenejgeHnA COOTBETCTBUA T n cJaedCcTBUA 4 cJenyer
Jemma 6 Eeau T(z,y), mo (HF(),a,2) = (HF(8),5,y).

B ,Ha,JII)He]?HHeM pPacCMaTpUBarOTCA ImocJjie 10BaTEeJIbHOCTHN BUda
T = <$1) s 7$t>7 y= <y17 s 7yt>7 Zi,Yi € QlTaKI/IG, qTo QIZZ‘/\J:]‘ = yz/\y] =0,
L #£ 7, VT, = Vy; u |zi| = |yl

Hocoenosarenproctn T u § HazoBeM l-paBHbIME 1 Oy1eM mucaTh T ~ 4,
€CJIN

[z A y;| = |25 Ayl

HOCJIGILOBELTGJH)HOCTI/I Zn g Ha30BE€M 5KBHUBaJICHTHBIMUI 1 6yIL6M IIncaTb

T ~ Y, ecJIu CYUIeCTBYIOT TaKue IoCaeIOBATeIbHOCTH T1, . .. , Ty TAKHE, 9TO
Z1=Z,Z,=Ym

1 ~Ty ™ ...~ T,
JIemma 7 lyemw ¢; < z4, ¢; < z; u |¢;| = |¢j]. [yemv nocaedosamenn-

Hocmo Z noayvwera uz T samenoli ¢; na (z;\ ¢;) Ve, a zj na (z;\ ¢j) V.
Tozda T ~ Z.

Cq

HocnenosarenbrocTs Z u3 JieMMbl 7 000O3HAYUM Hepes [:E]CJ.

JIemma 8 Ilyemw ¢; < z; maxod, wmo |z; \ ¢;| = |z;| = w. [locaedosa-
MEADHOCMD Z NOAYYERA U3 T 3aMeHol T; Ha T; \ci, aT; HO TV C;. Tozda
T~ 2Z.

HocnenosarenbnocTs Z u3 jieMMbl 8 0003HAYUM HYepes [:E];l

JIemma 9 [llyemwv danwe nocaedosamesvrocmv T u Y u |T1l,... [Tk < w.
Tozda cywecmesyrom nocaedosameavrnocmu 4 u Z maxue, ¥mo T ~ U, § ~ Z
Uuy =21,...,U = 2.

JIemma 10 [Tyemo T(z,y), T(y,2) u (z). Tozda Yo(z,y).
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HokasarenscrBo. Hycrs T(z,y) u T(y, z). Hycrs u, ..., up, 5(D),
z1,...,T: TakWe Ke Kak B onpenenennn T(z,z). Torna cyuectsyer takasd
MOCIENOBATENBHOCTD , 9T0 Y = () U aTOMBI Y1, . .. , Y, anredpsr A(a, ),
q10 cyuecTByer nsomopdusm h : 2A(a,p) — A(@,q), h(u;) = u;. Hymewm
npennosnarath, 9to h(z;) = y; u |z, = |y;|. Hycrs e — dpukcuposantoe
qncio, 1 <e<pmu 2= <:c‘f, T ), Y= <yle, . ,yfe> QTOMBI OYJIEBBIX
anrebp A(a,p), A(a,q) nexamne non u.. Hokaxewm, 9To mis KaxiIoro e
BBITIOJTHEHO I€ ~ F€.

B nanpreiimiem nHaekc e OymeMm onyckarh u te 0003HAYUM 4Yepes N.

Ho memme 9 moxkuo cuurarh, uto ecau |z;| < w, 1o ; = y;. Hosromy
MOZKHO CUHTaTh, 4TO IJIs JOO0TO ¢ BepHO |Z;| = w. lomycTmm,uto moce-
noBaTeIbHOCTH T He l-paBHa §. Hpemmosaraem, 970 MHOKECTBO TIap YHCET
viopsnodeno nekcukorpaduaeckuit. Homoxum ¢;; = z; Ay;, 1 < 1,7 < n.
Hycts (1,7) Murnmanbras mapa takas, ato |c;;| > |cj| w1 < 7. Torma
lcji| < w. Tak kak |y;| = |zi;| = w, To cymecrByer Takoe s € w, 4T0
|csi| = w.

Hacemorpum BosMoKHBIE cydan:

I. s < 7.

Torma |c;s| = [csi| = w. Haccmorpmm mocmenosarebrocTs 2y = [Z],7.
Tak kak ¢;s < z; \ ¢j, 10 |2; \ ¢;j| = w. Ho nemme 8 mmveem Z; ~ Z.
Hycrs Z; = (z],...,25). Tenepb paccMOTpUM MOCTENIOBATENBHOCTD Ty =
— éBJl/\yi 1 . . 1
[Z.],” . Tax kak z; Ay; = [2;V ci] Ayi = ¢ji, To |25 AYi| < w. Otciona mo
nemme 8 umeeM T; ~ Io. JIerko samMernTh, 4TO HJIA MOCTEI0BATETBHOCTEI
T,, § mapa (1,7) He MuHUMaIbHA U |Z2,| = |Ym| o ar06oro 1 < m < n.

II. s > 3.

BILGCB PacCMOTpHUM BO3MOZKHBIE CJIyHaN:
Ha) |Cij| Y

— —1C44 — —
ctb Z; = |Z|§*. Tak kax |¢;;| < w, To o JeMMe 8 UMeeM T ~ Ti.
Hy z zls $ ,
1
. — (5, ]%s Y g | = o] =

Hacemorpum asement T, = [xl]ngyJ' Tak xak |cj; V ¢si| = |cij| = w, 1O
no semme 7 I; ~ Zp. CHoBa mapa (1,7) He ABIAeTCA MUHUMAJIBHON IJIdA
nocsenoBaTesbHoCTel To,Y U |22,| = |Ym| mirst sr0Goro 1 < m < n.

[Ib) Jeis| = > fesil

Torma cyutectByer smement ¢ < ¢;; Takoil, 910 |ci; \ ¢| = |cji]. Hac-
CMOTPUM T = [:E]; Ho nemme 8 mmeem T ~ T,. Jlerko mpoBeputrh, 41O

napa (t,7) He ABIAETCA MUHUMAJILHON [JIs1 TOCTENOBaTebHOCTEH T1 1 §
u |zl | = |Ym| ana moboro 1 < m < n. Hpomonkas 3To mocTpoeHne MbI
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ITOJIYHUM ITOCJIENOBATEIBHOCTD
TN .. 2Ty =7,

Ananorugasie mocTpoenus nposoanMm s sroboro e, 1 < e < p. Torma
MOJIYYUM TOCHETIOBATEbHOCTH

~€ _ mE€ € € €
TC=To I~ T, =Y

Hycts m = maz{m.| 1 < e < p}. Honoxum nus xkaxmaoro e u i, me <
1 <p, ¢ = §°. Torna moayanm mocremoBaTETbHOCTH

€ 7€

~€ __ =€ € ~€
TF=Zo~T] ... T = F°.

HaCCMOTpI/IM ImocJjie 10BaTEeJIbHOCTHN
F=(35|1<e<p), = (& |1<e<p),...,

T, =(Z;, |1 <e<p)=7.
i ITOCTPpOEHNA UMEEM, YTO

oI YTy = .

8]

I =

Hyctb smementsl 21, ... ,Tm1 € HF(B) monaydens us sJeMeHTOB I1, ... ,

im_]_ TaKzKe KaK7 2JIEeMEHT T 13 2JIEMEHTOB i TOFILa N3 cJdedCcTBUA 4 nMeem
(HF(®8),d,z:,Ti41) =1 (HF(*B),8,Zi41,%:) -

Orctona u w3 ycnouit Ha Momensb M nmeeM Yo(T4, i41). Tak Kak Yo ompe-
nesigeT KOHIPY?HTHOCTH Ha Momenn I, to PYo(z,y). Jlemma nokasana.
O
Us memm C, 3-6 w 10 coemyer Teopema.

4

CaencrBue 5 Feau L — aunetinwi nopadox L-onpedeaumvt 6 HF(A) nad
cuemnoti byaesoli areebpoti A, mo L — xonempyxmususupyem.
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O nonostHeHnu apudpMeTHIEeCKUX
HyMepamnui

3.I". Xucamuen
Kazazxcrxuli navuonasvrodi ynusepcumem um. Aav-Qapabu

Anunoranmua

Nzyuaercs onepaius nonosiHenus vymepanuii. B pabore DamaeBa-
loruapoBa-Copbu ara onepanua UCHONB3YTCA TPU U3YUEHUE TOJIY-
pemerkn Jopkepca 10 -BLIYHCIUMBIX HyMepaluii cemeiicTs apud-
MeTHYeCKUX MHOMKECTB U CTasfsBUTCH BOIPOC: OCTaHeTCH JIH 0COOBIH
DJIeMEHT JIH0O0r0 MONOJIHeH A 0COObIM PH HOBTOPHOM TOMOJIHEHU N
OTHOCUTEbHO APYTOro sjleMeHTa. 3[eCh IPUBOIUTCH pellieHre 3TOro
Bompoca. JlaJjiee, paccMaTpuBaeTcs BOIMPOC O paclpeieieHul 0COObIX
1 HeocOObIX BJIeMEHTOB MoJIHON apudMeTnyeckoll HyMepaluu.

1 OcHoOBHBIE onpeneJiecHUusd

Hycts A — cemeiictBo B2-mHOokKecTB, @ : N — A - X9 -pprun-
cimMasd HyMepalws ceMmeiictBa A T.e. Takasd, 9ro oTHolneHne £ € o(y)
ABgeTcA 5o mpenmkatoM. MHOXKeCTBO Bcex 3O-HyMmepalmii cemeiicTBa
A, crenys [1], obosnauaem Com2(A). B [1] usywaercs noaypemrerka Ho-
nzKepca B | -BBIYHCIUMBIX HyMepanuil cemeiictsa A X | -MHOXKECTB T.e.
nonypemerka wymeparmit (Com; ;(A)/=;<). thoe = - oTHOUIEHNE M-3K-
BUBAJIEHTHOCTH, a < - OTHOIIEHUe CBOAMMOCTH HyMepanmii. Takzxe pess-
TuBnsoBanHad noiaypemerka (Comy . (A)/ =x,<x) , Ille B OTHOLIEHUAX
=x, <X BMECTO KBUBAJEHTHOCTH U CBOJAMMOCTH BBIYMCJIUMBIME (DYHKITH-
AMEU PacCMaTPUBAFOTCA CBOAUMOCTH X -BbrauciuMbiMu hyHKImaAMu Homes-
HBIM MHCTPYMEHTOM M3YYeHW: TaKuX IOJIYPEIIeTOK OKa3aJach Olepalys
nonosiHeHns (Oe3 opakysia) n X-TONOTHEREHN A, BBedeHHas Epuosbim [3].
Tax, omepalus MONOJTHEHU MO3BOJISAET MOJIydYaTh HOBbIE 3JIEMEHTBI B IO
nypemrerke Homkepca, nexaiuine "Bbiie” Tex 37eMEHTOB, K KOTOPBIM TIPH-
MeH#ercsa mononHenne. B pabore [1] craBurcs Bompoc (Bompoc 2): octa-
HeTCs JIM OCOOBIN JIeMEHT OCOOBIM, €CIM HyMEpaIyio MOMOJIHUTh elle pas
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HO OTHOCHTEJIbHO Ipyroro »jeMeHTta’ 31ech maeTcs OTBET Ha 3TOT BO-
npoc. [anee, onepanms 0'-monoHeHEsA JaeT HyMepalyio B KOTOPOil Ka-
KIBI DJeMEHT ABJIAETCA OCOOBIM IIPH TOM IIOIIOJTHEHNE MOJKET IIepecTaTh
6p1Te 12-BhrauncumbiM (1 = 2). B [2] mpuBonsATcs mpuMepbl HyMepariuii
C KOHEYHBIM YHCJIOM 3JIEMEHTOB, Ka Kbl U3 KOTOpPBIX ocoOblii. Hpomspe-
JeHns TaKuxX HyMepalnii m HyMepanuii ¢ OJHIM OCOOBIM 3JIEMEHTOM JaloT
HyMepalnu ¢ KOHEYHBIM YHCJIOM OCOOBIX M IMPOM3BOJIBHBIM HYUCJIOM HEOCO-
Obix ameMenToB. B [4], a Takke B [3] mpuBoaATCA HyMepalmu ¢ GeCKOHeU-
HBIM YUCJIOM 0COOBIX 00bekToB. U3 [4] Teopema 2 MOXKHO W3BIeUb HyMe-
palmo ¢ 6eCKOHETHBIM YHCIOM OCOOBIX M GECKOHEYHBIM YHCIOM HEOCOOBIX
anemenToB. Octaercs ciydail 66CKOHEUHOrO YHCJIa OCOOBIX W KOHEYHOTO
qpcIa HEOCOOBIX »JIeMEHTOB. B HacTosleil paboTe, WCHOIb3yA B Kade-
CTBe MHCTpYMEHTa, Olepallnio MONOIHeHNA Jeaercd ciaemytomee. Ho o
OBV IBYM X0 | -HyMepoBaHHBIM ceMeiicTsaM (A, a), (B, B) T.e. TakmM, 910
a € Com, ,(A), B € Com)_ ,(B), crpontcs HymepoBaHHOE CeMeflcTBO
(C,7),C = AUBU{0},v € Com? ,(C) raxoe, uro: (A, a)u (B,B) nomnobb-
extor (C,7); Kaxapiii s1ement A U {0}, ABaserca 0coOBIM OTHOCHTETHHO
v; ecim AU {0} \ B # 0, to kaxmupiil snement u3 B e sABIseTCA 0COOBIM
OTHOCHTEIHHO 7.

Heobxommmble ompenenenns.

Mper npunepxuBaemcs onpenenennii w3 [1]. Hyers Kpp1(2o, Z1, ..., Zn)
— yHEHBepcaJbHas KJIWHUEeBCKad (DYHKINA IJIA N-MECTHBIX YaCTHIHO-BBI-
qucumbix yuakunii, K(z) = Ka(< z >1,< T >2) - yHUBepcabHas OJl-
HOMeCTHasd YaCTUIHO-BhIYMCINMasd (PYHKIUA, < T >>; - JeBad W IpaBad

dynkunn, ¢ = 1,2 . Coorsercrsenno uepes K2, (2o, 1, ..., Tn) 1 K¥(z)
oGo3HaUaloTCA peaATHBU30BaHHbIe yHUBepcaabHble GpyHKImu. Hycts X =
degr(X) = {Y|Y =7 X}, snecb =r - sKBUBaJ€HTHOCTH 10 TbiopWHTY,

0 = deg(0),0" = deg(0"). Hycrs A — Z0-cemeiictBo, a € Com?2(A),
Ac A

Omnpenenenne. [3]. Homosnnenwem (X-momosHeHmem) HyMepaum o,
OTHOCHTETbHO dJleMeHTa A HasbiBaeTcA HyMepannsa &a (QX) ompemesier-
Hasd CIeIYIOIIM 00pasoM

a(K(z)) ecmm K(z)d,

as(z) =
A B TIPOTUBHOM CJIydae.

Homnonrenne ¢ opakynom X wiau X-TOMOJTHEHEE MOJYYaeTCsA 3aMeHOH B
onpenenenun Gyukmun K na dynkmmo KX,

Crenytolime Tpu cBOWCTBA XOPOIIO W3BECTHBI, U 9aCTO OYIYT WCIIOh-
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30BaTbCA B ILaJIbHeﬁHIeM.
1. a mosHAa oTHOCHTEIBHO A TOrga W TOJBKO TOTHa, KOIla & = O 4.

2. Ecam a nmomHa, TO ms BCAKON BhramcaumMoll GyHKINUN g HyMepa-
s O WMeeT HEMOABUAKHYIO TOUKY, T.e. cyiectByer £ € N, uro az) =
a(g(z))-

3. Ecoim o = B u a nosina otHOCHTEbHO A, TO B TIOJTHA OTHOCUTETBHO

A.

Tax:xe BEPHBI PEJIATUBU3OBAHHBIE aHAJIOTUM STUX CBOIICTB. Bwmecro
ITOJTHOTBI, TIOIMOJIHEHUA pPacCMaTpUBa€TCA X-mmosHOTa T }(—HOHOJIHGHI/IG7 a
BMeCTO CBOINMOCTH X—CBOILI/IMOCTI).

2 HOBTOpHLIe IIOIIOJIHEHH A1

B [1] cdhopmynuposana crenyuias npobaema. Hyers o @ N — A. Bep-
o, ato (a9 )% )% = (%)% ? B wactroctn, Bepro mm, ato ((aa)p)a =

(OZA)B?

Teopema 5 /laa awbozo n, cywecmeyom 2%+2-66L%UCJLU.M06 cemeticmeo
A, codeporcawiee no kpatinets mepe déa pazsuunwv saemerma A, B u nyme-
payusa a € Com® ,(A) maxue, wmo ((a% )% )% Z (a5)% . Hymepayuro o
ModatcHo evbpamv karx 0" -noanol omnocumeavrno A, max u, 0"-nenoanol
omHocumenvro A.

Hoxkasarenbctso. 1) Hycrs B — npoussosbHoe Ly | ,-BBIUHCIIMOE
ceMeficTBO, OTJIMIHOE OT Ki1acca Mg, ,. Hycts A € X9, A & B u nycrs
B — npomssonbhaa HyMepauus us Com?, ,(B) Haccmorpum Bremnee 0°-
HomnosHeHue HyMepaiuu O

B(K " (z)) ecrm K% (z)l,

o L
A (2) =
A B IPOTUBHOM CJIyIae.

Brernrnee 0"-nonostenne Tak:xke 0"-nomHas HyMepalua OTHOCUTETbHO
Aw ABiAerca N9 ,-BbluncauMoii Hymeparuefi cemeiicrsa A = BU{A}. Ho
cpoiictBy 1 (B3 )Y =on B9 Obosmaunm a = (9 . lomyctum mpoTuBHOe.
Torma o cBoiicTBy 3 (,89; )OBn angetca 0"-mosHoll HymMepanmeit cemeiicTBa
A orrocurenbto snementos A, B . Tak kak a =gn af , To @y 0™ -noana

OTHOCUTEJIBHO »JeMeHTOB A, B.
Ompenennm BIOKEHHYIO — X-BBIYUCIAMYIO TOCIEIOBATEIHHOCTD X~

BBIYMCIUMO-TIEPEUNCINMBIX MHOKECTB Uff, neN.
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Ugt = N, Uy, = {E*}H(UF), .
Homepa »nementos u3 A pacnpeiesiensbl B HyMepalu &'y cenyonnm

obpasom
B(K° (z)) ecrm z €U,
ay(z)=<{A ecniu z € UY"\UY",
B ectu z € UY"\ UY".

Omnpenenum 0™-gacTraro-BhraICIMYI0 GyHKIHO @01. Hycrs e € UY™ \ UY”

n
e ecmm z€UY,
pi(z) = o
T ecmn zZU) .
Hycrs fi  —  O"-Bbrumciaumas GyHKIUA, NPOIOJZKAIOMWAA (@1, OTHOCH-
n
TeJBHO HyMepalun a'y ¢ ocobbiM aseMenToM B, Torma

n
on A ecm zeUY,
Qp (fl(m)) = or
B ecmm z &U; .

Honoxum ¢, = fi [ UY". Torma ¢; — 0™ uacTHYHO-BbIUUCIUMAs

dbyurmma. Hamee, mycts fo — 0™ -Beruncianmas GYHKINS, TPOTOJIKAO-
n

as @z, OTHOCUTEThHO A ¢ 0c0606bM 3ytemerToM A. Torma mis o6oro

T

A ecm z€UY,
a% (fo(z)) =< B ecmu zecU\U,
A ecmm z €U \UY.

CnefoBaresibHO fy He UMeeT HEloJIBHUKHbBIX TOUeK OTHocuTe bHO % . Hpo-
TuBOpeune. B mocTpoenHoM mpuMepe HyMmeparmsa o 0"- mosiHa OTHOCH-
TesbHO A. 2) YKakeM Telepb KakK [HOCTPOUTH N0 L o-BBIUUCIUMYIO HyMepa-
nmio a ¢ reocobbivm aaementamu A, B taxyio,aro (a4 )%)% Z (29)% .
Hycrs (B,08),(C,v) — I, ,-HyMepoBaHHble ceMeficrBa Takue, 410 A &
C,B ¢ B. Homoxum o = (@ . Hu onun us snementos A, B He sBsA-
eTcA 0COOBIM OTHOCHTETHHO O, TaK KakK WX HOMepa PEKYPCHBHO OTIeH-
mpt. Ecom 661 mvena mecto sxsusatentrocts (a4 )3)9 Z (29 )% . Torma,
obr mymeparma (a9 )% 6nr momma orHocuTenbHO aaementos A mw B. Ho-
cTponM mocTporM 0"-Bhrancanmyio GyHKINO, He NMEIIIONLY 0 HeOIB] K-

n n
HBIX TOUYEK OTHOCHTesbHO Hymepammu (o) )% . Badukcupyem e Takoe,
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qTO (a%ﬂ )an(e) = A u gns xaxgoro ¢ € N onpenenum

e ectm K% (K (z))— neuerno,

ps3(z) =
T B IPOTUBHOM CJIydJae.

Tak xax (a?qn)OBn 0™-mosiHa oTHOCKUTENBbHO B, Torna 3 MOXKHO MPOHOJI-
KUTh 10 0"-9acTUIHO-BBIYNCIUMON PYHKIIUHT (04 C 00JTACTHIO OMpeIeTeH s
UY" ) satem 3Ty GyHKIMIO TPONOIAKNTS 10 O"-Bpramcammoii GyHKIHT fi.
Hacnpenenernune nomepos »1oil (pyHKIINE TaKOBO, 9TO OHAa HE WMeeT HEMO-
JIBUKHBIX TOYEK.

3 Ihhcnpenesieane ocoOBIX U HEOCODBIX JIEMEHTOB

Teopema 6 . [Tycmo (A, a),(B,B) — npouseoavrvie XS, ,-Hymeposarrbie
cemetiemea. Tozda cywecmeyem LY |, -nymepayus v cemetdicmea AUBU{0}
maxas, wmo

I.ap <vw.

2. V noana omnocumeavro awbozo aaemenma uz AU {0}.

3. Feau AU {0} \ B # 0, mo awboti asemernm uz B\ AU {0} ne

ACAACTCA 0COOVLM OMHOCUMEABHO V.

HokazarenbcTBo. Hacemorpum ciiemytomme mocreqoBaTeibHOCTH BbIUNC-
JIIMO-TIEPEUNCTUMbBIX MHOZKECTB.

U= N, Up =K HU,).

Ey = {z|K(z) =z}, Epy1 = K YE,).

Hycrp C — Bhrancanmoe 6ecKOHEUHOE MOIMHOKECTBO HOMEPOB TOZK 16~
crBennbix Gynknnii C = {¢;|t € N,K(< ¢;,z >) =z+1%0,2 € N}, a Ey =
{e;|t € N} — kakoe-uubynp nepeuncienne Ey. Hyers (A, a),(B,8) —
¥ ,-HyMepoBaHHble ceMeiicTaBa. Oupemenny HyMepanmio U ceMeficTa
AUBU {@} CITEMYTOIINM 00pa3oM,

a(0) ecn 2z € J(U; \ Uit1)&(2)1 € C,
a(e) ecin z € Uy \ Ux&(z), = ¢,
6(0) ecin 2z € UE;11&(2)1 € C,
v(z) = BG(1) ecm z = e,
v(K((z)2)) ecim z € iL;'éJl(Ui \Uit1) WU Ei1&(2); € C,
0 B IIPOTUBHOM CJIydae
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Hywmeparmus v onpenesnsercss pa3zbopom caydaes, TO3TOMY TOCTATOTHO
JOKa3aTh 9TO KaKaasd aJTepHaTHBa BhIPaKaeTCs Lo +o-ipequkarom. Ocra-
HOBUMCH Ha MPENIOCTIeTHEM CIIydae, OCTalbHble oee oueBUIHbBI. 1 pedy-

ercs oKa3aTh, 9TO B 3ToM caiydae Y € V(z) BbIpakaercs Lo 4o [IPEIUKATOM.

yev(z) & z¢€ ‘L;JeJ1(Ui \ Uit1) U }goEi&<z>1 € C&y € v(K(z)) <

dcig..Cip_, € C 2oz A7z = 20 = (Cig, 2ig)&21 = K(24)y ..oy 261 =
<cik—1)zik—1>&zk = K(zlk—l)&{(<zk>1 = Cj&zk S \ U&y € Oé(j)) v
dn # 1z € Up \ Up1&(2zk)1 € C&y € a(0)) V (2 = e;&y € B(7)) V
An(z, € Ens1 \ En&(zr)1 ¢ C&y € (0))}].

Ucnonpsys G-byukumio ['enenst, MokHO m36aBUTHbCA OT IEPEMEHHOTO
KOJIMIeCTBa KBAHTOPOB CYHIECTBOBAHM S

y € v(z) & Jw 3k In i Vi(k[B(w,0) = z&
Blw,5 + 1) = K({(B(w,7))2)&{((B(w, k)1 = ci&B(w,k
a(1)) v ((B(w, k)1 & C&B(w,k) € Un \ Unin&y € a(0)) vV (B(w, k)
eidcy € B(1)) v ((B(w, k)1 & C&PB(w, k) € Ensr \ Endy € 5(0))}].

Bnech Kaxgad JU3HIOHKINA — 5o o-IPEIUKAT.

1. Hycrp e — HOMep Hurme me onpeneneruoil ¢pyrrmuu. Onpemennm
BRIIECTIMYTO GyHKIMIO f(2).

Cz,€) ecnm,z = 2I,
fz) = { e
€r ecnnz = 2z + 1.

Nmeem

v(f(22)) = v((cs,e))
v(f(2e +1)) = vles)

Tagum obpazom, a @ < v.

Il
Q

(2),
A(z).

2. Honoxum f(z) = (ci, T) u mokaxem, 910 f M-CBOIUT Vg(s) K V.

Cayuait 1. z € Uy \ U;. B atom cayuae

(c6,2) € Uy \ U, v(f(2)) = w({ei,2)) = ali) w vago(e) = (i)

Cayuait 2. 2 € U(Uiz1 \ Uis2) UU E;.

Barom cayaae (¢;, z) € U(Uit2\Uis3)UU Eip1, n v((c;, z)) = v(K(z)) =
Vag)(2)-

Cnywgait 3. z € I, tne N\ I = U(U; \ U;+1) UU E;.

B atom cywae K(z), (¢, z) € I, me. v((c;,z)) = v(K(2)) = va)(z) =
0.

3. Tenepp moxaxkewm, uto vy < v. Hocrpomm Bhramcimmyro yHK-
o f takyio, 9to ecau T € Ug \ Uy, 10 f(z) € I. Onpenennm BHauae
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BbrancanMyto Gyuknno ¢. 3adbukcupyem ¢ € C

(¢,(p(z,z,2),y + 1)) ecmm z & Uy,

K(z) B IPOTUBHOM CJIydae.

o(z,y,2) = {

Bnech p(z,y, z) — $3-byukuus a Uy , — wacts U; BRIYBCIUHAAA 32 Y [IATOB.
Hycts a — vomep ¢(z,y,2) re. p(z,y,2) = K((p(a,z,z),y)) Hacemorpum
nocenoBaTebHOCTH duces: Py = (p(a,a,z),0),...,py = (p(a,a,z),y), ...
nqo = (¢, (p(a,a,z),0)),...,qy = (c,(p(a,a,z),y)), ... Ob6e mocaenoBaTeH-
HOCTH CTPOTO MOHOTOHHBI I He IepeceKaforcs. MoHOTOHHOCTH odeBHIHA.
Homyerum p; = gj,1orma p(a,a,z) = c&0 = (¢, (¢, 1)) — mpoTuBOpetme.

JIemma 11 . [lyemov & ¢ Uy 51, moeda K2i+1(‘J0) = Pi,KziH(‘Jo) = qi+1,
1< s, a K*Y(q0) = ps, u

K**(q0) =

K(z) 6 npomusnom cayuae.

{qs_H ecauw T €U,

I'de K¥(z) — umepayua K(z).

HoxkaszarenbcrBo. Nunykuweii mo 7. dnat =0 K(go) = po, K*(q0) = @1
no omnpenenernto. JlomycTum yTBepiKIeHWe BepHO misd ¢ < S, Torma T &

Ul,i, K2i+3(‘J0) = K(Qi+1) =pPi41 U

K2i+4(‘J0) = {qz’+2 ecrn 1+ 1<sVe gUy,

K(z) B mpoTwBHOM Ciydae.
JIemma 12 Feauz € Ug \ Uy, mo v(go) = 0.

HokasarensctBo. Ecim z € Uy \ U, torma ans soboro s & Uy, w
nocJieoBaTe/IbHble 3HAUEHNA TOCIe0BaTebHbIX nTepaimn Bumga K*(go) —
MOTIAPHO PA3JINIHbIE TUCITIA Do, 1---) Py, Jit1... HTO 3HATUT, 9TO o € 1.

JIemma 13 Feau z € Uy, mo v(K(z)) = v(qo).

HokasarensctBo. Hycrs ¢ € Up s\ U1, TOTIA TOKakKeM, 9TO
v(qo) = v(K2(41)(g),1 < s unmyknmeii no 1. Hycrs ¢ = 0, Torma v(go) =
v(K(po)) m  v(K?*(g)) = v(K(po)) . Hycrs yrBepxmenne BepHO miis
i(s, rorma z ¢ Uy n v(qo) = v(K*0T(q(0)) = v(gi+1) = v(K(pir)) =
V(K H2)(qo). Hpu i+1 = s, mmeem K202)(qo) = K(z), v(q) = v(K(z)).

Teneps onpenennm seraucanmyto dyuakunio f(z)  f(z) = go. Us nem-
MBI 2,3 cienyet, ato f(z) m-cBomnt vy K v. O
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