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PrefaceWorkshop "Computability and Models" is a part of the international jointresearch projects INTAS-RFBR-97-139 COMPUTABILITY ANDMODELS and INTAS-00-499 COMPUTABILITY INHIERARCHIESANDTOPOLOGICAL SPACES. It is organized under the aegis of the KazakhNational University and the Institute of Mathematics of the Ministry ofEducation and Science of Kazakhstan.The three earlier INTAS workshops on computability and models (No-vosibirsk, May 4-6, 2000; Heidelberg, January 18-19, 2001; Novosibirsk,September 24-26, 2001) have established a tradition of inviting a wide spec-trum of specialists in computability theory, and its applications to logic,mathematics, and computer science. This workshop is the �nal one for theproject INTAS-RFBR-97-139, and some talks summarize the results of theresearches over the previous three years. The workshop is mainly devoted tothe computability theory and its applications to logic and computer science,and includes also several talks on model theory.Proceedings of the workshop contain abstracts of the talks or extendedre
ection of the talks or their parts prepared as articles. Abstracts andarticles were preliminary refereed, nevertheless they should be consideredonly as publications "as is".We thank to A.Sakhauev, A.Altaeva, R.Zhumakhanova who assistedwith the preparation of this volume.Serikzhan BadaevYerzhan BaisalovEditorsJune 21, 2002
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Program of WorkshopProgram of Workshop"Computability and Models"Monday, June 24, 2002� Sergey Goncharov (Russia), Computability and Autostability� Julia Knight (USA), Isomorphism Problems� Dieter Spreen (Germany), On the E�ective Continuity of E�ectiveMultifunctions� Pavel Alaev (Russia),Computable Homogenious Boolean Algebras� Asylkhan Khisamiev (Russia), Computable Imbeddability Conditionand Degrees of Abelian Groups and Boolean Algebras� Yerzhan Baisalov (Kazakhstan), On Erdos-Woods Conjecture� Oleg Kudinov (Russia),� Perdebek Dosanbai (Kazakhstan), De�nability in Arithmetical Struc-tures Tuesday, June 25, 2002� John Case (USA), A Computability-Theoretic Learning Theory Sam-pler� Frank Stephan (Germany), Learning Classes of Approximations toNon-Recursive Functions� Iskander Kalimullin (Russia), The Jump Operator Is De�nable in theEnumeration Degrees� Marat Arslanov (Russia), Relatively c.e., n-c.e. and Fixed-point FreeDegrees 5



Program of Workshop� Nazif Khisamiev (Kazakhstan), Vitalii Roman'kov (Russia), Construc-tive Matrix and Ordered Groups� Anna Romina (Kazakhstan), Autostability of Models in AdmissibleStructures� Dzhamalbek Tusupov (Kazakhstan), Generalized Computability onCountable Atom Boolean AlgebrasThursday, June 27, 2002� John Case (USA), Machine Learning for a Genomics Analogy Problem� Klaus Keimel (Germany), Domain Theoretical Models for Probabilityand Measure� Serikzhan Badaev (Kazakhstan), Arithmetical Numberings� VyacheslavDobritsa (Kazakhstan), On the LimitlyConstructible Mod-els� Pavel Semukhin (Russia), Spectrum of the Atomless Elements Ideal� Kuanysh Meirembekov (Kazakhstan), Ryll-Nardzewski Function ofCountably Categorical Theories� Beibut Kulpeshov (Kazakhstan), On Some Properties of Weakly o-minimal Theories� Stanislav Bereznyuk (Russia), On Hyperarithmetical NumberingsFriday, June 28, 2002� Mikhail Peretyat'kin (Kazakhstan), Lindenbaum Algebra of PredicateLogic and Its Structure� Sergei Podzorov (Russia), Algebraic Properties of Rogers Semilatticesof Arithmetical Numberings� Asel Altaeva (Kazakhstan), Precomplete Arithmetical Equivalences� Zarif Khisamiev (Kazakhstan), On Completion of Arithmetical Num-berings 6
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Pavel E. AlaevComputable homogeneous Boolean algebrasPavel AlaevNovosibirsk, RussiaAbstractWe propose a criterion indicating when a homogeneous Booleanalgebra has a computable copy. Andrei Morozov proved thatsuch an algebra can be described by an invariant which is asubset of the set of natural numbers. We introduce a hierarchyof �0w -sets which generalizes Feiner's hierarchy. A countablehomogeneous Boolean algebra has a computable copy if and onlyif its invariant belongs to a class of this hierarchy. A way topass from a hyperarithmetical quotient Boolean algebra to acomputable Boolean algebra is also considered.In 1970 Feiner introduced a hierarchy of �0!-functions (Feiner's hierar-chy): suppose that f : ! ! ! and a; b 2 !. f belongs to the class (a; b)if f(n) = �;(a+bn)k (n)for some k 2 !. The idea can be formulated as follows: to compute f(n),we �x a Turing machine but use an oracle which depends on n.We can also consider functions f such that f(n) = �;(h(n))k (n), where his a computable function, not necessarily linear (this generalizes the Feiner'shierarchy). To describe the computable homogeneous Boolean algebras, weuse a more general approach: the oracle in the computation of f(n) dependson n and f(0); : : : ; f(n � 1).Let g : ! ! ! be a computable function such that g(x) > 1 for x 2 !,and let h�; : : : ; �i : !<! ! ! be the standart function. The class �0!;gconsists of all functions f : ! ! ! such that for some k 2 !,f(n) = �;(g(s)�1)k (s)11



Pavel E. Alaevwhere s = hf(0); : : : ; f(n� 1)i.A set M 2 �0!;g if �M 2 �0!;g.The class �0!;g consists of all sets M � ! such that�M (n) = 1, �;(g(s)�1)k (s) #where s = h�M (0); : : : ; �M (n � 1)i.Examples. (1) if g(x) = m for all x 2 !, then �0!;g = �0m and�0!;g = �0m;(2) if g(hx0; : : : ; xn�1i) = an+ b+1, where a; b 2 !, then �0!;g is a Feiner'sclass.The following proposition says that these classes have a usual property.Proposition. Let g1; g2 : ! ! ! be computable functions suchthat 1 6 g1(x) < g2(x) for all x 2 !. Suppose that g2(hx0; : : : ; xni) 6g2(hx0; : : : ; xn; xn+1i) for all x0; : : : ; xn+1 2 !. Then there exists an M 2�0!;g2 n �0!;g1.By algebra we mean a countable Boolean algebra. Letch(A) = (ch1(A); ch2(A); ch3(A)) be the elementary characteristic of analgebra A, where ch1(A) 2 ! [ f1g. A. Morozov proved (1982):(1) if A is a homogeneous algebra and ch1(A) < 1, then A has a com-putable (even decidable) copy;(2) ifA is a homogeneous algebra and ch1(A) =1, then A can be de�ned upto isomorphism by a sequence of invariants t(A); p0(A); p1(A); : : : ; pn(A); : : : ,where t(A) 2 f1; 2; 3g, pn(A) 2 f0; 1g for n 2 !.Theorem. Let A be a homogeneous algebra such that ch1(A) = 1.The following are equivalent:(1) A has a computable copy;(2) fn j pn(A) = 1g 2 �0!;g, where g(hx0; : : : ; xni) = 4 + 3(n + 1) + x0 +: : :+ xn.As a corollary, we obtain a strong version of a Feiner's result:Corollary. There is a �02-computable homogeneous algebra having nocomputable copy.
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A. A. AltaevaPrecomplete arithmetical equivalencerelationsAssel Altaevaal-Farabi Kazakh National University, AlmatyAbstractWe study arithmetical equivalence relations (a.e.r.) on ! andinvestigate the possibility to modify main results for positive equiv-alence relations concerning reducibility, completeness and propertiesof equivalence relations for relations in arithmetical hierarchy consid-eringP0n+1� equivalence relations generated by some function com-putable with ;N�1. Particularly, such approach allows us to showthat precomplete arithmetical equivalence relations are computablyisomorphic to each other.IntroductionOur primary goal in this paper is to develop comprehensive theory forreducibility among a.e.r., to study di�erent notions of completeness for a.e.r.and properties of precomplete a.e.r.The research work was to a large extent motivated by the theory ofcomputably enumerable equivalence relations (positive e.r.) rather devel-oped by Ershov[1],Visser[2], who studied examples of precomplete positivee.r. in logic, Bernardi and Sorbi[3] investigating universality of positive e.r.and Lachlan [4] who showed that precomplete positive e.r. are computablyisomorphic to each other. He also considered another natural notion of com-pleteness (called e-complete) and demonstrated nice properties and naturalexamples of e-complete positive e.r. There are direct connections betweenpositive e.r. and a.e.r. as positive e.r. are just a subcase of a.e.r., so thegeneral methodology we employ in the current investigation is much similarto the theory of positive equivalence relations.The most interesting applications of the theory of equivalence are of-ten classi�cation problems for various kinds of structure in mathematics.13



A. A. AltaevaFurthermore, to classify a structure is usually meant to obtain a completeset of invariants for the structure. What we are investigating about a.e.r.under reducibility can then be viewed as an abstract framework for a studyof the possibilities to e�ectively compute complete invariants. In this senseour reducibility is more natural than the reducibility among sets.An a.e.r. can be viewed as a P0n+1� partitioning of the !. Hence thereducibility among a.e.r. as equivalence relations generalizes various notionsof simultaneous reduction of sequences of sets. Also, natural non-universala.e.r. are easy to construct(similar to positive equivalence relations) . Thisis in contrast with situation in computability theory for sets, where sophis-ticated constructions are usually needed to ensure existence.De�nition 1. An equivalence relation R on ! is arithmetical if R is aP0n+1�relation for some n.De�nition 2. For two a.e.r. R1 and R2, we say that R1 is m-reducibleto R2, and denote R1 6m R2 if there is a computable function f such thatfor any x; y 2 N;xR1y , f(x)R2f(y).Further we omit the pre�x and say that R1 is reducible to R2. Whenwe do this, the reducibility is meant to be many-one.Note that this reducibility is a stronger notion than the ordinary re-ducibility among sets. Thus the following notion of "completeness" isstronger than the corresponding concept for sets.De�nition 3. Non-trivial P0n+1� relation R is called precomplete iffor every partial computable function ', there is a total computable functionF such that, '(n)RF (n) for all n 2 dom'.Ershov in [1] observed that, if ' is a universal unary partial computablefunction and R is the least equivalence relation containing graph of ',thenR is precomplete.Visser [2] pointed out that natural examples of precomplete equiva-lence relations occur in the context of �-calculus and Peano arithmetic.In particular, if m!Amis an e�ective numbering of the P0n�sentences ofany su�ciently strong axiomatizable �rst-order theory T, then the rela-tion �n=fhl;mi :`TAl $ Amg is precomplete. Let m!Bm be an e�ectivenumbering of all sentences of T and �T=fhl;mi :`TBl $Bmg. Howev-er Bernardi and Sorbi showed that �T is not precomplete, since negationa�ords a total recursive diagonal function for �T (see [3, p. 534]).Indices for a.e.r.If  is a partial computable function and n 2 !, then  n denotes partialcomputable function obtained by n iterated compositions of  . This can be14



A. A. Altaevade�ned precisely by induction on n:  0(x) = x and  n+1(x) =  ( n)(x),for any x 2 !.For every n 2 ! the set of allP0n-equivalence relations isP0n-computable.LetRe be arithmetical equivalence relation generated by the set f(x; y)jhx; yi2 W 0n�1e g, where W 0n�1e -enumerable set, computable with 0n�1 oracle.There are other procedures which can generate all a.e.r. fromP0n class.Following Ershov's [1] notations we de�ne a.e.r. as:De�nition 4. For each function f computable with 0n�1 oracle, de�nethe a.e.r. �f by x�fy 
 9n;m(fn(x) #= fm(x) #), x; y 2 !.Then �f is a.e.r. generated by the graph of f , if e is an index for f,thenwe also write �f as �e, and we call e the iterative P0n- index for �e.We note below that these two indexing systems are essentially the same.De�nition 5.Equivalence relations R;S are computably isomorphic(R �= S) if there exists a computable permutation H such that xRy i�H(x)SH(y).Proposition.There is a computable isomorphism � such that �e � R�(e).Proof. From the proof of Ershov's result follows, in fact it is not hardto see directly, that 91 � 1f(k; e) 0n�1-computable function: Re = �f(k;e)for any k; e 2 !. Similarly, there is a one-one computable function g(k; e)such that �e = Rg(k;e) for any k; e 2 !. With this padding property itis then routine to de�ne a computable isomorphism � by a back-and-forthconstruction as follows.Let �(0) = f(0; 0). If f(0; 0) = 0 then ��1(0) to be g(k; 0) wherek is the least such that g(k; 0) 6= 0. In general suppose both � and ��1are de�ned for i < k. If k 2 f��1(0); :::; ��1(k � 1)g then �(k) is alreadyde�ned. Otherwise let �(k) be f(m;k) where m is the least such thatf(k; n) =2 f�(0); :::; �(k � 1)g. Then in similar way de�ne ��1(n). Theresulting � is one-one,onto and computable. �Theorem 1. Any two precomplete P0n+1-equivalence relations are com-putably isomorphic.Proof. We follow Lachlan's ideas and notations from [4]. Let R;Sbe precomplete P0n+1- equivalence relations. Suppose given a simultaneousenumeration with 0n�1-oracle of R and S such that at each stage exactly onepair is enumerated in either R or S but not both and such that hi; ji withi 6= j is enumerated in R or S only if both hi; ii and hj; ji have already beenenumerated inR or S respectively. Let �; be partial computable functions.15



A. A. AltaevaThe �xed point theorem allows us to �nd unary computable functions F,Gsuch that F "makes ' total" with respect to R and G "makes  total" withrespect to S.We will e�ectively enumerate the graphs of permutation Hand unary partial computable functions '; . The �nite approximations toH;' and  which have been enumerated by the end of stage k are denotedHk; 'k and  k.In stage k we de�ne equivalence relations Rk j R on domHk andSk j S on rngHk such that Hk is an isomorphism between h
dRk; Rki andh
dSk; Ski. Each equivalence class of Rk(Sk) will be designated as left orright in such a way that C is a left class of Rk i� Hk(C) is a left class of Sk.If c is a left (right) class of Rk(Sk) a number c is associated with C suchthat F (c) 2 C(G(C) 2 C) and c =2 dom'k(dom k). At any stage of theconstruction c is associated with at most one left class of Rk and with atmost one right class of Sk.Let a0; a1; b0; b1 be chosen such that ha0; a1i =2 R and hb0; b1i =2 S.In Stage 0. Let everything be empty.Stage k+1. Let hi; pi be enumerated in R or S at stage k. If hi; pi 2Rk or Sk respectively, do nothing at stage k + 1. The other cases are:Case 1. i = p and hi; ii is enumerated in R. Let c be the least numbersuch that  k(c) is unde�ned, c is not associated with any right class of Skand j 2 G(c) =2 rngHk. Let Hk+1 = Hk S hi; ji; Rk+1 = Rk S hi; ii; Sk+1 =SkS hj; ji, and fjg be a right class of Sk+1 with associated number c.Leteverything else be the same as at the end of stage k.Case 2. i 6= p and hi; pi is enumerated in R. By choice of the enu-meration of R and S, hi; ii and hp; pi have already been enumerated in R.Therefore i; p 2 
dRk. Let C;D be the Rk-classes of i; p respectively. Let cbe the number associated with C or Hk(C) according as C is a left or rightclass. Let d be the number associated with D or Hk(D) according as D isa left or right class.Subcase 2.1. C and D are both right classes. Let Hk+1 = Hk, Rk+1 bethe least equivalence relation on 
dRk such that Rk+1 k Rk [ hi; pi, Sk+1 =Hk(Rk+1),  k+1 =  k [ hd;G(c)i, and �k+1 = �k. Let c be the numberassociated with the new equivalence class H(C [D) which is designated asa right class of Sk+1. The other classes are designated as at the end of stagek.(Note: Making  (d) = G(c) forces G(c)SG(d). Since G makes  totalfor S).Subcase 2.2. C and D are both left classes. Let �k+1(c) = a0and �k+1(d) = a1.( Since i; F (c) 2 C; p; F (d) 2 D and iRp, we obtain16



A. A. AltaevaF (c)RF (d). This contradicts F making � total for R. Thus we need go nofurther, because, use of the �xed point theorem prevents this happening)Subcase 2.3.C is a left class and D is a right class. Let Hk+1 = Hk,Rk+1 be the least equivalence relation on 
dRk such that Rk+1 k Rk [fhi; pig, Sk+1 = Hk(Rk+1);  k+1 =  k [ fhd;H(F (c))ig, and �k+1 = �k.Let c be the number associated with the new equivalence class C [ D ofRk+1 which is designated a left class. The other classes are designated as atthe end of stage k. ( Note: Making  (d) = H(F (c)) forces H(F (c)SG(d)so that H(C [D) will be included in an equivalence class of S).Subcase 2.4. C is a right class and D is left class. Let everything beas in the previous subcase c and d interchanged and C and D interchanged.Case 3. i = p and hi; ii is enumerated in S. Similar to Case 1.Case 4. i 6= p and hi; pi is enumerated in S. Similar to Case 2.This completes the construction. Cases 1 and 3 ensure thatdomH=rngH=!. Since Hk is 1-1 for all k, H is a recursive permutation.Let R! denotes SfRk : k < !g and S! denotes SfSk : k < !g. Cases 2 and4 ensure that R j R! and S j S!. Further in parenthetical remarks atthe end of the various subcases we explained why Rk+1 j R and Sk+1 j S.Finally, it is easy to check that the rules of association are true after stepk + 1. This completes the proof. �References[1] Yu.L. Ershov, Theory of numberings.|Nauka, Moscow, 1977 (in rus-sian).[2] A.Visser Numerations - calculus and arithmetic. / In : To H.B. Cur-ry: Essays on combinatory logic, lambda calculus and formalisn (J.P.Seldin, J.R. Hindley.) - Academic Press, New York - 1980. - p.259-284.[3] Bernardi C., Sorbi A. Classfying positive equivalence relations. //J.Symbolic Logic. - 1983, 48.- p.529-537.[4] A.H. Lachlan A note on positive equivalence relations//Zeitschr.f.math. Logic und Grundlagen d.Math., Bd. 33, p.43-46(1987). 17



Serikzhan BadaevSpectrum of minimal numberings for thefamilies of arithmetical sets1Serikzhan Badaeval-Farabi Kazakh National University, AlmatyAbstractWe give complete description of minimal arithmetical numberingsspectrums for the families of arithmetical sets.1 PreliminariesWe refer to [1{3] for the basic notions of the theory of algorithms andthe theory of numberings.Let us remind necessary de�nitions. A numbering � of a family A ofc.e. sets is called computable if the binary relation x 2 �y is c.e. In paper[4] of S. Goncharov and A. Sorbi, the notion of computable numbering wasgeneralized towards the families of arithmetical sets as follows. A numbering� of a family A � �0n+1 is called �0n+1{ computable if the binary relationx 2 �y is �0n+1{ predicate. If n = 0 then A consists of c.e. sets and�01{ computability of � coincides with the classical computability of �.A numbering � is called reducible to a numbering � (symbolically,� 6 �) if � = � � f for some computable function f . The two numberingsare called equivalent if they are reducible each to other. In what follows,"number of numberings" of some type is considered up to the equivalencerelation of numberings.Usually, generalized computable numberings are considered with re-spect to the classical reducibility. We also use a reducibility via0(i) {computable functions with i > 0 to construct �0n+2{ computable num-berings.1Partially supported by grant INTAS-RFBR-97-13918



Serikzhan BadaevProposition 1. For every n and every i � n, if a numbering � is�0n+1{ computable and � = � � f for some 0(i) {computable function f thenthe numbering � is �0n+1{ computable too.Proof. Really, for all x; y 2 !;y 2 �x() 9z(z = f(x) & y 2 �z)and therefore y 2 �x is �0n+1{ relation.A numbering � of a family A is called minimal if for every numbering� of the same family, � 6 � implies � 6 �. A numbering � of an in�-nite family A is called Friedberg numbering if each set of A has exactly one�{index. Let �� stands for the equivalence f(n;m) j �n = �mg. A num-bering � is called positive numbering (decidable numbering) if �� 2 �01(respectively, �� 2 �01). Each decidable numbering of an in�nite familyis equivalent to some Friedberg one [5]; both Friedberg and positive num-berings are minimal [6]. The class of computable decidable numberings isa proper subclass of the class of computable positive numberings and thelatter is a proper subclass of the class of computable minimal numberings[1]. At the end of 60-th Yu.L. Ershov formulated the problem of �ndinga possible number of computable minimal numberings for a given familyof c.e. sets. The problem of Ershov is still open, we refer to [7,8] for thefurther information on that problem.Our aim is to describe a possible number of �0n+2{ computable minimalnumberings of each type for any given family of �0n+2{ sets, n 2 !.It is well known that every �nite family has the least numbering underreducibility and that the least numbering is decidable [1]. Due to this, wecan consider only in�nite families of arithmetical sets.2 Number of Friedberg numberings.Friedberg numberings were introduced versus to G�odel numberings. In[9], R. Friedberg proved that the family of all unary partial computablefunctions and the family of all c.e. subsets of ! have such numberings.Friedberg numberings were studied by many famous specialists in the com-putability theory: A.Lachlan, M.B. Pour-El, H. Putnam, A.I. Mal'tsev,Yu.L. Ershov, S.S. Marchenkov, A.B. Khutoresky, M. Kumer and others.Besides the problem of �nding conditions for a family to have Friedbergnumberings, they studied the question on number of Friedberg numberings19



Serikzhan Badaevfor various families of c.e. sets. For a long time, it were known only thefamilies with either 0 or 1 or ! computable Friedberg numberings. At thebeginning of 80-th S.S. Goncharov [10] established close connection betweennumber of computable Friedberg numberings of the families of c.e. sets andalgorithmic dimension of computable models. Well-known Goncharov's the-orem shows an existence of the families of c.e. sets with exactly 2, exactly3, and so on computable Friedberg numberings [11].Thus, the set f0; 1; 2; : : : ; !g completely describes all possible numbersof computable Friedberg numberings in the classical case of the families ofc.e. sets. Naturally, the problem on number of �0n+2{ computable Friedbergnumberings of the families of �0n+2{ sets arises for an arbitrary n.First of all, let us consider a question on an existence of in�nite setswithout Friedberg numberings.Proposition 2. For every n, there exist in�nite �0n+1 { computable familiesof �0n+1{ sets without �0n+1{ computable Friedberg numberings.Proof. Let n be an arbitrary number and let A be a set of the class�0n+1 n�0n+1. For every x 2 !, let�x = 8<:fxg if x 2 A;A otherwise:Then � is numbering of the family A� f�x j x 2 !g. Since for all x; y;y 2 �x() x = y _ y 2 A&x 2 A;it follows that � is �0n+1{ computable numbering.If we would assume that A has a �0n+1{ computable Friedberg number-ing � with �0 = A then we obtainy 2 [x>0 �x() 9x(x > 0& y 2 �x)and, therefore, A = Sx>0 �x is �0n+1{ set. Contradiction. �An existence of the families of �0n+2{ sets which have in�nite number of�0n+2{ computable Friedberg numberings follows easily from the known factsof the theory of numberings. Let A be any computable family of c.e. setswhich has in�nitely many computable Friedberg numberings, for instance,let A be the family of all c.e. subsets of ! [12]. Obviously, such numberingsare �0n+2{ computable Friedberg numberings of A for all n too.20



Serikzhan BadaevWe obtained now that both 0 and ! can be realized as the numberof �0n+2{ computable Friedberg numberings of some family. Our goal is toprove that there is no other possibilities for the desired number.By proposition 1, if � : ! �! A is a �0n+2{ computable Friedbergnumbering and f is a 00 {computable permutation of ! then � = � � f is�0n+2{ computable numbering of A. Obviously, � is Friedberg numbering.Note that if f is not computable then � is not reducible to �.Let fk stands for k{th iteration of permutation f : f (0)(x) = x,f (k+1)(x) = f(f (k)(x)); x 2 !.Proposition 3. There exists 00 {computable permutation p such that p(k)is not computable for all k > 0.Proof. Let A be any in�nite set and 0 2 A, and let A = fg(0) <g(1) < g(2) : : : g. De�ne function h as follows: h(0) = g(0), h(n + 1) =h(n) + 2g(n + 1); n 2 !. For every n, let p(h(n + 1) � 1) = h(n) and letp(i) = i+ 1 for every i such that h(n) 6 i < h(n+ 1)� 1.It is easy to check that the following �ve statements are equivalent:(i) A is computable set,(ii) g is computable function,(iii) h is computable function,(iv) p(k) is computable permutation for all k 2 !,(v) p(k) is computable permutation for some k > 0.Now, by lettingA be the complement of any non-computable c.e. set weobtain 00 {computable permutation p satisfying the statement of proposition3.Corollary. If a family A � �0n+2 has at least one �0n+2{ computable Fried-berg numbering then A has in�nite number of such numberings.Proof. Let � be a �0n+2{ computable Friedberg numbering of A.Let permutation p satisfy conclusion of proposition 3. The numberings� � p(k); k 2 !; are pairwise non-equivalent, and each of them is �0n+2{computable Friedberg numbering of A.Thus, for every n and for every in�nite family of �0n+2{ sets, the numberof �0n+2{ computable Friedberg numberings is either 0 or !.21



Serikzhan BadaevTheorem 1. For every n, a family A � �0n+1 has �0n+1{ computableFriedberg numbering if and only if for some �0n+1{ computable numbering �of A, the set F� � fx j (8y < x)(�y 6= �x)g is 0(n)computably enumerable.Proof. Necessity is evident since if A has �0n+1{ computable Friedbergnumbering � then F� = !.Su�ciency. Let F� be 0(n) {computably enumerable set for some�0n+1{ computable numbering � of A. Let f be any injective 0(n) {com-putable function with rng(f) = F�. De�ne numbering � of A as � = � � f .Proposition 1 implies that � is �0n+1{ computable Friedberg numbering.�Remark 1. Theorem 1 gives also a criterion for in�nite �0n+2{ computablefamilyA to have �0n+2{ computable positive numbering. This follows imme-diately from a fact of S.S. Goncharov and A. Sorbi [4]. They had shown thatif an in�nite family of �0n+2{ sets has �0n+2{ computable positive numberingthen it has �0n+2{ computable Friedberg numbering.3 Number of positive numberings.Likewise to Friedberg numberings, positive numberings were also stud-ied by many authors (A.I. Mal'tsev, Yu.L. Ershov, S.S. Goncharov, V.V.V'jugin, S.A. Badaev, S.S. Marchenkov, A.B. Khutoresky, V.L. Selivanovand others). There are known a lot of structural conditions for a family ofc.e. sets to have computable positive numberings (see [1], [7] for references).Note that "identifying" the sets is a typical tool to construct com-putable positive numberings. For illustration the identifying procedure, letsus consider the family of all singletons and let �n� fng; n 2 !; and choosea non-computable c.e. set A. It we "identify" all the sets with �{indicesfrom A then we obtain computable positive numbering�n = 8<:�n if n 2 A;A otherwiseof the family f�n j n 2 !g without computable Friedberg numberings.Note that the identifying procedure is often used also to construct non-positive numberings too. Indeed, we used it in the proof of proposition2. 22



Serikzhan BadaevIt seems, that an existence of computable positive numberings is notstrongly connected with the structural properties of the families. There isno any structural conditions both necessary and su�cient for the families ofc.e. sets to have computable positive numberings. Due to this, S.A. Badaev[13] suggested some computational approach to �nd criterion of positivecomputability. Essentially, this criterion describes conditions under whichthe sets of a family could be identi�ed. Besides, it could be easily generalizedto the case of the families of arithmetical sets.Theorem 2. For every n, a family A � �0n+1 has �0n+1{ computablepositive numbering if and only if for some �0n+1{ computable numbering �of A, equivalence �� is 0(n+1) {computable.Proof is direct relativization of the proof given in [13] for the classical casen = 0.Remark 2. It does not seem realistic to search for the structural conditionsof existence of �0n+2{ computable positive numberings since proposition 2gives us an example of the e�ectively discrete family (see [1] for the notionof e�ectively discreteness) without any �0n+2{ computable positive number-ings.Proposition 4. It an in�nite family has a �0n+2{ computable Friedbergnumbering then it has in�nitely many �0n+2{ computable positive but notdecidable numberings.Proposition 4 as well as theorem 3 below are proved in the joint paper[14] of S.A. Badaev and S.S. Goncharov.Thus for every in�nite family of �0n+2{ sets, the number of �0n+2{ com-putable positive but not decidable numberings is either 0 or !. Remindthat in the classical case the set of possible numbers of computable posi-tive numberings is f0; 1; 2; : : : ; !g. Likewise to Friedberg numberings, themost complicated cases of computable families of c.e. sets with 2; 3; 4; : : :computable positive numberings were found by S.S. Goncharov (see [15]).4 Spectrum of minimal numberings.Theorem 3[14]. Every in�nite �0n+2{ computable family A � �0n+2 hasin�nite number of �0n+2{ computable minimal but not positive numberings.Let A � �0n+2 be a �0n+2{ computable family of �0n+2{ sets. Let� be number of �0n{ computable decidable numberings of A;� be number of �0n{ computable positive but not decidable numberings of23



Serikzhan BadaevA;� be number of �0n{ computable minimal but not positive numberings of A:The triple h�; �; �i is called by spectrum of minimal numberings of A.Theorem 4. Let A be �0n+2{ computable family. If A is �nite then thespectrum of minimal numberings of A is equal to h1; 0; 0i otherwise thespectrum is equal to either h!;!; !i or h0; 0; !i.References[1] Yu.L. Ershov, Theory of numberings.|Nauka, Moscow, 1977 (Rus-sian).[2] A.I. Mal'tsev, Algorithms and recursive functions,|Wolters-Noordo�Publishing, Groningen, 1970.[3] H. Rogers Theory of recursive function and e�ective computability.|McGraw-Hill Book Company, New York, 1967.[4] S.S. Goncharov, A. Sorbi, Generalised computable numerations andnon-trival Rogers semilattices. Algebra and Logic, 1997, vol. 36, n.4, pp. 359{369.[5] A.I. Mal'tsev,Constructible algebras. I,Uspekhi Mat. Nauk, 1961, v.16,n.3, pp.3{60.[6] A.I. Mal'tsev, Positive and negative enumerations. Soviet Math. Dokl.,v.6 (1965), pp. 75{77.[7] S.A. Badaev, S.S. Goncharov, On computable minimal enumerations.Algebra. Proceedings of the Third International Conference on Algebra,Dedicated to the Memory of M.I.Kargopolov. Krasnoyarsk, August 23{28, 1993. { Walter de Gruyter, Berlin { New York, 1995, p.21{32.[8] S.A. Badaev , S.S. Goncharov, Theory of numberings: open problems.In Computability Theory and its Applications, P. Cholak, S. Lempp,M. Lerman and R. Shore eds.|Contemporary Mathematics, AmericanMathematical Society, 2000, vol. 257, pp. 23-38, Providence[9] R.F. Fridberg, Three theorems on recursive function. J. Symbolic Logic,1958, v. 23, n. 3, 309{316. 24



Serikzhan Badaev[10] S.S. Goncharov, On the problem of number of non-self-equivalent con-structivizations. Algebra and Logic, 1980, v.19, n.6, pp.401{414.[11] S.S. Goncharov, Computable univalent numberings. Algebra and Logic,1980, vol.19, n. 5, pp. 325{356.[12] A.B. Khutoretsky, On reducibility of computable numberings. Algebraand Logic, 1969, vol. 8, n. 2, pp. 251{264.[13] S.A. Badaev, On positive enumerations. Siberian Math. J., v.18,n.3 (1977), 343-352.[14] S.A. Badaev, S.S. Goncharov, On Rogers semilattices of families ofarithmetical sets. Algebra and Logic, 2001, v.40, n.5, pp. 283{291.[15] S.S. Goncharov, Positive computable enumerations. Russian Acad. Sci.Dokl. Math., 1994, v.48, n.2, pp.268{270.
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Yerzhan BaisalovOn Erd�os {Woods ConjectureYerzhan Baisalov (yerzhan baisal@hotmail.com)al-Farabi Kazakh National University, AlmatyTwo sequences of positive integers a; a+1; :::; a+k and b, b+1; :::; b+kare called Erd�os{Woods pair if for each 0 � i � k the integers a + i andb+ i have the same prime factors; in this case we say also that the pair havea depth k.The following is known as Erd�os {Woods Conjecture: for some positiveinteger k there is no any Erd�os {Woods pair of depth k.Woods proved that this purely number-theoretic conjecture is closelyrelated to some questions of the formal arithmetics and its fragments.I will discuss on this conjecture.
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John CaseA Computability-TheoreticLearning Theory SamplerJohn Case (case@cis.udel.edu)University of Delaware (USA)This talk is about algorithmic learning (or inference) of programs forcomputational objects | from data about those objects. It provides asampler of results in three settings (together with a list of other settingsthat might have been presented). The three settings:1. For learning or inferring programs for computable functions, presentedare some delicate tradeo�s between the generality of an algorithmic learningdevice and the quality of the successful programs it converges to. There arepreliminary results to the e�ect that, with small increases in generalityof the learning device, the computational complexity of some successfullylearned programs is provably unalterably suboptimal. There are also resultsin which the complexity of successfully learned programs is optimal and thelearning device is quite general, but some of those optimal, learned programsare provably unalterably information de�cient | in fact, de�cient as tosafe, algorithmic extractability of even the fact that they are approximatelyoptimal. For these results, the safe, algorithmic methods of informationextraction will be by proofs in arbitrary, true, computably axiomatizableextensions of Peano Arithmetic.2. A number of child cognitive development phenomena follow the U-shaped form of: �rst learning, then unlearning, and subsequent relearning.One can ask if U-shaped learning is an evolutionary accident or essential.For learning grammars (or r.e. indices) from positive data for r.e. languages,there are classes which are learnable with syntactic convergence in the limitto successful grammars but not without U-shaped learning. In this formalsetting, W-shaped learning is provably not essential.27



John Case3. Closed computable games model reactive process-control problems. Clo-sed implies that, if Player I does not lose at any �nite point in the playingof the game, Player I does not lose (in the limit). Examples include discreteregulation of room temperature with Player I as thermostat. A master of aclosed computable game plays an algorithmic winning strategy for Player I.Presented are results about advantages for Player I watching the behaviors(not programs) of masters. It can be shown that: selected masters enablelearning to win more process-control games than arbitrary masters; for eachkind of master, it's better to learn ones own winning strategy instead of try-ing to copy the master's; and, for each kind of master, one can learn moreprocess control games with m + 1 than with m masters. Discussed will bethe connection to behavior cloning in applied machine learning.
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John CaseMachine Learning for a GenomicsAnalogy ProblemJohn Case (case@cis.udel.edu)University of Delaware (USA)This talk will introduce machine learning in bioinformatics by meansof the example of one empirically-based and preliminary study.Orthologs are genomic strings evolutionarily derived from a commonancestor and having the same biological function. Ortholog detection is bi-ologically interesting since it indirectly informs us about protein divergencethrough evolution, and, in our particular study, has potentially importantagricultural applications.In our context (to be explained in the talk), we indicate how we arrivedat particular (�xed size) attribute vectors to represent genomic string dataand show how we conceive ortholog detection as an analogy problem. Theattributes are based on both the typical string similarity measures frombioinformatics and on a large number of di�erential measures or metrics,many new to bioinformatics. Many of these di�erential metrics are basedon evolutionary considerations, both theoretical and empirically observed,in some cases observed by the authors.Our study employed Quinlan's machine learning algorithm called C5.0.It 1. �ts a sequence of decision trees to known classi�cation data by meansof an information-theoretic heuristic, where each tree beyond the �rst isconcentrated on correcting the errors of its predecessor; and 2. employingso-called boosting to make the �nal classi�cation decisions by weighted ma-jority vote of the trees, where higher voting weights are assigned to treeswith fewer errors. We applied C5.0 to sets of known ortholog classi�cationdata and tried it out on larger sets of such data.The results we will report are encouraging for complete cDNA strings,and we describe our hopes for future extensions of this study.This is joint work with Ming Ouyang and Joan Burnside.29



Vyacheslav DobritsaOn the Limit Constructible Models2Vyacheslav Dobritsa (dobritsa@mail.ru)Abai Almaty University (Kazakhstan)AbstractWe suggest to consider a generalization of the notion of com-putable model by letting the predicates and the functions of a count-able model be computable with respect to zero-prime oracle. We callsuch models limit constructible models and study their autostabilityas well as generalized autostability (automorphism representable byzero-prime computable functions).Let M = hM ;�i be an at most countable model of a �nite or enumer-able signature. If there exists a numbering � : N ! M of the universe Mof the modelM such that:1. 8 f 2 � 9 f� 2 �02 :8x1; :::; xn 2 N �(f�(x1; :::; xn)) = f(�(x1); :::; �(xn));2. 8P 2 � 9P � 2 �02 :8x1; :::; xm 2 N P �(x1; :::; xm),M � P (�(x1); :::; �(xm));where f is an n-ary function, P is an m-ary predicate, then the model Mis called l-constructible (limit-constructible).In this case the numbering � is called l-constructive (limit-constructive)and the pair (M; �) is called l-constructive (limit-constructive) model. It isclear that each constructive model, in the sense of A.I.Mal'tsev de�nition,is l-constructive.Theorem 1 There exists an l-constructible, but not constructible algebraicsystem.2Partially supported by grant INTAS-00-49930



Vyacheslav DobritsaTheorem 2 The direct product of l-constructible models is an l-construct-ible model.It is natural to consider the limit-reducibility of l-constructive enumer-ations for l-constructive algebraic systems, which had been introduced byS.S. Goncharov for constructive enumerations of models. Let (M; �) and(M; �) be l-constructive models. We say that the l-constructive number-ing � is l-reducible (limit-reducible) to the numbering �, if there exists anisomorphism ' :M!M and the �02-function h(x) such that the equality'(�(x)) = �(h(x)) holds. We denote the limit-reducibility by �2.Two l-constructive numberings � and � of the same model are calledl-equivalent if they are limit-reducible to each other. It is denoted by �2.ModelM is called l-stable (limit-stable) if all its l-constructive numberingsare pairwise l-equivalent.Theorem 3 There exists a limit-constructible, but not limit-stable model.Theorem 4 There exists a limit-stable, but not autostable constructivemodel.Denote by ��1(M0) the set of all �-numbers of elements of submodelM0 �M, where � is an l-constructive numbering of modelM.Theorem 5 If M0 is a submodel of model M, � is a limit-constructivenumbering of M and the set ��1(M0) 2 �02, then M0 is a limit-construct-ible model.References1. H. Rogers, Theory of Recursive Functions and E�ective Computability,McGraw Hill, 1967.2. A.I. Mal'tsev, Constructive Algebras I, Usp.Mat.Nauk, v. 16, 3, 1961,pp. 3 { 60 (Russian).3. S.S. Goncharov, The Limit-Equivalent Constructivizations, in Mathe-matical Logics and Theory of Algorithms. Proc. of Inst.of Math. SO ANSSSR, v.2, Novosibirsk, 1982, pp. 4 { 12 (Russian).4. S.S. Goncharov, Yu.L. Ershov, Constructive Models, Siberian School ofAlgebra and Logic, Novosibirsk, 1999.31



Ekaterina FokinaOn Degrees of UncountablyCategorical Theories withComputable ModelsEkaterina Fokina (e fokina@ngs.ru)Novosibirsk State University (Russia)One of the themes of computable model theory is concerned with thefollowing two questions. Let T be a �rst order consistent theory. Does thereexist a computable model of T ? If T has a computable model then what isthe Turing degree of T ? It's well known that if T is decidable then T has adecidable model. On the other hand, if theory T has a computable modelthen T is computable in 0!. Goncharov and Khoussainov proved that forany natural number n � 1, there exist @1 -categorical computable modelswith the theories Turing equivalent to 0n. We use a modi�ed constructionto obtain the following result.Any arithmetical Turing degree can be realized as the computability-theoreticcomplexity of @1 -categorical theory with computable model.
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Sergey GoncharovComputability and autostabilitySergey Goncharov (gonchar@math.nsc.ru)Novosibirsk State University (Russia)We intend to talk about the autostability problem of computable mod-els and de�nable relations on computable models. The classi�cation prob-lem of computable models has deep interrelations with the problem of com-plexity of de�nable relations. This approach is closely connected with achoice of a language in which a suitable description of computable number-ings is considered. We will also discuss some open questions on complexityof the theories with recursive models.
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Iskander KalimullinThe jump operator is de�nable in theenumeration degreesIskander Kalimullin (Iskander.Kalimullin@ksu.ru)University of Kazan (Russia)We show that the jump operator in the enumeration degrees is order-theoretic de�nable in the enumeration degrees. This solves a question posedby S. B. Cooper.Namely, for all e-degrees u and x the following is equivalent: 1) x � u0;2) x � u and for all e-degrees a > u, b > u and c > u if each of pairs (a; b)and (a; c) is u-e-ideal, then b [ x = c [ x.(We say that a pair of e-degrees (a; b) is u-e-ideal i� every e-degreelz � u is the greatest lower bound of e-degrees a [ z and b [ z.)Thus, the class of e-degrees above u0 is de�nable by an AEA-formula(in the language of ordering).Furthermore, we show that for all e-degrees u and x the following isequivalent: 1) x � u0 2) there exists a triple of e-degrees a > u, b > uand c > u, such that each of pairs (a; b), (a; c), (b; c) is u-e-ideal, andx � a [ b [ c.Thus, the class of e-degrees below u0 is de�nable by an EAE-formula(in the language of ordering).Hence, the map u �! u0 is de�nable in the e-degrees by a formulawhich is a conjunction of an AEA-formula and an EAE-formula. Also,by Friedberg Completeness Criterion we can de�ne the class of all totale-degrees above 0' as the image of the jump operator.
34



Julia KnightIsomorphism problemsJulia Knight (Julia.F.Knight.1@nd.edu)University of Notre Dame (USA)Let K be a class of structures closed under isomorphism. In a meetingin Kazan in 1997, Goncharov gave a talk on computable structure theory. Hestated a large number of problems calling for the classi�cation of computablemembers of various classes. At the end of the talk, Shore asked what wouldconvince Goncharov to give up. In model theory, there are \many models"theorems. In descriptive set theory, there are Borel completeness theorems.Goncharov and I considered di�erent approaches to classi�cation and non-classi�cation for computable structures, eventually settling on one as mostproductive.Let I(K) be the set of computable indices for members of K. LetE(K) be the set of pairs (a; b) such that a; b 2 I(K), and the structureswith indices a and b are isomorphic. Assuming that I(K) is �11, E(K)is always �11. If E(K) is not �11, then there cannot be simple invariantsdistinguishing among computable members ofK. (It follows that there is nocomputable bound on Scott ranks of computable members of K, and thereis no hyperarithmetical Friedberg enumeration of computable members ofK, up to isomorphism.)It is well-known that if K is the class of linear orderings, Booleanalgebras, or Abelian p-groups, then E(K) is �11 complete. (Proofs may beextracted from a 1989 paper of Friedman and Stanley, but the results maybe older.) Calvert has shown that for the class K of undirected graphs,�elds of a �xed characteristic, or real-closed �elds, E(K) is �11 complete.For the class K of vector spaces over a �xed in�nite computable �eld, oralgebraically closed �elds of a �xed characteristic, E(K) is �03 complete.35



B.Sh. KulpeshovOn some properties of @0-categoricalweakly o-minimal structuresBeibut KulpeshovAbstractWe prove some properties of @0-categorical weakly o-minimalstructures. First we present a criterion for goodness of each self-de�nable subset of an @0-categorical weakly o-minimal structureof convexity rank 1 (Theorem 13). Further we give a descrip-tion of all @0-categorical binary weakly o-minimal theories ofconvexity rank 1 which generalizes A. Pillay and Ch. Steinhornresult for @0-categorical o-minimal theories [1] (Theorem 16).Lastly, at the end of the paper we present a criterion for holdingthe Exchange Principle for algebraic closure in an @0-categoricalbinary weakly o-minimal theory (Theorem 19).Let L be a countable �rst-order language. Everywhere in this paper weconsider L-structures and assume that L contains a binary relation symbol< that is interpreted as a linear ordering in these structures. For arbitrarysubsets A;B of a structureM we write A < B if a < b whenever a 2 A andb 2 B: If A �M and x 2M then we write A < x if A < fxg: For any sub-set A of a structure M A+ := fb 2M jA < bg and A� := fb 2M jb < Ag:For an arbitrary complete type p we denote by p(M) the set of realizationsof the type p in M:An open interval I in a structure M is a parametrically de�nable subset ofM of the form I = fc 2M :M j= a < c < bg for some a; b 2M [f�1;1gwith a < b: Similarly, we may de�ne closed, half open-half closed, etc., in-tervals in M; so that for instance a point of M is itself a (trivial) closedinterval. A subset A of M is convex if a < c < b ^ a; b 2 A) c 2 A: Thus,a set is convex if it is an interval whose endpoints are now allowed to lie inthe order-completion M of M:This paper concerns the notion of weak o-minimality �rst introduced by36



B.Sh. KulpeshovM. Dickmann in [2]. A weakly o-minimal structure is linearly ordered struc-ture M = hM;=; <; : : : i such that any de�nable (with parameters) subsetofM is a �nite union of convex sets inM: Recall that such a structureM issaid to be o-minimal if every de�nable (with parameters) subset of M is a�nite union of intervals inM: Thus, weak o-minimality is a generalization ofo-minimality. A. Pillay and Ch. Steinhorn have described all @0{categoricalo-minimal theories [1]. @0{categorical weakly o-minimal theories were in-vestigated independently in [3] by using the notions of ultrametric and C-relation. Here we investigate @0{categorical weakly o-minimal theories byusing Baizhanov's technique which he has elaborated for classi�cation ofone-types in weakly o-minimal theories [4], [5].De�nition 1 Let M be a linearly ordered structure, A;B �M; n 2 !:1. We will say A is n-indiscernible over B in M if for any properlyordered n{tuples �a; �b 2 An tp(�a=B) = tp(�b=B):2. We will say A is indiscernible over B in M if for any n 2 ! A isn{indiscernible over B in M:In the following de�nitions M is a weakly o-minimal structure,A; B �M , M is jAj+-saturated, p; q 2 S1(A) are non-algebraic.De�nition 2 [5] We will say p is non-solitary if there are an A-de�nableformula H(x; y) and �; 
1; 
2 2 p(M) such that H(M;�) 6= ; and 
1 <H(M;�) < 
2:Convexity rank of a formula with one free variable was introduced in [6].In particular, a theory has convexity rank 1 if there is no de�nable (withparameters) equivalence relation with in�nitely many convex in�nite classes.It is obvious an o-minimal theory has convexity rank 1.Theorem 3 [7] Let T be an @0{categorical weakly o-minimal theory. Thenthe following conditions are equivalent:(1) T has convexity rank 1.(2) For anyM j= T for any A �M every non-algebraic type p 2 S1(A)is solitary.(3) For any M j= T for any A � M for any non-algebraic typep 2 S1(A) p(M) is indiscernible over A:37



B.Sh. KulpeshovCorollary 4 Let T be an @0{categorical o-minimal theory. Then for anyM j= T for any A � M for any non-algebraic type p 2 S1(A) p(M) isindiscernible over A:De�nition 5 [5] Let M be jA [Bj+{saturated. By a neighbourhood of Bin the type p we shall call the following set:Vp(B) := f
 2M j there is a formula H(x;�b; �a);�b 2 B; �a 2 A;so that 
 2 H(M;�b; �a) and there are 
1; 
2 2 p(M) such that
1 < H(M;�b; �a) < 
2g:De�nition 6 [5] Let M be jAj+{saturated. We will say p is almost ortho-gonal to q (p ?a q) if there is � 2 p(M) such that Vp(�) = ;:De�nition 7 [5] Let M be jAj+{saturated. We will say p is weakly or-thogonal to q (p ?w q) if for any A{de�nable formula H(x; y) for any� 2 p(M) the following holds:[ H(M;�) \ q(M) 6= ; ) q(M) � H(M;�) ]De�nition 8 [5] We will say a weakly o-minimal theory T is almost o-mi-nimal if for any M j= T for any A � M for any non-algebraic typesp; q 2 S1(A) the following holds:p ?a q , p ?w q:Fact 9 Any o-minimal theory is almost o-minimal.Earlier we had proved a theorem which describes all @0{categorical almosto-minimal theories of convexity rank 1:Theorem 10 [8] Let T be an @0{categorical almost o-minimal theory ofconvexity rank 1, M j= T; jM j = @0: Then there exist(i) a �nite C = fc0; : : : ; cng � M (M [ f�1;+1g; if M does not havea �rst or last element), consisting of all of the ;{de�nable elements in M(with the possible exceptions of �1;+1); such that M j= ci < cj for alli < j � n and for each j 2 f1; : : : ; ng either M j= :(9x)cj�1 < x <cj or Ij = f x 2 M : M j= cj�1 < x < cj g is a dense linear orderwithout endpoints and there are kj 2 ! and pj1; : : : ; pjkj 2 S1(;) so that38



B.Sh. KulpeshovIj = Skjs=1 pjs(M);(ii) an equivalence relation E � (fs : 1 � s � kg)2; where fps j s � k <!g is an arbitrary enumeration of all non-algebraic 1-types over ;, suchthat for each (i; j) 2 E there is a unique ;{de�nable monotone bijectionfi;j : pi(M) ! pj(M) so that fi;i = idpi(M) and fj;k � fi;j = fi;k for all(i; j); (j; k) 2 E;so that T admits elimination of quanti�ers down to the languagef=; <g [ fci : i � ng [ fUs : s � kg [ ff i;j : (i; j) 2 Eg;where the ci are interpreted in M by ci; U s by ps(M), f i;j by fi;j for (i; j) 2E: In particular, T is binary.Moreover to any ordering with distinguished elements as in (i) and anysuitable equivalence relation E as in (ii), there corresponds an @0{categori-cal almost o-minimal theory of convexity rank 1 as above.From the theorem follows that almost o-minimal theories of convexity rank1 essentially don't di�er from o-minimal theories in the @0{categorical con-text, i.e. are "almost" o-minimal.De�nition 11 [9] Let A � M where M is an arbitrary �rst-order struc-ture. We say that A is self-de�nable if A is de�nable inM with parameterswhich are elements of A.De�nition 12 [9] Let M be an @0-categorical structure. We call a self-de�nable subset A ofM good if for each n < ! every n-type overA realizedin M is isolated.Now we present a criterion for goodness of each self-de�nable subset of an@0-categorical weakly o-minimal theory of convexity rank 1:Theorem 13 Let T be an @0-categorical weakly o-minimal theory of con-vexity rank 1. Then the following conditions are equivalent:(1) T is almost o-minimal(2) For any model M of T each self-de�nable subset A �M is good.Proof of Theorem 13.(1) ) (2). It follows by Theorem 10.(2)) (1). Suppose that T is not almost o-minimal. Then there are a �niteset A � M and non-algebraic 1-types p1; p2 2 S1(A) such that p1 6?w p2,39



B.Sh. Kulpeshovp1 ?a p2. Let A1 := dcl(A) [ p1(M). It is obvious that A1 is self-de�nable.Consider an arbitrary element b 2 p2(M). It can understand that tp(b=A1)is not isolated. �Corollary 14 Let T be @0-categorical o-minimal theory. Then for anymodel M of T each self-de�nable subset A �M is good.Observe that in Theorem 13 the hypothesis "a theory has convexity rank1" is essential. Indeed, consider the following example:Example 15 Let M = hM;=; <; U11 ; U12 ; E2; R2i where hM;<i has an or-der type Q. The universeM is the disjoint union of U1 and U2 with a < bwhenever a 2 U1, b 2 U2, and each predicate Ui hasn't endpoints in M .E is an equivalence relation which partitions U1(M) on in�nite convexclasses so that the induced order on E-classes is a dense order withoutendpoints. To de�ne R, identify Ui with Q for each i � 2, and for anya 2 U1 and b 2 U2 we have R(a; b) , b < a+p2 .It is obvious that Th(M) admits elimination of quanti�es. It can prove thatTh(M) is an @0-categorical almost o-minimal theory of convexity rank 2.Let A := U1(M). It is obvious that A is self-de�nable. Consider an arbi-trary element b 2 U2(M). It can understand that tp(b=A) is not isolated.Observe that @0-categorical binary weakly o-minimal theories of convex-ity rank 1 aren't almost o-minimal in general. Nevertheless we can de-scribe these theories. The following theorem completely characterizes @0{categorical weakly o-minimal theories of convexity rank 1 that are binary.Theorem 16 Let T be an @0{categorical binary weakly o-minimal theoryof convexity rank 1, M j= T; jM j = @0: Then there exist(i) a �nite C = fc0; : : : ; cng � M (M [ f�1;+1g; if M does not havea �rst or last element), consisting of all of the ;{de�nable elements in M(with the possible exceptions of �1;+1); such that M j= ci < cj for alli < j � n and for each j 2 f1; : : : ; ng either M j= :(9x)cj�1 < x <cj or Ij = f x 2 M : M j= cj�1 < x < cj g is a dense linear orderwithout endpoints and there are kj 2 ! and pj1; : : : ; pjkj 2 S1(;) so thatIj = Skjs=1 pjs(M);(ii) equivalence relations E1; E2 � (fs : 1 � s � kg)2; where fps j s � k <!g is an arbitrary enumeration of all non-algebraic 1-types over ;, such that40



B.Sh. Kulpeshov� for each (i; j) 2 E1 there is a unique ;{de�nable monotonic bijectionfi;j : pi(M) ! pj(M) so that fi;i = idpi(M) and fj;k � fi;j = fi;k for all(i; j); (j; k) 2 E1;� for each (i; j) 2 E2 there is a unique ;{de�nable formula Ri;j(x; y)such that for any a 2 pi(M) Ri;j(a;M) � pj(M), Ri;j(a;M)� =pj(M)�, Ri;j(a;M) is convex and open and gi;j(x) := sup Ri;j(x;M)is strictly monotonic on pi(M)� for each (i; j) 2 E1 we have (i; j) 2 E2 and Ri;j(x; y) � y < fi;j(x)so that T admits elimination of quanti�ers down to the language f=; <gSfci : i � ngSfU s : s � kgSff i;j : (i; j) 2 E1gSfRi;j : (i; j) 2 E2 n E1g;where the ci are interpreted in M by ci; Us by ps(M); f i;j by fi;j for(i; j) 2 E1, Ri;j by Ri;j for (i; j) 2 E2 n E1.Moreover to any ordering with distinguished elements as in (i) and anysuitable equivalence relations E1; E2 as in (ii), there corresponds an @0{categorical binary weakly o-minimal theory of convexity rank 1 as above.De�nition 17 Let M be a linearly ordered structure, A �M , p 2 S1(A):Convexity rank of 1-type p is in�mum of the set fRC(�(x)j�(x) 2 pg andit is denoted by RC(p); i.e.RC(p) := inffRC(�(x)j�(x) 2 pgThe Exchange Principle for algebraic closure holds in o-minimal case [1].However it fails for weakly o-minimal case in general:Example 18 [10] Let M be a structure hM;<;P 1; f1i. Here P is a unarypredicate and f is a unary function with Dom(f) = :P;Ran(f) = P (so,formally, M is 2-sorted). The universe M is the disjoint union of P and:P , with x < y whenever x 2 P and y 2 :P . To de�ne f , identify Pwith Q (where Q is the ordering of the rational numbers) and :P withQ�Q (ordered lexicographically), and for any m;n 2 Q let f(m;n) = n:It is obvious that M is an @0-categorical binary weakly o-minimal structureand the Exchange Principle for algebraic closure does not hold. Let p(x) :=f:Pg; q(x) := fPg. It is obvious that p; q 2 S1(;), f is ;-de�nable mappingp(M) on q(M), RC(p) = 2; RC(q) = 1:41



B.Sh. KulpeshovTheorem 19 Let T be @0-categorical binary weakly o-minimal theory,M j=T: Then the following conditions are equivalent:(1) The Exchange Principle for algebraic closure holds in M:(2) For any p; q 2 S1(;) whenever there is an ;-de�nable mapping p(M)on q(M) we have RC(p) = RC(q):References[1] A. Pillay, Ch. Steinhorn, De�nable sets in ordered structures I, Trans-actions of the American Mathematical Society, 295 (1986), pp.565{592.[2] M.A. Dickmann, Elimination of quanti�ers for ordered valuation rings,Proceedings of the 3rd Easter Model Theory Conference atGross Koris, Berlin, 1985.[3] B. Herwig, H.D. Macpherson, G. Martin, A. Nurtazin, J.K. Truss,On @0{categorical weakly o-minimal structures, Annals of Pure andApplied Logic, 101 (2000), pp. 65{93.[4] B.S. Baizhanov, "Orthogonality of one-types in weakly o-minimal theo-ries", Algebra and Model Theory II, (A.G. Pinus and K.N. Pono-maryov, editors), Novosibirsk State Technical University, 1999, pp. 3{28.[5] B.S. Baizhanov, Expansion of a model of a weakly o-minimal theory bya family of unary predicates, The Journal of Symbolic Logic, 66(2001), pp. 1382{1414.[6] B.Sh. Kulpeshov, Weakly o-minimal structures and some of their pro-perties, The Journal of Symbolic Logic, 63 (1998), pp. 1511{1528.[7] B.Sh. Kulpeshov, Some properties of @0{categorical weakly o-minimaltheories, Algebra and Model Theory, (A.G. Pinus and K.N. Pono-maryov, editors), Novosibirsk, 1997, pp. 78{98.[8] B.Sh. Kulpeshov, On @0{categorical almost o-minimal theories of con-vexity rank 1, Proceedings of Informatics and Control ProblemsInstitute, (M. Aidarkhanov and B. Baizhanov, editors), Almaty, 1998,pp. 67{73. 42
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V.A. Romankov, N.G. KhisamievOn constructible matrix or orderedgroupsVitalii Romankov,3 (romankov@math.omsu.omskreg.ru),Nazif Khisamiev (hisamiev@mail.ru)AbstractWe study the interrelations between constructivizations of a com-mutative associative ringK with unit and the matrix groupsGLn(K),SLn(K) and UTn(K). We also study constructible ordered groupsin the signature of ordered groups.Introduction.In [1] A.I. Mal'cev initiated studying of constructible groups with de-scribing of all constructible abelian torsion free groups of rank 1: He posedgeneral problem: "What constructible numerations are admitted by somekinds of abstract groups?". Yu.L. Ershov proved in [2] that every construc-tivization of a nilpotent torsion free group G can be uniquely extended toits Q-completion GQ: Some other results about constructible groups canbe found in the papers [3-6]. The foundation of the theory of constructiblemodels can be found in the monographs [7] by Yu.L. Ershov, and in [8] byYu.L. Ershov and S.S. Goncharov. About facts in the group theory see [9].We are studying the relations between constructivizations of a commu-tative associative ringK with unit and the matrix groups GLn(K); SLn(K)¨ UTn(K): Also we are studying constructible ordered groups in the signa-ture of ordered groups.3Supported by RFFI, grant 01.01.00674.44



V.A. Romankov, N.G. Khisamievx1 ON CONSTRUCTIBLE MATRIX GROUPSLet K be a commutative associative ring with unit. As usual GLn(K)denotes the group of all invertible, (resp. SLn(K) { special, UTn(K) {unitriangular) matrix of size n over K:Let �rstly G = UTn(K): As Ci (i = 0; 1; :::) we denote i-th member ofthe central series in G : C0 = 1, C1 is the center of G, Ci+1 is the preimagein G of the center of G=Ci (i = 0; 1; :::): It is well known (see [9]), that Ciconsists of all matrices, that have n�i�1 (i = 1; 2; :::; n�1) zero diagonalsfrom the main one. Thus Cn�1 = G:Proposition 1 If the group G = UTn(K) is constructible, then subgroupCi is computable for every i = 0; : : : ; n � 1.Note that a group UT2(K) is isomorphic to the additive group of K:It follows that UT2(K) is constructible i� the additive group of K is con-structible. Thus in the general case the constructibility of UT2(K) does notimply constructibility of K: In [11] N.G. Khisamiev proved that the �eld ofall primitive recursive real numbers is not constructible. The additive groupin this case is complete torsion free abelian group. Hence it is constructible.Theorem 1 The group G = UTn(K) n � 3 over commutative associativering K with unit is constructible i� the ring K is constructible.In the proof we used the well known Mal'cev's relation between groupsand rings from [10].Note 1 Theorem 1 is true even in the case when K is not commutative.Theorem 2 The group G = GLn(K)(SLn(K)) over a commutative asso-ciative ring K with unit is constructible i� the ring K is constructible.x2 ON CONSTRUCTIBLE ORDERED GROUPSLet hA;�i be ordered group and � : ! ! A be some numeration.Structure hA �; �i is called orderably constructible if there is an algorithmde�ning for n;m; s 2 ! either �n ��m = �s; �n � �m are true in A; or not.A group A is called constructible ordered group, if it can be equipped withorder � and numeration � such that the structure hA;�; �i is constructible.45



V.A. Romankov, N.G. KhisamievWe study the question: "What groups are constructible ordered?" Weprove that the following groups belong to this class: constructible torsionfree abelian, �nitely generated torsion free nilpotent, free nilpotent, a groupUTn(K) of all unitriangular matrices of size n over constructible orderedassociative commutative ring K with unit.Also, it is established that the quotient G=C of a constructible groupG by the center C = C(G) is �nitely generated, then the C is computable,and G=C is constructible.The class of constructible ordered groups scarcely has been studied yet.We have no example of an orderable constructible group which doesn't ad-mit constructible order. Note that Yu.L. Ershov (see [8], page 100) provedthat there exists an ordered constructible �eld that has not any construc-tivization in which this order is computable.Theorem 3 Every constructible abelian torsion free group A is constructibleordered group.Proof. By the Dobritsa-Nurtazin's result [4, 5] there exists such con-structivization � of A; that (A; �) contains a recursive enumerable ba-sis a0; a1; :::: Then each element x 2 A can be uniquely written as x =(n0a0+ :::+nkak)=m; where m;nk 6= 0; ni 2 Z;m 2 !; (n0; :::; nk;m) = 1:De�ne x > 0; if the �rst nonzero coe�cient ni > 0: It is not hard to checkthis relation orders the group A; and the system hA;�; �i is ordered con-structible group.Theorem 4 Let K be ordered constructible associative commutative ringwith 1: Then for every n 2 !, n > 0, the group UTn(K) is orderableconstructible group.Corollary 1 Every �nitely generated torsion free nilpotent group is order-able constructible.Corollary 2 Every free countable nilpotent group is orderable constructible.Proposition 2 Let (G; �) be a group with numeration, and the quotientG=C of G by the center C = C(G) is �nitely generated. Then C isG��recursive.Corollary 3 Let (G; �) be constructible group, and the quotient G=C is�nitely generated. Then the center C is computable in (G; �); thus thegroup G=C is constructible. 46
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A. RominaAutostability in AdmissibleStructuresAnna Rominaal-Farabi Kazakh National University, AlmatyResearch on the computability for abstract data types has become wide-spread of late. From this standpoint, the notion of de�nability in hereditar-ily �nite structures is of particular interest, for all the now known ways ofconstructing new data are well interpreted in these. Moreover, hereditarily�nite superstructures are the least admissible sets over a model.The groundwork for our reasoning is the P-de�nability approach pro-pounded by Yu.L. Ershov. Along its lines, here we study the de�nability andthe autostability of Boolean algebras in hereditarily �nite superstructures.Example is constructed for an admissible set in which the atomless Booleanalgebra is not autostable.De�nition 1 Two A -constructivizations, �0 and �1, of M are saidto be equivalent if there exist a P -predicate R(x; y) and an automorphism' of M such that ��10 (M) � �R&(8(x; y) 2 R)(x 2 ��10 (M) $ (y 2��11 (M)&�0(x) = '(�1(y)))):De�nition 2 A model M is said to be A -autostable if its any two A-constructivizations are equivalent.Example 1 Let � be a constructivization of an atomless Boolean alge-bra (which is an A -constructivization for any admissible set A ; [3]). Let Bbe an abstract atomless Boolean algebra. Then � and idB are not equivalentin A = HF (B).We also consider some problems concerning �11 -autostability of�11 -constructivizable models.It's easy to prove, that for each constructivizable modelM the class ofconstructivizations M is �11 i� there is a constructive ordinal � such thatfor each constructivizable model N M �� N!M �= N.48
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Pavel SemukhinSpectrum of the Atomless ElementsIdealPavel SemukhinNovosibirsk State University (Russia)A notion of the degree spectrum of a relation on a computable structurewas �rst introduced by V.S. Harizanov in [1]. The de�nition is following:let U be a relation on a computable structure A, then the degree spectrum(or simply the spectrum) of U is the setSpec(U) = fdegT (U 0) : 9 computable A0 �= A with U 0 the image of Ug;where degT (U) denotes the Turing degree of U .J.B. Remmel [2] studied the spectrum of a set of atoms of computableBoolean algebra. In particular, he proved that if computable Boolean alge-bra has a computable presentation with an in�nite computable set of atoms,then the spectrum of the set of atoms consists of all c.e. Turing degrees. Inthis work the following results about the spectrum of atomless ideal wereobtained.Theorem. 1 Given a computable Boolean algebra B with a computablenon-principal atomless ideal Al. Then there is a sequence of a computableBoolean algebras fBngn2N such that Bn �= B for all n and Ali 6�T Alj forall i 6= j, where Aln is the atomless ideal of Bn.Theorem. 2 Given a computable Boolean algebra B with ch(B)=(1,1,0)and with computable set of atoms. If Al is the atomless ideal of B, thenSpec(Al) consists of all Turing degrees that contain �02 sets.References[1] V.S. Harizanov, Degree spectrum of a recursive relation on a recursivestructure, PhD Thesis, University of Wisconsin, Madison, WI (1987).[2] J.B. Remmel, Recursive isomorphism types of recursive Boolean alge-bras, J. Symbolic Logic 46 (1981), 572 { 594.50



Boris SolonStrong enumeration reducibilitiesBoris Solon (solon@icti.ivanovo.su)Ivanovo University (Russia)We will call a binary relation�� on the 2! by the reducibility of sets if itis re
exive and transitive. If A �� B ! A �e B for any sets A and B then�� is called enumeration reducibility and if A �� B ! A �T B then �� iscalled decision reducibility. We will say that �� is stronger than �� if A ��B ! A �� B for any sets A and B. It is clear that there are at least 22!many such di�erent reducibilities. Naturally we consider such reducibilitieswhich have an intuitive base related with the e�ective computability. Somereducibilities are enumerable and decidable simultaneously. For example thereducibilities of the truth-table type�m, �c, �q, �p, and also correspondingbounded reducibilities �bc, �bq, �bp are the same.In the article [1] the digraph of enumeration reducibilities is construct-ed in which an oriented edge joins more and less strong reducibilities. Inaddition the new reducibilities �fe, �be, �btte are located in this Cooper'sdigraph. We note if ��; : : : ;�� is a �nite sequence of reducibilities fromwhich at least one is a enumeration reducibility then the relation ��:::� onthe 2! such that for any A and BA ��:::� B () A �� ^ � � � ^ A �� Bis the enumeration reducibility. In the article [2] 19 new reducibilities areformed by such way.S.D. Zaharov proposed yet two enumeration reducibilities:A �npm B () 9A1; A2[A2 � c:e: ^A = A1 [A2 ^A1 �pm B]and �nm which results as �npm by replacement �pm on �m. In [3] thenew enumeration reducibility �wpm was introduced which was called weakpartial m-reducibilityA �wpm B () (9A1; : : : ; Ak)[A = [A1 [ � � � [Ak^51



Boris Solon^A1 �pm B ^ � � � ^Ak �pm B]:Obviously �pm is a stronger reducibility than �wpm, and the converseis not true. Let Dfpm = fdwpm(A) : A � !g be a partial ordered set ofwpm-degrees.Theorem 1 Dfpm is the upper semilattice with the least element 0= dwpm(W )where W 6= ; is c.e.Theorem 2 Dfpm is not elementary equivalent Dpm.Theorem 3 The reducibility �wpm is located in Cooper's digraph.With the help of such "weakening" of pm-reducibility it is possible to at-tempt to de�ne new reducibilities. More exactly, let �� be a reducibility,we de�neA �f� B () (9A1; : : : ; Ak)[A = A1 [ � � � [Ak ^^ A1 �� B ^ � � � ^ Ak �� B]:It appears that in the case �s and �q will not be new reducibilities, and�wpc is not a reducibility at all.References[1] S.B. Cooper, e-reducibility using bounded information: counting minimalcovers, Z.fur math.Logik und Grundlagen der Math. Bd.33 (1987), 537{ 560[2] A.N.Degtev, About intersection of some classes of reducibilities, Math-ematics, the Program "Universities of Russia", MGU, 1994, 303 { 304.[3] B. Solon, The weak pm-reducibility, XI Conf. of Math. Logic, Abstract,Kazan, 1992, 131. 52



Dieter SpreenOn the E�ective Continuity ofE�ective MultifunctionsDieter Spreen (spreen@informatik.uni-siegen.de)University of Siegen (Germany)Multifunctions have turned out to be an important concept in com-putable as well as computational analysis. In this talk we consider e�ectivemultifunctions in the framework of e�ective topological spaces and studytheir e�ective continuity. The results extend earlier results on e�ectivemaps.
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Frank StephanLearning Classes of Approximationsto Non-Recursive FunctionsFrank Stephan (frank.stephan@urz.uni-hd.de)University of Heidelberg (Germany)Blum and Blum (1975) showed that a class B of suitable recursiveapproximations to the halting problem K is reliably EX-learnable but leftit open whether or not B is in contained in some recursively enumerableclass of total functions. By showing B is not included in such a class, weresolve this old problem.Moreover, variants of this problem obtained by approximating any giv-en recursively enumerable set A instead of the halting problem K are stud-ied. All corresponding function classes U(A) are still EX-inferable but mayfail to be reliably EX-learnable, for example if A is non-high and hypersim-ple. Blum and Blum (1975) considered only approximations to K de�nedby monotone complexity functions. We prove this condition to be necessaryfor making learnability independent of the underlying complexity measure.The class ~B of all recursive approximations to K generated by all total com-plexity functions is shown to be not even behaviorally correct learnable fora class of natural complexity measures. On the other hand, there are com-plexity measures such that ~B is EX-learnable. A similar result is obtainedfor all classes ~U (A).For natural complexity measures, B is shown to be not robustly learn-able, but again there are complexity measures such that B and, more gen-erally, every class U(A) is robustly EX-learnable. This result extends thecriticism of Jain, Smith and Wiehagen (1998), since the classes de�ned byarti�cial complexity measures turn out to be robustly learnable while thosede�ned by natural complexity measures are not robustly learnable.This is joint work with Thomas Zeugmann, Medizinische Universit�atL�ubeck 54



�.�. �®á ­¡ ©� áâà®¥­¨¨ ®¯à¥¤¥«¨¬®á«®¦­¥©è¥£® £à ä �.�.�®á ­¡ © (dosanbai@mail.ru)� § åáª¨© ­ æ¨®­ «ì­ë© ã­¨¢¥àá¨â¥â ¨¬. �«ì-� à ¡¨�­­®â æ¨ï� ¤®ª« ¤¥ £®¢®à¨âáï ® ¢ëà §¨â¥«ì­ëå ¢®§¬®¦­®áâïå ­¥ª®â®-àëå äà £¬¥­â®¢  à¨ä¬¥â¨ª¨. �â¨ ¢®¯à®áë ¯à¨¬ëª îâ ª à ¡®-â ¬ �¦. �®¡¨­á®­, �. �¨è à  ¨ �. �®à¥æ . � ¥âáï ®â¢¥â ­ ®¤¨­ ¢®¯à®á ¨§ á¯¨áª  �. �®à¥æ .�ãáâì N = f1; 2; :::g { ¬­®¦¥áâ¢® ­ âãà «ì­ëå ç¨á¥«. �®£¤  áâàãªâã-à  hN ; P1; :::; Pm; f1; :::; fk; c1; :::; csi ­ §ë¢ ¥âáï  à¨ä¬¥â¨ç¥áª¨¬, ¥á«¨¯à¥¤¨ª âë, äã­ªæ¨¨ ¨ ª®­áâ ­âë íâ®© áâàãªâãàë ï¢«ïîâáï  à¨ä¬¥â¨-ç¥áª¨¬¨, â.¥. ¢ëà ¦ îâáï ç¥à¥§ á«®¦¥­¨¥ ¨ ã¬­®¦¥­¨¥ ¢ ï§ëª¥ «®£¨ª¨¯¥à¢®£® ¯®àï¤ª . �à¨ä¬¥â¨ç¥áª ï áâàãªâãà  ­ §ë¢ ¥âáï ®¯à¥¤¥«¨¬®á«®¦­¥©è¥©, ¥á«¨ ç¥à¥§ ¢ ¤ ­­®© áâàãªâãà¥ ¬®¦­® ¢ëà §¨âì ®¯¥à -æ¨¨ á«®¦¥­¨ï ¨ ã¬­®¦¥­¨ï. �«¥¤ãï [1] ®¯à¥¤¥«¨¬ ®â­®è¥­¨¥ R ­  Ná«¥¤ãîé¨¬ ®¡à §®¬:xRy() x 6= y ^ (x j y _ y j x _ y = s(x) _ x = s(y));£¤¥ j { ®â­®è¥­¨¥ ¤¥«¥­¨ï,   s { äã­ªæ¨ï á«¥¤®¢ ­¨ï. � [1] § ¤ ­á«¥¤ãîé¨© ¢®¯à®á: "�¢«ï¥âáï «¨  à¨ä¬¥â¨ç¥áª ï áâàãªâãà  hN ; Ri®¯à¥¤¥«¨¬® á«®¦­¥©è¥©?" � ¯à¥¤« £ ¥¬®© à ¡®â¥ ¤ ¥âáï ãâ¢¥à¤¨â¥«ì-­ë© ®â¢¥â ­  íâ®â ¢®¯à®á.�à¥¦¤¥ ¢á¥£® § ¬¥â¨¬, çâ® ¥¤¨­¨æ  ¨ ®â­®è¥­¨¥ à ¢¥­áâ¢  ®¯à¥-¤¥«¨¬ë ¢ ¤ ­­®© á¨£­ âãà¥. � «¥¥, ¢¢¥¤¥¬ ­¥ª®â®àë¥ ­¥®¡å®¤¨¬ë¥®¡®§­ ç¥­¨ï:xEy 
 x j y ¨«¨ y j x¨ xSy
 x = s(y) ¨«¨ y = s(x). 55



�.�. �®á ­¡ ©�¡®§­ ç¨¬ ç¥à¥§ supp(x) ¬­®¦¥áâ¢® ¯à®áâëå ¤¥«¨â¥«¥© x. �â­®è¥-­¨ï E ¨ S ­ §ë¢ îâáï, á®®â¢¥âáâ¢¥­­® ®â­®è¥­¨ï¬¨ áà ¢­¨¬®áâ¨ (¯®¤¥«¨¬®áâ¨) ¨ á®á¥¤áâ¢ . �®£¤ xRy() x 6= y ^ (xEy _ xSy):�¥¬¬ . � âãà «ì­ë¥ ç¨á«  1 < x < y ï¢«ïîâáï áâ¥¯¥­ï¬¨ ®¤­®£®¨â®£® ¦¥ ¯à®áâ®£® ç¨á«  â®£¤  ¨ â®«ìª® â®£¤ , ª®£¤  ®­¨ ã¤®¢«¥â¢®-àïîâ á«¥¤ãîé¥© ¤¢ã¬¥áâ­®© ä®à¬ã«¥:'(x; y)
 x 6= 1^R(x; y)^9uv(uRy^vRy^8t(t 6= u^t 6= v^tRy ! tRx):�®ª § â¥«ìáâ¢®. ()) �ãáâì (x; y) = (p�; p�) ¨ 0 < � < �. �®£¤ ¯®«®¦¨¬ u = y � 1 ¨ v = y + 1.(() �ãáâì x ¨ y ã¤®¢«¥â¢®àïîâ ä®à¬ã«¥ '(x; y). � ª ª ª xRy, ­¥®¡-å®¤¨¬® à áá¬®âà¥âì ¢®§¬®¦­®áâ¨ xEy ¨ xSy.�«ãç © xSy. �á«¨ x = y � 1, ¯®«®¦¨¬ t = y � p ¤«ï ­¥ª®â®à®£®¯à®áâ®£® ç¨á«  p > x. �®£¤  tRy ¨ :(tSx). � ª ª ª t = y � p =x � p+ p � p 6� 0( mod x), â® :(tEx), â.¥. :(tRx). �®íâ®¬ã ¤ ­­ë¥ x ¨y ­¥ ã¤®¢«¥â¢®àïîâ ãª § ­­®© ä®à¬ã«¥. �­ «®£¨ç­® à áá¬ âà¨¢ ¥âáï¢â®à®© á«ãç © x = y + 1. � ª¨¬ ®¡à §®¬, ç¨á« , ã¤®¢«¥â¢®àïîé¨¥ä®à¬ã«¥ '(x; y), ­¥ ¬®£ãâ ¡ëâì á®á¥¤ï¬¨.�«ãç © xEy. � áá¬®âà¨¬ ¤¢¥ ¢®§¬®¦­®áâ¨.1. x ¤¥«¨âáï ­  y. �®£¤  ¤«ï «î¡®£® ¯à®áâ®£® p ¢­¥ supp(x) ç¨á«®t = y � p ã¤®¢«¥â¢®àï¥â á®®â­®è¥­¨ï¬ tRy ¨ :(tRx). �®íâ®¬ã íâã¢®§¬®¦­®áâì ¬®¦­® ®â¡à®á¨âì.2. x ¤¥«¨â y. � ¬¥â¨¬,çâ® ¬®¦­® ¯à¥¤¯®« £ âì supp(x) = supp(y).�á«¨ íâ® ­¥ â ª, â® áãé¥áâ¢ã¥â ¯à®áâ®¥ ç¨á«® p 2 supp(y) n supp(x).�¥¯¥àì, ¥á«¨ ¢ ª ç¥áâ¢¥ t ¢®§ì¬¥¬ ç¨á«® t = y � p, â® tRy, ­® :(tRx),¯à®â¨¢®à¥ç¨¥ á ä®à¬ã«®© '(x; y). �¥¯¥àì, â ª ª ª supp(x) = supp(y),â® jsupp(x)j = jsupp(y)j. �ãáâì jsupp(x)j = jsupp(y)j > 1. �®£¤  ¤«ï­¥ª®â®à®£® ¯à®áâ®£® p, ãç áâ¢ãîé¥£® ¢ à §«®¦¥­¨ïå ¤ ­­ëå ç¨á¥«,¤«ï á®®â¢¥âáâ¢ãîé¨å áâ¥¯¥­¥© � ¨ � ¨§ à §«®¦¥­¨ï x ¨ y ¨¬¥¥¬ ��� >0. �®£¤  ¤«ï t = p� ¯®«ãç¨¬ tRy, ­® :(tRx). �­ ç¨â, jsupp(x)j =jsupp(y)j = 1. � â ª ª ª x ¤¥«¨â y, ¨¬¥¥¬ (x; y) = (p�; p�) ¨ � < �.�¥¬¬  ¤®ª § ­ .�¥¯¥àì ®¯à¥¤¥«¨¬ ®â­®è¥­¨¥ "x - ¯à®áâ®¥ ç¨á«®".56



�.�. �®á ­¡ ©�«¥¤áâ¢¨¥ 1. i) x { ¯à®áâ®¥ ç¨á«® â®£¤  ¨ â®«ìª® â®£¤ , ª®£¤  xã¤®¢«¥â¢®àï¥â ä®à¬ã«¥�(x)
 9y'(x; y) ^ :9z(z 6= 1 ^ '(z; x)):ii) ç¨á«® z ï¢«ï¥âáï á®á¥¤®¬ ¯à®áâ®£® ç¨á«  p â®£¤  ¨ â®«ìª® â®£¤ ,ª®£¤  z ã¤®¢«¥â¢®àï¥â ä®à¬ã«¥ (p; z)
 (p = 2 ^ z = 1) _ (pRz ^ :'(p; z)):iii) ¯à®áâ®¥ ç¨á«® p ¤¥«¨â ç¨á«® v â®£¤  ¨ â®«ìª® â®£¤ , ª®£¤  ®­¨ã¤®¢«¥â¢®àïîâ ä®à¬ã«¥�(p; v) 
 v 6= 1 ^ : (p; v) ^ [pRv _ p = v]:�á¯®«ì§ãï «¥¬¬ã ¨ á«¥¤áâ¢¨¥ 1 ¬ë ¬®¦¥¬ ®¯à¥¤¥«¨âì ®â­®è¥­¨ïáà ¢­¨¬®áâ¨ ¯® ¤¥«¥­¨î ¨ á®á¥¤áâ¢ .�«¥¤áâ¢¨¥ 2. i) xEy â®£¤  ¨ â®«ìª® â®£¤ , ª®£¤  x ¨ y ã¤®¢«¥â¢®àïîâä®à¬ã«¥x = y _ x = 1 _ y = 1 _ [xRy ^ 9z(�(z) ^ �(z; y) ^ �(z; y))]:ii) xSy â®£¤  ¨ â®«ìª® â®£¤ , ª®£¤  x ¨ y ã¤®¢«¥â¢®àïîâ ä®à¬ã«¥xRy ^ :(xEy):� ª¨¬ ®¡à §®¬, ®â­®è¥­¨ï S ¨ E ®¯à¥¤¥«¨¬ë ç¥à¥§ ®â­®è¥­¨¥ R. � [3]¡ë«® ãáâ ­®¢«¥­®, çâ® ç¥à¥§ E ¬®¦­® ¢ëà §¨âì ®â­®è¥­¨¥ ¤¥«¨¬®áâ¨j . � à ¡®â¥ [4] ¤®ª § ­®, çâ® áâàãªâãà  hN ; S; ji ï¢«ï¥âáï ®¯à¥¤¥«¨¬®á«®¦­¥©è¥©. �®£¤  ¨§ íâ¨å ä ªâ®¢ ¨ ¢ëè¥ãáâ ­®¢«¥­­ëå à¥§ã«ìâ â®¢ª ª á«¥¤áâ¢¨¥ ¯®«ãç ¥âáï á«¥¤ãîé ï�¥®à¥¬ . �à¨ä¬¥â¨ç¥áª ï áâàãªâãà  hN ; Ri ï¢«ï¥âáï ®¯à¥¤¥«¨¬®á«®¦­¥©è¥©.� à ¡®â¥ [1] ®â¬¥ç ¥âáï, çâ® áãé¥áâ¢ã¥â ¯à¨¬¥à ®¯à¥¤¥«¨¬® á«®¦­¥©-è¥£®  à¨ä¬¥â¨ç¥áª®£® £à ä  ­  ­ âãà «ì­ëå ç¨á« å á ­ã«¥¬, ­® ®­­¥ ¯à¨¢®¤¨âáï ¢ [1], ¯®áª®«ìªã ¥£® ®¯¨á ­¨¥ ­¥ ¯à®áâ®. � ¯®¬®éìîáâàãªâãàë hN ; Ri ¬®¦­® ¯®«ãç¨âì ¡®«¥¥ ¯à®áâ®© ¯à¨¬¥à ®¯à¥¤¥«¨¬®á«®¦­¥©è¥£®  à¨ä¬¥â¨ç¥áª®£® £à ä  ­  ¬­®¦¥áâ¢¥ ­¥®âà¨æ â¥«ì­ëåæ¥«ëå ç¨á¥«, çâ® ¡ë«® § ¬¥ç¥­® ¢ [1].57



�.�. �®á ­¡ ©� ¨ â ¥ à   â ã à  1. Ivan Korec, A list of arithmetical structures strongest with respect to the�rst order de�nability, Preprint N� 33 of Math. Inst. Slovak Acad. Sci.,Bratislava, 1996.2. J.Robinson, De�nability and decision problems in arithmetic, Journal ofSymbolic Logic, 14 (1949), 98-114.3. �.�. �®á ­¡ ©, �¡ ®¤­®© ®¯à¥¤¥«¨¬® á«®¦­¥©è¥© áâàãªâãà¥, �¥áâ-­¨ª � §��, á¥à¨ï ¬ â¥¬ â¨ª , N� 2 (2002), 18-23.4. Ivan Korec, De�nability of addition from multiplication and neighbour-hood relation and some related results, Proceedings the Conference Analyticand Elementary Number Theory, Vienna, July 16-20, 1995.
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�.�. �¥©à¥¬¡¥ª®¢�ã­ªæ¨¨ �ë«ì-� à¤§¥¢áª®£®áç¥â­® ª â¥£®à¨ç­ëå â¥®à¨©�.�. �¥©à¥¬¡¥ª®¢ (meirembekov@yahoo.com)� § åáª¨© ­ æ¨®­ «ì­ë© ã­¨¢¥àá¨â¥â ¨¬.  «ì-� à ¡¨�á¥ à áá¬ âà¨¢ ¥¬ë¥ â¥®à¨¨ ï¢«ïîâáï â¥®à¨ï¬¨ ¯¥à¢®£® ¯®àï¤ª ¢ ª®­¥ç­®¬ ç¨áâ® à¥«ïæ¨®­­®¬ ï§ëª¥ L. �á«¨ â¥®à¨ï T áç¥â­® ª â¥£®-à¨ç­ , â® äã­ªæ¨¥© fT (n) �ë«ì-� à¤§¥¢áª®£® â¥®à¨¨ T ®¯à¥¤¥«¥­  ª ªª®«¨ç¥áâ¢®  â®¬®¢ ¡ã«¥¢®©  «£¥¡àë Fn(T ) �¨­¤¥­¡ ã¬ -� àáª®£® íâ®©â¥®à¨¨. � ª ¨§¢¥áâ­®, ¥á«¨ â¥®à¨ï T à §à¥è¨¬  ¨ áç¥â­® ª â¥£®à¨ç­ ,â® ¥ñ áç¥â­ ï ¬®¤¥«ì  ¢â®ãáâ®©ç¨¢  ¢ â®¬ ¨ â®«ìª® ¢ â®¬ á«ãç ¥, ¥á«¨äã­ªæ¨ï �ë«ì-� à¤§¥¢áª®£® à¥ªãàá¨¢­ .�¤­¨¬ ¨§ ¬®é­ëå ¬¥â®¤®¢ ¯®áâà®¥­¨ï áç¥â­® ª â¥£®à¨ç­ëå â¥®-à¨© ï¢«ï¥âáï ¬¥â®¤ �à ¨áá¥ [2]. �á«¨ K ª« áá â¨¯®¢ ¨§®¬®àä¨§¬  ª®-­¥ç­ëå ¬®¤¥«¥© ï§ëª  L ¨¬¥îé¨© ­ á«¥¤áâ¢¥­­®¥ á¢®©áâ¢® HP, á¢®©-áâ¢® á®¢¬¥áâ­®£® ¢«®¦¥­¨ï JEP ¨ á¢®©áâ¢®  ¬ «ì£ ¬¨à®¢ ­¨ï AP, â®áãé¥áâ¢ã¥â ®¤­®§­ ç­® ®¯à¥¤¥«¥­­ ï áç¥â­ ï ¬®¤¥«ì MK , â¥®à¨ï ª®-â®à®© áç¥â­® ª â¥£®à¨ç­ , ¨¬¥¥â í«¨¬¨­ æ¨î ª¢ ­â®à®¢ ¨ ¥ñ ¢®§à áâage(MK ) á®¢¯ ¤ ¥â á K. �« áá ¬®¤¥«¥© K á® á¢®©áâ¢ ¬¨ HP, JEP, AP­ §ë¢ ¥âáï ª« áá®¬ �à ¨áá¥,   ¬®¤¥«ì MK { £¥­¥à¨ç¥áª®© ¤«ï íâ®£®ª« áá . �¡®§­ ç¨¬ ç¥à¥§ TK â¥®à¨î íâ®© ¬®¤¥«¨.�®­¥ç­ãî ¬®¤¥«ì A ï§ëª  L ­ §®¢¥¬ § ¯à¥â­®© ¤«ï ª« áá  �à -¨áá¥ K, ¥á«¨ A 62 K, ­® «î¡ ï ¥ñ á®¡áâ¢¥­­ ï ¯®¤¬®¤¥«ì «¥¦¨â ¢ K.�ãé¥áâ¢ã¥â íää¥ªâ¨¢­ ï ¯à®æ¥¤ãà  ¯¥à¥ç¨á«¥­¨ï ¢á¥å â¨¯®¢ ¨§®¬®à-ä¨§¬  ª®­¥ç­ëå ¬®¤¥«¥© á¨£­ âãàë L. �¥¬¥©áâ¢® ­¥ª®â®àëå â¨¯®¢¨§®¬®àä¬§¬  ª®­¥ç­ëå ¬®¤¥«¥© à¥ªãàá¨¢­® ¯¥à¥ç¨á«¨¬®, ¥á«¨ ®­® à¥-ªãàá¨¢­® ¯¥à¥ç¨á«¨¬® ¢ íâ®© ­ã¬¥à æ¨¨. �¥à¥§ k(n) ®¡®§­ ç¨¬ ç¨á«®n-í«¥¬¥­â­ëå ¬®¤¥«¥© ¨§ ª« áá  K ¨ k ­ §®¢¥¬ äã­ªæ¨¥© ¢®§à áâ íâ®£® ª« áá . 59



�.�. �¥©à¥¬¡¥ª®¢�¥®à¥¬  1 �á«¨ T â¥®à¨ï £¥­¥à¨ç¥áª®© ¬®¤¥«¨ ¤«ï ª« áá  �à ¨áá¥K, â®� T à §à¥è¨¬  â®£¤  ¨ â®«ìª® â®£¤ , ª®£¤  á¥¬¥©áâ¢® § ¯à¥â­ëåª®­¥ç­ëå ¬®¤¥«¥© ¤«ï K à¥ªãàá¨¢­® ¯¥à¥ç¨á«¨¬®;� äã­ªæ¨ï �ë«ì-� à¤§¥¢áª®£® fT (n) â¥®à¨¨ T à¥ªãàá¨¢­  â®£¤  ¨â®«ìª® â®£¤ , ª®£¤  äã­ªæ¨ï ¢®§à áâ  k(n) ª« áá K à¥ªãàá¨¢­ .� á¢ï§¨ á ¨§¢¥áâ­ë¬ ¢®¯à®á®¬ �¥à¥âïâìª¨­  ® áãé¥áâ¢®¢ ­¨¨ à §-à¥è¨¬®© áç¥â­® ª â¥£®à¨ç­®© ª®­¥ç­® ªá¨®¬ â¨§¨àã¥¬®© â¥®à¨¨ á ­¥-à¥ªãàá¨¢­®© äã­ªæ¨¥© �ë«ì-� à¤§¥¢áª®£® [3] ¯à¥¤áâ ¢«ï¥â ¨­â¥à¥á¥£® «®ª «¨§ æ¨ï ­  á®®â¢¥âáâ¢ãîé¨¥ â¥®à¨¨ £¥­¥à¨ç¥áª¨å ¬®¤¥«¥© ¤«ïª« áá®¢ �à ¨áá¥.�®¯à®á 1 �¥à­® «¨, çâ® ¤«ï ª ¦¤®© ª¢ §¨ ª®­¥ç­® ªá¨®¬ â¨§¨àã¥-¬®© áç¥â­® ª â¥£®à¨ç­®© â¥®à¨¨ T áãé¥áâ¢ã¥â ª¢ §¨ ª®­¥ç­® ªá¨-®¬ â¨§¨àã¥¬ ï áç¥â­® ª â¥£®à¨ç­ ï â¥®à¨ï T0 c í«¨¬¨­ æ¨¥© ª¢ ­-â®à®¢ â ª ï, çâ® äã­ªæ¨¨ �ë«ì-� à¤§¥¢áª®£® íâ¨å â¥®à¨© á®¢¯ ¤ -îâ?�¨â¥à âãà [1] W. Glassmire, There are 2@0 countably categorical theories, Bull. Acad.Pol. Sci, ser. math.,phys., astron., 1971, 359, N� 19, 185 { 190.[2] W. Hodges, Model theory, Cambridge University Press, 1993.[3] �.�. �¥à¥âïâìª¨­, �®­¥ç­®  ªá¨®¬ â¨§¨àã¥¬ë¥ â¥®à¨¨, �®¢®á¨-¡¨àáª, � ãç­ ï ª­¨£ , 1996.
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�.�. �¨á ¬¨¥¢�â¥¯¥­¨  «£¥¡à ¨ç¥áª¨å á¨áâ¥¬ ¨�-®¯à¥¤¥«¨¬®áâì4�.�. �¨á ¬¨¥¢� áá¬ âà¨¢ îâáï â®«ìª® áç¥â­ë¥  «£¥¡à ¨ç¥áª¨¥ á¨áâ¥¬ë ª®­¥ç-­ëå á¨£­ âãà. �. �¨åâ¥à ¢ [6] ¢¢¥¤¥­® ãá«®¢¨¥ ¢ëç¨á«¨¬®© ¢«®¦¨-¬®áâ¨  «£¥¡à ¨ç¥áª®© á¨áâ¥¬ë ¨ ¯®ª § ­®, çâ® ¥á«¨ ¤«ï áç¥â­®© ­¥ª®­áâàãªâ¨¢¨§¨àã¥¬®© á¨áâ¥¬ë á¯à ¢¥¤«¨¢® ãá«®¢¨¥ ¢ëç¨á«¨¬®© ¢«®-¦¨¬®áâ¨, â® ®­  ­¥ ¨¬¥¥â áâ¥¯¥­¨. � ¤ ­­®© à ¡®â¥ ¤®ª § ­®:  ¡¥«¥¢ p-£àã¯¯  (¡ã«¥¢   «£¥¡à ) A ã¤®¢«¥â¢®àï¥â ãá«®¢¨î ¢ëç¨á«¨¬®© ¢«®-¦¨¬®áâ¨; «î¡ ï ­¥ ª®­áâàãªâ¨¢¨§¨àã¥¬ ï  ¡¥«¥¢  p-£àã¯¯  (¡ã«¥¢  «£¥¡à ) A ­¥ ¨¬¥¥â áâ¥¯¥­¨; ¥á«¨  ­â¨á¨¬¬¥âà¨ç­ ï á¢ï§ ­­ ï ¬®-¤¥«ì N �-®¯à¥¤¥«¨¬  ¢ ­ á«¥¤áâ¢¥­­® ª®­¥ç­®¬ ¤®¯ãáâ¨¬®¬ ¬­®¦¥-áâ¢¥ HF (A) ­ ¤ áç¥â­®© ¡ã«¥¢®©  «£¥¡à®© A, â® N ª®­áâàãªâ¨¢¨§¨àã-¥¬ ; ¥á«¨ L { «¨­¥©­ë© ¯®àï¤®ª �-®¯à¥¤¥«¨¬ë© ¢ HF (A) ­ ¤ áç¥â­®©¡ã«¥¢®©  «£¥¡à®© A, â® L { ª®­áâàãªâ¨¢¨§¨àã¥¬.�á¥ ¨á¯®«ì§ã¥¬ë¥ ¨ ­¥®¯à¥¤¥«ï¥¬ë¥ ¯®­ïâ¨ï á®¤¥à¦ âáï ¢ [1, 2,3]. �ë ¯à¨¢¥¤¥¬ «¨èì ­¥ª®â®àë¥ ¨§ ­¨å. �ãáâì ¤ ­   «£¥¡à ¨ç¥-áª ï á¨áâ¥¬  A á¨£­ âãàë � ¨ A0 { ¯®¤¬­®¦¥áâ¢® ®á­®¢­®£® ¬­®¦¥áâ¢ jAj. �®£¤  ç¥à¥§ hA; A0i ®¡®§­ ç¨¬ ®¡®£ é¥­¨¥ á¨áâ¥¬ë A ª®­áâ ­â ¬¨fa j a 2 A0g ¨ ¯®« £ ¥¬ ahA;A0i = a. �á«¨ A0 = fa0; : : : ; an�1g, â® hA; A0i¡ã¤¥â â ª¦¥ ®¡®§­ ç âì ç¥à¥§ hA; ai.�ãáâì ¤ ­ë ª®­¥ç­ë¥ ¬®¤¥«¨ B, C á¨£­ âãàë � ¨ B � C. �ãáâìjBj = fb0; : : : ; bn�1g ¨ jCjnjBj = fc0; : : : ; cr�1g. �®£¤  ç¥à¥§ �C(�b; �c) ®¡®-§­ ç¨¬ ª®­êî­ªæ¨î ¢á¥å  â®¬­ëå ¨ ®âà¨æ ­¨ï  â®¬­ëå ¯à¥¤«®¦¥­¨©,¨áâ¨­­ëå ¢ ¬®¤¥«¨ DC;�b; �cE. �ãáâì ' : B ! A { ¢«®¦¥­¨¥ ¬®¤¥«¨ B¢ A. �¥à¥§ AB;' ®¡®§­ ç¨¬ á¥¬¥©áâ¢® ¢á¥å ª®­¥ç­ëå ¬®¤¥«¥© C ¤«ïª®â®àëå áãé¥áâ¢ã¥â ¢«®¦¥­¨¥  ¬®¤¥«¨ C ¢ A â ª®¥, çâ®  � B = '.�ãáâì 	C(�b0) = 9�x�C(�b0; �x), £¤¥ 'bi = b0i, i < n.�ãáâì § ä¨ªá¨à®¢ ­  £¥¤¥«¥¢  ­ã¬¥à æ¨ï 
 ¢á¥å ä®à¬ã« á¨£­ âã-àë � [ fb00; : : : ; b0n�1g. �®¬¥à®¬ ¬®¤¥«¨ C � B ­ §®¢¥¬ ­®¬¥à ä®à¬ã«ë4� ¡®â  ¢ë¯®«­¥­  ¯à¨ ¯®¤¤¥à¦ª¥ £à ­â  �����-00-49961



�.�. �¨á ¬¨¥¢	C(�b0). �ãáâì A { «®ª «ì­® ª®­¥ç­ ï á¨áâ¥¬ , B { ª®­¥ç­ ï á¨áâ¥¬  ¨' : B ! A { ¢«®¦¥­¨¥. �¥à¥§ �AB;' ®¡®§­ ç¨¬ ¬­®¦¥áâ¢® ¢á¥å ª®­¥ç-­ëå á¨áâ¥¬ C â ª¨å, çâ® áãé¥áâ¢ã¥â ¢«®¦¥­¨¥  : C! A, à áè¨àïîé¥¥', â® ¥áâì  � B = '.�ë ¯®ª ¦¥¬, çâ® ¥á«¨ A {  ¡¥«¥¢  p-£àã¯¯  (¡ã«¥¢   «£¥¡à ), â®á¥¬¥©áâ¢® �AB;' ¢ëç¨á«¨¬®. �âáî¤  ¨ ¨§  ­ «®£  á«¥¤ãîé¥£® à¥§ã«ì-â â  [6] ¡ã¤¥â á«¥¤®¢ âì, çâ® «î¡ ï áç¥â­ ï ­¥ ª®­áâàãªâ¨¢¨§¨àã¥¬ ï ¡¥«¥¢  p-£àã¯¯  (¡ã«¥¢   «£¥¡à ) ­¥ ¨¬¥¥â áâ¥¯¥­¨. �«ï ¡ã«¥¢ëå  «-£¥¡à íâ® ®â¬¥ç¥­® (¡¥§ ¤®ª § â¥«ìáâ¢ ) ¢ à ¡®â¥ [6]. � x2 ¤«ï ¯®«­®âë¨§«®¦¥­¨ï ¯à¨¢®¤¨âáï ¤®ª § â¥«ìáâ¢® íâ®£® ãâ¢¥à¦¤¥­¨ï. �ãáâì A­¥ª®â®à ï áç¥â­ ï á¨áâ¥¬ . � [6] ¤ ­®�¯à¥¤¥«¥­¨¥ 1 [6] �á«¨ ¤«ï «î¡ëå ª®­¥ç­®© ¬®¤¥«¨ B ¨ ¢«®¦¥­¨ï' : B! A á¥¬¥©áâ¢® AB;' ¢ëç¨á«¨¬®, â® £®¢®àïâ, çâ® ¤«ï ¬®¤¥«¨ Aá¯à ¢¥¤«¨¢® ãá«®¢¨¥ ¢ëç¨á«¨¬®© ¢«®¦¨¬®áâ¨.�¥®à¥¬  1 [6] �á«¨ ¤«ï áç¥â­®© ­¥ ª®­áâàãªâ¨¢¨§¨àã¥¬®© ¬®¤¥«¨á¯à ¢¥¤«¨¢® ãá«®¢¨¥ ¢ëç¨á«¨¬®© ¢«®¦¨¬®áâ¨, â® ®­  ­¥ ¨¬¥¥â áâ¥-¯¥­¨.�ãáâì A { «®ª «ì­® ª®­¥ç­ ï á¨áâ¥¬ . �¢¥¤¥¬ á«¥¤ãîé¨©  ­ «®£®¯à¥¤¥«¥­¨ï 1.�¯à¥¤¥«¥­¨¥ 2 �á«¨ ¤«ï «î¡ëå ª®­¥ç­®© á¨áâ¥¬ë B ¨ ¢«®¦¥­¨ï ' :B ! A á¥¬¥©áâ¢® �AB;' ¢ëç¨á«¨¬®, â® £®¢®àïâ, çâ® ¤«ï ¬®¤¥«¨ Aá¯à ¢¥¤«¨¢® ãá«®¢¨¥ ¢ëç¨á«¨¬®© ¢«®¦¨¬®áâ¨ á¨áâ¥¬.�§ ¤®ª § â¥«ìáâ¢  â¥®à¥¬ë 1 á«¥¤ã¥â�«¥¤áâ¢¨¥ 1 �á«¨ ­¥ ª®­áâàãªâ¨¢¨§¨àã¥¬ ï áç¥â­ ï «®ª «ì­® ª®-­¥ç­ ï á¨áâ¥¬  A ã¤®¢«¥â¢®àï¥â ãá«®¢¨î ¢ëç¨á«¨¬®© ¢«®¦¨¬®áâ¨á¨áâ¥¬, â® ®­  ­¥ ¨¬¥¥â áâ¥¯¥­¨.x1. �¡¥«¥¢ë p-£àã¯¯ë� ¤ «ì­¥©è¥¬ ¯®¤ á«®¢®¬ £àã¯¯  ¯®­¨¬ ¥âáï  ¡¥«¥¢  p-£àã¯¯ .�¢¥¤¥¬ ­¥ª®â®àë¥ ®¡®§­ ç¥­¨ï. �ãáâì G { £àã¯¯  ¨ g 2 G. �¥à¥§jgj ®¡®§­ ç ¥âáï ¯®àï¤®ª í«¥¬¥­â  g, pnG = fg 2 G j 9g1(g = png1)g,G[pn] = fg 2 G j png = 0g. �¨­¨¬ «ì­®¥ ç¨á«® pn â ª®¥, çâ® pnG = 062



�.�. �¨á ¬¨¥¢­ §ë¢ ¥âáï ¯®àï¤ª®¬ £àã¯¯ë G ¨ ®¡®§­ ç ¥âáï ç¥à¥§ jGj. �á«¨ â ª®£®ç¨á«  ­¥ áãé¥áâ¢ã¥â, â® £®¢®àïâ, çâ® G ­¥ ®£à ­¨ç¥­ . �ëá®â®© hG(g)í«¥¬¥­â  g ­ §ë¢ ¥âáï â ª®¥ ­ ¨¡®«ìè¥¥ ç¨á«® m � 0, çâ® ¢ G ¨áâ¨­­ ä®à¬ã«  9x(g = pmx) & 8y(g 6= pm+1y). �á«¨ â ª®£® m ­¥â, â® hG(g) =1. Zpn { æ¨ª«¨ç¥áª ï £àã¯¯  ¯®àï¤ª  pn. �î¡®© ¨§®¬®àä¨§¬ £àã¯¯ëG0 ¢ G ­ §ë¢ ¥âáï ¢«®¦¥­¨¥¬ G0 ¢ G. � ¨¡®«ìè¨© ®¡é¨© ¤¥«¨â¥«ìç¨á¥« n ¨ m ®¡®§­ ç ¥âáï (n;m).�¥¬¬  A �ãáâì A { ¯à®¨§¢®«ì­ ï  ¡¥«¥¢  £àã¯¯  (­¥ ®¡ï§ â¥«ì­®p-£àã¯¯ ),   B { ª®­¥ç­ ï á¥à¢ ­â­ ï ¯®¤£àã¯¯ . �®£¤  B ¢ë¤¥«ï¥âáï¯àï¬ë¬ á« £ ¥¬ë¬.�à¥¤«®¦¥­¨¥ B [5, áâà. 83] �á«¨ à¥¤ãæ¨à®¢ ­­ ï £àã¯¯  G ­¥®£à -­¨ç¥­ , â® G ¨¬¥¥â ¯àï¬®¥ á« £ ¥¬®¥, ï¢«ïîé¨¥áï ­¥®£à ­¨ç¥­­®©¯àï¬®© áã¬¬®© æ¨ª«¨ç¥áª¨© £àã¯¯.�§ ¤®ª § â¥«ìáâ¢  ¯à¥¤«®¦¥­¨ï 27.1 [4, áâà. 139] á«¥¤ã¥â�à¥¤«®¦¥­¨¥ C �ãáâì ¯®àï¤®ª £àã¯¯ë C à ¢¥­ pn, c 2 C, jcj = pn ¨¯®¤£àã¯¯  B � C â ª ï, çâ® B\(c) = 0. �®£¤  áãé¥áâ¢ã¥â ¯®¤£àã¯¯ E � B â ª ï, çâ® C = E � (c).�¥®à¥¬  2 �«ï «î¡®© áç¥â­®© £àã¯¯ë G á¯à ¢¥¤«¨¢® ãá«®¢¨¥ ¢ëç¨-á«¨¬®© ¢«®¦¨¬®áâ¨ á¨áâ¥¬.�®ª § â¥«ìáâ¢®. �ãáâì B { ª®­¥ç­ ï £àã¯¯  ¨ ' : B ! C {¢«®¦¥­¨¥. �§¢¥áâ­®, çâ® G = R � D, £¤¥ R { à¥¤ãæ¨à®¢ ­­ ï,   D{ ¤¥«¨¬ ï ç áâ¨ £àã¯¯ë G. �á«¨ £àã¯¯  R ®£à ­¨ç¥­ , â® G á¨«ì-­® ª®­áâàãªâ¨¢¨§¨àã¥¬ . �âáî¤  «¥£ª® á«¥¤ã¥â, çâ® ¤«ï £àã¯¯ë Gá¯à ¢¥¤«¨¢® ãá«®¢¨¥ ¢ëç¨á«¨¬®© ¢«®¦¨¬®áâ¨ á¨áâ¥¬. �¥¯¥àì ¯ãáâìà¥¤ãæ¨à®¢ ­­ ï ç áâì £àã¯¯ë G ­¥®£à ­¨ç¥­ . �®£¤  â¥®à¥¬  ­¥¯®-áà¥¤áâ¢¥­­® á«¥¤ã¥â ¨§�à¥¤«®¦¥­¨¥ 1 �ãáâì G áç¥â­ ï £àã¯¯  á ­¥®£à ­¨ç¥­­®© à¥¤ãæ¨-à®¢ ­­®© ç áâìî, B, C { ª®­¥ç­ë¥ £àã¯¯ë, B � C ¨ ' : B ! Gï¢«ï¥âáï ¢«®¦¥­¨¥¬ B ¢ C. �®£¤  áãé¥áâ¢ã¥â ¢«®¦¥­¨¥  : C ! Gâ®£¤  ¨ â®«ìª® â®£¤ , ª®£¤  ¤«ï «î¡®£® í«¥¬¥­â  b 2 B á¯à ¢¥¤«¨¢®­¥à ¢¥­áâ¢® 63



�.�. �¨á ¬¨¥¢hC(b) � hG(b0); (1)£¤¥ 'b = b0.�®ª § â¥«ìáâ¢®. �¥®¡å®¤¨¬®áâì ®ç¥¢¨¤­ .�®ª § â¥«ìáâ¢® ¤®áâ â®ç­®áâ¨ ¯à®¢¥¤¥¬ ¨­¤ãªæ¨¥© ¯® ç¨á«ã í«¥-¬¥­â®¢ £àã¯¯ë C. �ãáâì ¯®àï¤®ª jCj £àã¯¯ë à ¢¥­ pn, â® ¥áâì 8c 2C(pnc = 0), ¨ c 2 C â ª®©, çâ® jcj = pn. �®¯ãáâ¨¬, çâ® (c) \ B = 0.�®£¤  ¯® ¯à¥¤«®¦¥­¨î C áãé¥áâ¢ã¥â ¯®¤£àã¯¯  E � C â ª ï, çâ®C = (c) � E ¨ E � B. �® ¨­¤ãªæ¨¨ áãé¥áâ¢ã¥â ¢«®¦¥­¨¥  0 : E ! G, 0 � B = '. �® ¯à¥¤¯®«®¦¥­¨î B áãé¥áâ¢ã¥â í«¥¬¥­â c0 â ª®©, çâ®(c0) \ E 0 = 0, jc0j = pn, £¤¥ E 0 =  0E. �ç¥¢¨¤­®, çâ®  0 ¬®¦­® ¯à®¤®«-¦¨âì ¤®  : C ! G, ¯®«®¦¨¢  c = c0. �®íâ®¬ã ¬®¦­® áç¨â âì, çâ®(c) \B 6= 0.�«ï ª ¦¤®£® í«¥¬¥­â  c ¯®àï¤ª  pn ç¥à¥§ kc ®¡®§­ ç¨¬ â ª®¥ ­ ¨-¬¥­ìè¥¥ ç¨á«®, çâ® pkcc 2 B. �ãáâì c0 2 C[pn] â ª®© í«¥¬¥­â, çâ® kc0¨¬¥¥â ­ ¨¬¥­ìè¥¥ §­ ç¥­¨¥. �®«®¦¨¬ c = c0, k = kc0 .�ãáâìpkc = b0: (2)�®ª ¦¥¬, çâ® áãé¥áâ¢ã¥â â ª®© í«¥¬¥­â c0, çâ® pkc0 = b00, £¤¥ 'b0 = b00,¨ ¤«ï «î¡®£® s < k ¢¥à­® psc0 =2 B0.� ª ª ª ¯®¤£àã¯¯  (c) á¥à¢ ­â­  ¢ C, â® hC(b0) = k. �®íâ®¬ã ¢G áãé¥áâ¢ã¥â í«¥¬¥­â g0 â ª®©, çâ® pkg0 = b00. �ãáâì s ¬¨­¨¬ «ì­®¥â ª®¥ ç¨á«®, çâ® psg0 2 B0. �á«¨ s = k â® c0 = g0 ¨áª®¬ë© í«¥¬¥­â.�ãáâì s < k. �® ¯à¥¤«®¦¥­¨î B áãé¥áâ¢ã¥â í«¥¬¥­â g1 2 G â ª®©,çâ® jg1j = pk ¨ (g1) \ G0 = 0, £¤¥ G0 =£à(B0; g0). �®«®¦¨¢ c0 = g0 + g1.�®£¤  ¨¬¥¥¬ pkc0 = b00. �®ª ¦¥¬, çâ® ¤«ï «î¡®£® s < k ¢¥à­® psc0 =2 B0.�¥©áâ¢¨â¥«ì­®, ¯ãáâì, ­ ¯à®â¨¢, ¤«ï ­¥ª®â®à®£® s < k ¢¥à­® psc0 2 B0.�®£¤  psg0 + psg1 = b0 2 B0. �âáî¤  0 6= psg1 2 G0. �à®â¨¢®à¥ç¨¥.�ãáâì H =£à(B; c), H 0 =£à(B0; c0). �¯à¥¤¥«ïîé¨¥ á®®â­®è¥­¨ï£àã¯¯ë H ¡ã¤ãâ á®®â­®è¥­¨ï ¬¥¦¤ã í«¥¬¥­â ¬¨ £àã¯¯ë B ¨ á®®â-­®è¥­¨¥ pkc = b. �¯à¥¤¥«ïîé¨¥ á®®â­®è¥­¨ï £àã¯¯ë H 0 â ª¨¥ ¦¥.�âáî¤  áãé¥áâ¢ã¥â ¨§®¬®àä¨§¬ f : H ! H 0 â ª®©, çâ® f � B = '.�ãáâìC = (c) �E: (3)64



�.�. �¨á ¬¨¥¢�ãáâì E0 =¯àE(B), â® ¥áâì E0 { ¯à®¥ªæ¨ï ¯®¤£àã¯¯ë B ­  ¢â®àãîª®®à¤¨­ âã ¤«ï à §«®¦¥­¨ï (3). �ãáâì e 2 E0. �®£¤  ­ ©¤¥âáï í«¥¬¥­âb 2 B ¨ ç¨á«® s 2 ! â ª¨¥, çâ®b = ps�c+ e; (�; p) = 1: (4)�®ª ¦¥¬, çâ®hC(e) � hG(e0); (5)£¤¥ e0 = fe.�ãáâì hC(e) = r. �®ª ¦¥¬, çâ® «¨¡® e 2 B, «¨¡® á¯à ¢¥¤«¨¢®­¥à ¢¥­áâ¢®r < s: (6)�á«¨ s � k, â® ¨§ (2), (4) á«¥¤ã¥â, çâ® e 2 B.�ãáâì s < k. �®ª ¦¥¬ á¯à ¢¥¤«¨¢®áâì (6). �®¯ãáâ¨¬ ¯à®â¨¢­®¥,r � s. �ãé¥áâ¢ã¥â í«¥¬¥­â e1 2 E â ª®©, çâ® e = pre1. �âáî¤ ¨ ¨§ (4) ¨¬¥¥¬ b = ps(�c + pr�se1). � ª ª ª (�; p) = 1, â® í«¥¬¥­âc1 = �c+ pr�se1 ¨¬¥¥â ¯®àï¤®ª pn ¨ kc1 < k. �â® ¯à®â¨¢®à¥ç¨â ¢ë¡®àãí«¥¬¥­â  c. �®íâ®¬ã (6) á¯à ¢¥¤«¨¢®.� ª ª ª f : H ! H 0 ¨§®¬®àä¨§¬, â® á¯à ¢¥¤«¨¢® à ¢¥­áâ¢®b0 = ps�c0 + e0: (7)�®ª ¦¥¬, çâ® ¨¬¥¥â ¬¥áâ®hG(e0) � r: (8)�á«¨ e 2 B, â® (8) á«¥¤ã¥â ¨§ ãá«®¢¨ï ¯à¥¤«®¦¥­¨ï ¨ ®¯à¥¤¥«¥­¨ïf . �ãáâì e =2 B. �®£¤  á¯à ¢¥¤«¨¢® ­¥à ¢¥­áâ¢® (6). �âáî¤  ¨ ¨§ (4)¨¬¥¥¬ hC(e) = hG(b) = r. �«¥¤®¢ â¥«ì­® hG(b0) � r. �âáî¤  ¨ ¨§ (7)¨¬¥¥¬: hG(e0) � minfhG(b0); sg � r, â® ¥áâì ­¥à ¢¥­áâ¢® (5) ¤®ª § ­®.�«®¦¥­¨¥ '0 = f � E0 ¯®¤£àã¯¯ë E0 ¢ G ¨ ¯®¤£àã¯¯ë E0 � E ã¤®-¢«¥â¢®àï¥â ãá«®¢¨î (1) ¯à¥¤«®¦¥­¨ï. �® ¨­¤ãªæ¨¨ áãé¥áâ¢ã¥â ¢«®-¦¥­¨¥  0 : E ! G â ª®©, çâ®  0 � E0 = '0. �®ª ¦¥¬, çâ® ¢¥à­®à ¢¥­áâ¢® 0E \ (c0) = 0: (9)65



�.�. �¨á ¬¨¥¢�®¯ãáâ¨¬ ¯à®â¨¢­®¥, â® ¥áâì áãé¥áâ¢ã¥â e 2 E, e 6= 0 â ª®©, çâ® 0e = psc0: (10)�®¦­® áç¨â âì, çâ® jej = p ¨ s � k. �¥©áâ¢¨â¥«ì­®, ¥á«¨ s < k, â®¨§ (10) ¨¬¥¥¬  0pn�s�1e = pn�1c0:�âáî¤  ¨ ¨§ k � n � 1 á«¥¤ã¥â, çâ® ¢ ª ç¥áâ¢¥ í«¥¬¥­â  e ¬®¦­®¢§ïâì pn�s�1e. � ª¨¬ ®¡à §®¬ jej = p ¨ s � k. �®ª ¦¥¬, çâ® ¬®¦­®¯à¥¤¯®« £ âì, çâ® e 2 E0. �¥©áâ¢¨â¥«ì­®, ¤®¯ãáâ¨¬ e =2 E0, hC(e) =hE(e) =m ¨ pme1 = e ¤«ï ­¥ª®â®à®£® í«¥¬¥­â  e1 2 E. �®¤£àã¯¯  (e1)á¥à¢ ­â­  ¢ E,   ¯®íâ®¬ã áãé¥áâ¢ã¥â ¯®¤£àã¯¯  E1 � E â ª ï, çâ®E = (e1) � E1:� ª ª ª e =2 E0, â® ¯à(e1)B = 0. �âáî¤  ¨ ¨§ (3) á«¥¤ã¥â, çâ®C = (c)� (e1)�E1 ¨ B � (c)�E1. �® ¯à¥¤«®¦¥­¨î B ¤«ï ¤®ª § â¥«ì-áâ¢  ¯à¥¤«®¦¥­¨ï ¤®áâ â®ç­® ¢«®¦¨âì ¯®¤£àã¯¯ã (c) � E1 ¢ G. �â®¢®§¬®¦­® ¯® ¨­¤ãªæ¨¨. �®íâ®¬ã ¡ã¤¥¬ áç¨â âì, çâ® e 2 E0. �âáî¤  ¨¨§ (10) ¨¬¥¥¬ 0e = '0e = fe = psc0 = ps�kb00: (11)�® ®¯à¥¤¥«¥­¨î ¨§®¬®àä¨§¬  f : H ! H 0 ¨¬¥¥¬fps�kb0 = 'ps�kb0 = ps�kb00: (12)�§ (11) ¨ (12) ¯®«ãç¨¬, çâ®e = ps�kb0:�âáî¤  e 2 (c) \ E, çâ® ­¥¢®§¬®¦­®. �®íâ®¬ã à ¢¥­áâ¢® (9) á¯à ¢¥¤-«¨¢®. �âáî¤  ¢«®¦¥­¨¥ f : (c) ! (c0) ¨  0 : E ! G ¯à®¤®«¦ îâáï¤® âà¥¡ã¥¬®£® ¢«®¦¥­¨ï  : C ! G. �à¥¤«®¦¥­¨¥,   ¢¬¥áâ¥ á ­¨¬ ¨â¥®à¥¬  ¤®ª § ­ë. �� ¬¥â¨¬, çâ® áãé¥áâ¢ãîâ ¯¥à¨®¤¨ç¥áª¨¥ p-£àã¯¯ë ¨ £àã¯¯ë ¡¥§ªàãç¥­¨ï, ª®â®àë¥ ­¥ ï¢«ïîâáï «®ª «ì­® ª®­áâàãªâ¨¢¨§¨àã¥¬ë¬¨.�¥©áâ¢¨â¥«ì­®, ¯ãáâì S ­¥ ¢ëç¨á«¨¬® ¯¥à¥ç¨á«¨¬®¥ ¬­®¦¥áâ¢® ¯à®-áâëå ç¨á¥« ¨ G0 = Lp2S Zp, G1 � Q ¨ G1 =£àf1p j p 2 Sg. �¥£ª® ¯à®¢¥-à¨âì, çâ® 9-â¥®à¨¨ G0 ¨ hG1; 1i ­¥ ¢ëç¨á«¨¬® ¯¥à¥ç¨á«¨¬ë. �§ â¥®à¥-¬ë 2 ¨ á«¥¤áâ¢¨ï 1 ¯®«ãç ¥¬ 66



�.�. �¨á ¬¨¥¢�«¥¤áâ¢¨¥ 2 �î¡ ï áç¥â­ ï ­¥ ª®­áâàãªâ¨¢¨§¨àã¥¬ ï £àã¯¯  ­¥ ¨¬¥-¥â áâ¥¯¥­¨. x2. �ã«¥¢ë  «£¥¡àë�à¨¢¥¤¥¬ ­¥ª®â®àë¥ ®¡®§­ ç¥­¨ï ¨ ¨§¢¥áâ­ë¥ à¥§ã«ìâ âë ® ¡ã«¥-¢ëå  «£¥¡à å. �ãáâì A { ¡ã«¥¢   «£¥¡à  ¨ a 2 A. �®£¤  ba 
 fx 2A j x � ag. ba { ¡ã«¥¢   «£¥¡à  ¥¤¨­¨æ¥© ª®â®à®© ï¢«ï¥âáï a. �«¥-¬¥­â a ­ §ë¢ ¥âáï áã¯¥à â®¬­ë¬, ¥á«¨ ba áã¯¥à â®¬­ . �à¤¨­ «ì­ë¬â¨¯®¬ �(a) í«¥¬¥­â  a ­ §ë¢ ¥âáï ®à¤¨­ «ì­ë© â¨¯  «£¥¡àë ba, â® ¥áâì�(a) = o(ba).�ãáâì F (A) ¨¤¥ « �à¥è¥  «£¥¡àë A. �á«¨ í«¥¬¥­â a 2 F (A) ï¢«ï-¥âáï ®¡ê¥¤¨­¥­¨¥¬  â®¬®¢ a1; : : : ; an, â® ¯®àï¤ª®¬ jaj í«¥¬¥­â  a ­ §ë-¢ ¥âáï ç¨á«® n, â® ¥áâì jaj = n. �á«¨ ¦¥ a =2 F (A), â® ¯®« £ ¥¬ jaj = !.�á«¨ �a = ha0; : : : an�1i, ai 2 A, â® ¯®¤ «£¥¡à , ¯®à®¦¤¥­­ ï í«¥¬¥­â ¬¨ai, ®¡®§­ ç ¥âáï A(�a). �®á«¥¤®¢ â¥«ì­®áâì í«¥¬¥­â®¢ a1; : : : ; an ­ §ë-¢ ¥âáï ¤¨§êî­ªâ¨¢­®©, ¥á«¨ ¤«ï «î¡ëå i; j < n, i 6= j ¢¥à­® ai^aj = 0¨ a1 _ : : : _ an = 1. �a ®¡®§­ ç ¥âáï ¤®¯®«­¥­¨¥ í«¥¬¥­â  a.�¥¬¬  B. �á«¨ ¯®á«¥¤®¢ â¥«ì­®áâì í«¥¬¥­â®¢ a1; : : : ; an ¡ã«¥¢®©  «-£¥¡àë A ¤¨§êî­ªâ¨¢­ , â® «î¡®© í«¥¬¥­â x 2 A ¨¬¥¥â ¥¤¨­áâ¢¥­­®¥¯à¥¤áâ ¢«¥­¨¥ ¢ ¢¨¤¥ x = x1 _ : : : _ xn, £¤¥ xi 2 cai.�ãáâì A { áç¥â­ ï ¡ã«¥¢   «£¥¡à , B, C { ª®­¥ç­ë¥ ¡ã«¥¢ë  «£¥-¡àë, ' :B! A { ¢«®¦¥­¨¥ ¨ b0; : : : ; bn�1 {  â®¬ë  «£¥¡àëB, '(bi) = b0i,i < n.�¥¬¬  1 �ã«¥¢   «£¥¡à  C ¯à¨­ ¤«¥¦¨â �AB;' â®£¤  ¨ â®«ìª® â®£¤ ,ª®£¤  jbij � jb0ij ¤«ï «î¡®£® i < n.�®ª § â¥«ìáâ¢®. �ãáâì  «£¥¡àë bb01; : : : ; db0k�1 { ª®­¥ç­ë ¨ ç¨á«® â®¬®¢  «£¥¡àë bb0j à ¢­® rj ¨ cb0k; : : : ; db0n�1 { ¡¥áª®­¥ç­ë.�ãáâì C 2 �AB;'. � ª ª ª bbj ¨§®¬®àä­  ¯®¤ «£¥¡à¥ ª®­¥ç­®© ¡ã«¥-¢®©  «£¥¡àë bb0j, â® ç¨á«®  â®¬®¢ bbj ­¥ ¯à¥¢®áå®¤¨â ç¨á«   â®¬®¢ bb0j, â®¥áâì jbjj � jb0jj, j < k. �®áª®«ìªã bb0i { ¡¥áª®­¥ç­ë ¤«ï i � k, â® jb0ij = !.�®ª ¦¥¬ ¤®áâ â®ç­®áâì. �ãáâì ç¨á«®  â®¬®¢ ¡ã«¥¢®©  «£¥¡àë bbià ¢­® ei, i < n ¨ ej � rj, j < k, ¨ Ci = fci1; : : : ; cieig { ¬­®¦¥áâ¢® â®¬®¢  «£¥¡àë bbi. �®ª ¦¥¬, çâ® áãé¥áâ¢ã¥â ¢«®¦¥­¨¥  i : bbi ! bb0i.67



�.�. �¨á ¬¨¥¢1: �ãáâì i < k. � íâ®¬ á«ãç ¥ ¢¬¥áâ® i ¡ã¤¥¬ ¯¨á âì j. �® ãá«®¢¨îbb0j ª®­¥ç­  ¨ ç¨á«® ¥¥  â®¬®¢ à ¢­® rj. �ãáâì Dj = fdj1; : : : ; djrjg{ ¬­®¦¥áâ¢® ¢á¥å ¥¥  â®¬®¢. �¯à¥¤¥«¨¬ ®â®¡à ¦¥­¨¥  j : Cj ! Djá«¥¤ãîé¨¬ ®¡à §®¬. �á«¨ ej = rj, â®  j(cjt) = djt, t � ej. �á«¨ ej < rj,â® ¯®«®¦¨¬  j(cjt) = djt, t < ej,  j(cjej ) = b0jn St<ej djt. �â®¡à ¦¥­¨¥  j¬®¦­® ¯à®¤®«¦¨âì ¤® ¢«®¦¥­¨ï  j : bbj ! bb0j ¨  j(bj) = b0j.2: �ãáâì i � k ¨ ç¨á«®  â®¬®¢ ¡ã«¥¢®©  «£¥¡àë bb0i à ¢­® �i. �á«¨íâ® ç¨á«® ¡¥áª®­¥ç­®, â® �i = !. �á«¨ ei � �i, â® â ª¦¥ ª ª ¨ ¢ á«ãç ¥1 ¬®¦­® ¯®áâà®¨âì ¢«®¦¥­¨¥  i : bbi ! bb0i.�®¯ãáâ¨¬ ei > �i. �¥à¥§ Di = fdi1; : : : ; di�ig ®¡®§­ ç¨¬ ¬­®¦¥áâ¢®¢á¥å  â®¬®¢  «£¥¡àë bb0i ¨ d = di0 _ : : : _ di�i. �®£¤  b�d { ¡¥§ â®¬­ ï  «-£¥¡à . �ãáâì ei � �i = ni > 0. �ë¡¥à¥¬ ¢ b�d ¤¨§êî­ªâ¨¢­ë¥ í«¥¬¥­âëd1; : : : ; dni . �¯à¥¤¥«¨¬ ®â®¡à ¦¥­¨¥  i : bbi ! bb0i á«¥¤ãîé¨¬ ®¡à §®¬: i(cit) = dit, ¥á«¨ t � �i ¨  i(ci�i+1) = d1; : : : ;  i(ciei) = dni. �â®¡à ¦¥-­¨¥  i ¬®¦­® ¯à®¤®«¦¨âì ¤® âà¥¡ã¥¬®£® ¢«®¦¥­¨ï  i : bbi ! bb0i.�® «¥¬¬¥ B ¢«®¦¥­¨ï  i, i < n, ®¯à¥¤¥«ïîâ âà¥¡ã¥¬®¥ ¢«®¦¥­¨¥ : C! A. �«¥¤®¢ â¥«ì­® C 2 �AB;'. ��§ «¥¬¬ë 1 á«¥¤ã¥â�¥®à¥¬  3 �«ï «î¡®© áç¥â­®© ¡ã«¥¢®©  «£¥¡àë A á¯à ¢¥¤«¨¢® ãá«®-¢¨¥ ¢ëç¨á«¨¬®© ¢«®¦¨¬®áâ¨ á¨áâ¥¬.�âáî¤  ¨ á«¥¤áâ¢¨ï 1 ¯®«ãç ¥¬�«¥¤áâ¢¨¥ 3 �î¡ ï áç¥â­ ï ­¥ ª®­áâàãªâ¨¢¨§¨àã¥¬ ï ¡ã«¥¢   «£¥-¡à  ­¥ ¨¬¥¥â áâ¥¯¥­¨.�§ â¥®à¥¬ë 1 [8] ¨ «¥¬¬ë 1 ¢ëâ¥ª ¥â�«¥¤áâ¢¨¥ 4 �ãáâì A1, i = 0; 1 { ¡ã«¥¢ë  «£¥¡àë ¨ xi 2 HF (Ai).�®£¤  á«¥¤ãîé¨¥ ãá«®¢¨ï íª¢¨¢ «¥­â­ë:1: hHF (A0); x0i �1 hHF (A1); x1i.2: �ãé¥áâ¢ãîâ ç¨á«® n ¨ í«¥¬¥­â { 2 HF (n), ¯®á«¥¤®¢ â¥«ì­®-áâ¨ �pi = Dpi0; : : : ; pin�1E, pij 2 Ai ¨  â®¬ë ui0; : : : ; uim�1  «£¥¡à Ai(�pi),¯®à®¦¤¥­­ë¥ �pi, â ª¨¥, çâ® xi = {(�pi), ju0j j = ju1j j, ¨ ®â®¡à ¦¥­¨¥f : A0(�p0) ! A1(�p1), ®¯à¥¤¥«¥­­®¥ à ¢¥­áâ¢ ¬¨ f(u0j) = u1j , ¥áâì ¨§®-¬®àä¨§¬ ¨ f(�p0) = �p1. 68



�.�. �¨á ¬¨¥¢�«¥¤ãîé ï «¥¬¬  ¥áâì  ­ «®£ § ¬¥ç ­¨ï 1 [7].�¥¬¬  C. �ãáâìM ¨M0 { ¬®¤¥«¨ ®¤­®© á¨£­ âãàë, ¯à¨ç¥¬ N ï¢«ï-¥âáï �-®¯à¥¤¥«¨¬®© ¢ M ä®à¬ã« ¬¨ '; 0; : : : , £¤¥  0 { ®¯à¥¤¥«ï¥âíª¢¨¢ «¥­â­®áâì � á ¯ à ¬¥âà ¬¨ �a 2 M . �ãáâì áãé¥áâ¢ã¥â �b ¨§M 0 â ª®©, çâ® hM; �ai �1 DM0;�bE ¨ ®â­®è¥­¨¥ T � M! � M!0 â -ª®¥,çâ® T (�x; �y) ! hM; �a; �xi �1 DM0;�b; �yE, 8�x 2 M!9�y 2 M!0T (�x; �y) &8�y 2M!09�x 2M!T (�x; �y) ¨ T (�x; �y) ! T (xi; yi), ¯à¨ç¥¬1: T (x; y) & T (x0; y) & '(x)!  0(x; x0)2: T (x; y) & T (x; y0) & '(x)!  00(y; y0);£¤¥  00 ¯®«ãç ¥âáï ¨§  0 § ¬¥­®© �a ­  �b. �®£¤  ¢ M0 ®¯à¥¤¥«¨¬  N¯®áà¥¤áâ¢®¬ '0;  00; : : : , ª®â®àë¥ ¯®«ãç îâáï ¨§ '; 0; : : : § ¬¥­®© �a­  �b.�¥¬¬  2 �á«¨ í«¥¬¥­â   ­¥ áã¯¥à â®¬­ë©, â® ¤«ï «î¡®£® n áãé¥-áâ¢ãîâ í«¥¬¥­âë c1; : : : ; cn â ª¨¥, çâ® jcij = ! ¨ a = c1 _ : : : _ cn,ci ^ cj = 0, i 6= j.�ãáâì ¤«ï ¬®¤¥«¨ N á¨£­ âãàë hP 2i á¯à ¢¥¤«¨¢ë ãá«®¢¨ï:1: N j= 8x8y(P (x; y)_ P (y; x)):2: N j= 8x8y(P (x; y)&P (y; x)! x = y):�«¥¤ãîé ï â¥®à¥¬  ®¡®¡é ¥â â¥®à¥¬ã 2 [7].�¥®à¥¬  4 �ãáâì A { áç¥â­ ï ¡ã«¥¢   «£¥¡à  ¨ ¬®¤¥«ì N �-®¯à¥¤¥-«¨¬  ¢ HF (A). �®£¤  N ª®­áâàãªâ¨¢¨§¨àã¥¬ .�®ª § â¥«ìáâ¢®. �ãáâì ¬®¤¥«ì N �-®¯à¥¤¥«¨¬  ¢ HF (A). �á«¨  «-£¥¡à  A ª®­áâàãªâ¨¢¨§¨àã¥¬ , â® ¨ ¬®¤¥«ì N ª®­áâàãªâ¨¢¨§¨àã¥¬ .�®íâ®¬ã ¬®¦­® áç¨â âì, çâ® A ­¥ ª®­áâàãªâ¨¢¨§¨àã¥¬ . �âáî¤  á«¥-¤ã¥â, çâ® á¯à ¢¥¤«¨¢® ãá«®¢¨¥: ¥á«¨ ¡ã«¥¢   «£¥¡à  A áã¯¥à â®¬­ ,â® ¥¥ ®à¤¨­ «ì­ë© â¨¯ o(A) > 3. �¯à¥¤¥«¨¬ ¡ã«¥¢ã  «£¥¡àã B á«¥-¤ãîé¨¬ ®¡à §®¬. �á«¨ A  â®¬­ ï  «£¥¡à , â® B =B!3 . �á«¨ A ­¥ï¢«ï¥âáï  â®¬­®©, â® B =B!3LB�, £¤¥ � áç¥â­ë© ¯«®â­ë© «¨­¥©­ë©¯®àï¤®ª ¡¥§ ª®­æ®¢. �® «¥¬¬¥ C ¤®áâ â®ç­® ¯®áâà®¨âì á®®â¢¥âáâ¢¨¥T : HF (A)! HF (B) ª®â®à®¥ ã¤®¢«¥â¢®àï¥â ãá«®¢¨ï¬ íâ®© «¥¬¬ë.�¯à¥¤¥«¨¬ ç áâ¨ç­ë© ¨§®¬®àä¨§¬ f : A!B á«¥¤ãîé¨¬ ®¡à -§®¬. �ãáâì  «£¥¡à  A ­¥ ï¢«ï¥âáï  â®¬­®©. �ãáâì U = fu1; : : : ; upg69



�.�. �¨á ¬¨¥¢{ ¬­®¦¥áâ¢® ¢á¥å  â®¬®¢ ¡ã«¥¢®©  «£¥¡àë A(�a). �¯à¥¤¥«¨¬ ®â®¡à ¦¥-­¨¥ f0 : U ! B, f0(ui) = vi. �¨§êî­ªâ­ë¥ í«¥¬¥­âë vi ®¯à¥¤¥«ï¥¬â ª, çâ®¡ë ¢ë¯®«­ï«¨áì á«¥¤ãîé¨¥ ãá«®¢¨ï. � áá¬®âà¨¬ ¢®§¬®¦­ë¥á«ãç ¨:1: ui { áã¯¥à â®¬­ë© í«¥¬¥­â.�®£¤ , ¥á«¨ � (ui) < h3; 1i, â® � (vi) = � (ui).�á«¨ ¦¥ � (ui) � h3; 1i, â® � (vi) � h3; 1i.2: ui {  â®¬­ë©, ­® ­¥ áã¯¥à â®¬­ë©.�®£¤  � (vi) � h3; 1i.3: ui = u0i _ u00i , £¤¥ u0i {  â®¬­ë© ¨«¨ u0i = 0,   u00i { ¡¥§ â®¬­ë©.�®£¤  vi = v0i _ v00i , £¤¥ v0i ®¯à¥¤¥«ï¥âáï ¯® u0i â ª¦¥ ª ª ¨ ¢ á«ãç ïå 1,2,   v00i {¡¥§ â®¬­ë© í«¥¬¥­â.4: �«ãç ¨ 1{3 ­¥ ¨¬¥îâ ¬¥áâ .�®£¤  vi = v0i _ v00i , £¤¥ � (v0i) � h3; 1i,   v00i {¡¥§ â®¬­ë© í«¥¬¥­â.�á«¨ ¦¥ A ï¢«ï¥âáï  â®¬­®©, â® ¬®£ãâ ¡ëâì â®«ìª® á«ãç ¨ 1, 2.�®£¤  í«¥¬¥­âë vi 2 B ®¯à¥¤¥«ï¥¬ â ª¦¥, ª ª ®­¨ ®¯à¥¤¥«¥­ë ¢ á«ã-ç ïå 1, 2.�â®¡à ¦¥­¨¥ f0 ¬®¦­® ¯à®¤®«¦¨âì ¤® ¨§®¬®àä­®£® ¢«®¦¥­¨ï f :A(�a) ! B. �®« £ ¥¬ bi = f(ai). �ãáâì ç áâ¨ç­ë© ¨§®¬®àä¨§¬ f� :HF (A) ! HF (B) ¯à®¤®«¦ ¥â f ¨ �b = f�(�a). �® á«¥¤áâ¢¨î 4 ¨¬¥¥¬hHF (A); �ai �1 DHF (B);�bE. �¥©áâ¢¨â¥«ì­®, ¯ãáâì ui = a"i11 ^: : :^a"ikk 
�a�"i, £¤¥ "j = 0; 1. �®£¤  vi = f(ui) = f(�a�"i) = �b�"i. �«¥¤®¢ â¥«ì­® viï¢«ï¥âáï  â®¬®¬ ¡ã«¥¢®©  «£¥¡àë B(�b) ¨ ¨§ ®¯à¥¤¥«¥­¨ï äã­ªæ¨¨ fá«¥¤ã¥â, çâ® juij = jvij.�¯à¥¤¥«¨¬ á®®â¢¥âáâ¢¨¥ T : HF (A) ! HF (B) á«¥¤ãîé¨¬ ®¡à -§®¬. �ãáâì x 2 HF (A), y 2 HF (B). �®« £ ¥¬ T (x; y) â®£¤  ¨ â®«ìª®â®£¤ , ª®£¤  áãé¥áâ¢ã¥â ç áâ¨ç­ë© ¨§®¬®àä¨§¬ g : HF (A) ! HF (B)ã¤®¢«¥â¢®àïîé¨© ãá«®¢¨ï¬:1: g ¯à®¤®«¦ ¥â f�.2: �á«¨ x = {(�p), â® y = g(x) = {(�q).3: �ãé¥áâ¢ãîâ  â®¬ë xi; : : : ; xn ¨ y1; : : : ; yn á®®â¢¥âáâ¢¥­­® ¡ã«¥-¢ëå  «£¥¡à A(�a; �p) ¨ B(�b; �q) â ª¨¥, çâ® jxij = jyij ¨ g(xi) = yi, g(pj) = qj¤«ï «î¡ëå i; j.�®ª ¦¥¬, çâ® ¤«ï á®®â¢¥âáâ¢¨ï T á¯à ¢¥¤«¨¢ë ¢á¥ ãá«®¢¨ï «¥¬¬ëC.�¥¬¬  3 �«ï ª ¦¤®£® í«¥¬¥­â  x 2 HF (A) áãé¥áâ¢ã¥â í«¥¬¥­ây 2 HF (B) â ª®©, çâ® T (x; y). 70



�.�. �¨á ¬¨¥¢�®ª § â¥«ìáâ¢®. �ãáâì  «£¥¡à  A ­¥  â®¬­ . �àã£®© á«ãç ©à áá¬ âà¨¢ ¥âáï  ­ «®£¨ç­®. �ãáâì x1; : : : ; xn  â®¬ë ¡ã«¥¢®©  «£¥¡àëA(�a; �p). �«ï ª ¦¤®£® í«¥¬¥­â  xi ®¯à¥¤¥«¨¬ í«¥¬¥­â yi á«¥¤ãîé¨¬®¡à §®¬. �ãáâì ¤«ï ®¯à¥¤¥«¥­­®áâ¨ i = 1 ¨ u1 = x1 _ : : : _ xt, £¤¥í«¥¬¥­âë uj, vj â ª¨¥ ¦¥, ª ª ¨ ¯à¨ ®¯à¥¤¥«¥­¨¨ ®â®¡à ¦¥­¨ï f . � á-á¬®âà¨¬ ¢®§¬®¦­ë¥ á«ãç ¨:1: u1 {  â®¬­ë© í«¥¬¥­â. �á«¨ ¦¥ u1 { cã¯¥à â®¬­ë©, â® ¨ v1{ áã¯¥à â®¬­ë©. �®£¤  áãé¥áâ¢ã¥â â ª®¥ à §¡¨¥­¨¥ í«¥¬¥­â  v1 ­ y1; : : : ; yt, çâ® jxij = jyij, 1 � i � t. �á«¨ ¦¥ u1 { ­¥ áã¯¥à â®¬­ë©, â®v1 â ª®©, çâ® � (vi) � h3; 1i. �®£¤  ®¯ïâì áãé¥áâ¢ã¥â fyig, çâ® jxij = jyij.2: �ãáâì u1 = u01 _ u001, £¤¥ u01 {  â®¬­ë©,   u001 { ¡¥§ â®¬­ë©. �®£¤ xi = x0i _ x00i , £¤¥ x0i = xi ^ u01, x00i = xi ^ u001 ¨ í«¥¬¥­â v1 = v01 _ v001 , £¤¥ v01{  â®¬­ë© ¨ v001 { ¡¥§ â®¬­ë©. �®£¤  ¯® á«ãç î 1 ¬®¦­® ­ ©â¨ â ª¨¥í«¥¬¥­âë fy0ig, çâ® jx0ij = jy0ij. � §®¡ì¥¬ í«¥¬¥­â v001 ­  fy00i g â ª, çâ®x00i = 0, y00i = 0. �®«®¦¨¬ yi = y0i _ y00i .3: �ãáâì ­¥ ¢ë¯®«­¥­ë á«ãç ¨ 1 ¨ 2. �®£¤  u1 á®¤¥à¦¨â ¡¥áª®-­¥ç­®¥ ç¨á«®  â®¬®¢ ¨ ¡¥§ â®¬­ë© í«¥¬¥­â. �®£¤  v1 = v01 _ v001, £¤¥� (v0i) � h3; 1i, v001 { ¡¥§ â®¬­ë© í«¥¬¥­â. �ë¡¥à¥¬ à §¡¨¥­¨¥ fyig í«¥-¬¥­â  v1 á«¥¤ãîé¨¬ ®¡à §®¬. �ãáâì xi {  â®¬­ë© í«¥¬¥­â. �®£¤ áãé¥áâ¢ã¥â yi < v01, çâ® jxij = jyij. �®¯ãáâ¨¬ xi = x0i_x00i , £¤¥ x0i {  â®¬-­ë© ¨ x00i { ¡¥§ â®¬­ë© í«¥¬¥­âë. �®£¤  ¬®¦­® ­ ©â¨ yi = y0i_y00i â ª®©,çâ® y0i {  â®¬­ë©, y00i { ¡¥§ â®¬­ë© í«¥¬¥­âë ¨ jx0ij = jy0ij. �®¯ãáâ¨¬ ¤«ïxi ­¥ ¢ë¯®«­¥­ë ¯à¥¤è¥áâ¢ãîé¨¥ á«ãç ¨. �®£¤  ­ ©¤¥¬ yi = y0i _ y00i ,â ª®© çâ® y0i {  â®¬­ë©, y00i { ¡¥§ â®¬­ë© í«¥¬¥­âë ¨ jx0ij = jy0ij.� ª¨¬ ®¡à §®¬, ®¯à¥¤¥«¥­ë y1; : : : ; yt; í«¥¬¥­âë yt+1; : : : ; yn ®¯à¥-¤¥«ïîâáï  ­ «®£¨ç­®. ��¥¬¬  4 �«ï ª ¦¤®£® í«¥¬¥­â  y 2 HF (B) áãé¥áâ¢ã¥â í«¥¬¥­âx 2 HF (A) â ª®©, çâ® T (x; y).�®ª § â¥«ìáâ¢®. �ãáâìB = B!3LB�. �®£¤   «£¥¡à  A ­¥  â®¬-­ . �ãáâì v1 = y1 _ : : : _ yt. �¯à¥¤¥«¨¬ x1; : : : ; xt ¨§ A. � áá¬®âà¨¬¢®§¬®¦­ë¥ á«ãç ¨:1: �ãáâì v1 2 B!3 . �®£¤  x1; : : : ; xt ®¯à¥¤¥«ïîâáï ª ª ¨ ¢ á«ãç ¥ 1«¥¬¬ë 12.2: �ãáâì vi 2 B�. �®£¤  u1 { ¡¥§ â®¬­ë© í«¥¬¥­â. � §¡¨¥­¨¥ fxigí«¥¬¥­â  u1 â ª®¥, çâ® ¢ë¯®«­¥­  íª¢¨¢ «¥­â­®áâì xi = 0 , yi = 0,¡ã¤¥â ¨áª®¬ë¬. 71



�.�. �¨á ¬¨¥¢3: �ãáâì v1 = v01 _ v001 , v01 2 B!3 , v001 2 B�.�®£¤  à áá¬®âà¨¬ ¢®§¬®¦­ë¥ á«ãç ¨:1: �ãáâì u1 = u01_u001, £¤¥ u01 {  â®¬­ë©, u001 { ¡¥§ â®¬­ë© í«¥¬¥­âë.�á«¨ � (v01) < h3; 1i, â® í«¥¬¥­â u01 cã¯¥à â®¬­ë© ¨ � (u01) = � (v01). �®-íâ®¬ã, ¥á«¨ yi = y0i_y00i , â® u01 ¬®¦­® à §¡¨âì ­  fx0ig, â ª çâ® jx0ij = jy0ij.�á«¨ ¦¥ � (v01) � h3; 1i, â® «¨¡® u01 áã¯¥à â®¬­ë© ¨ � (u01) � h3; 1i, «¨-¡®  â®¬­ë©, ­® ­¥ áã¯¥à â®¬­ë©. �§ «¥¬¬ë 2 á«¥¤ã¥â, çâ® ¢ «î¡®¬á«ãç ¥ áãé¥áâ¢ã¥â â ª®¥ à §¡¨¥­¨¥ fx0ig í«¥¬¥­â  u01, çâ® jx0ij = jy0ij.�«¥¬¥­âë x00i ï¢«ïîé¨¥áï à §¡¨¥­¨¥¬ u001 ®¯à¥¤¥«ïîâáï ¨§ ãá«®¢¨ï:x00i = 0, y00i = 0. �«¥¬¥­âë xi = x0i _ x00i ¡ã¤ãâ ¨áª®¬ë¬¨.2: �ãáâì ­¥ ¢ë¯®«­¥­ á«ãç © 1. �«¥¤®¢ â¥«ì­® � (v01) � h3; 1i ¨ ¯®¤u1 ¨¬¥¥âáï ¡¥áª®­¥ç­®¥ ¬­®¦¥áâ¢®  â®¬®¢ ¨ ¡¥§ â®¬­ë© í«¥¬¥­â u001.�ãáâì yi = y0i_y00i ¨ y1; : : : ; yr�1 â ª¨¥, çâ® jy0ij < !, i < r ¨ yr; : : : ; yt â -ª¨¥, çâ® jy0jj = !, j � r. �®£¤  ¯ãáâì í«¥¬¥­âë x0i < u1, â ª¨¥ çâ® jx0ij =jy0ij, i < r. � §®¡ì¥¬ í«¥¬¥­â u001 ­  í«¥¬¥­âë x001; : : : ; x00r�1; xr; : : : ; xt�1â ª, çâ® x00i = 0, y00i = 0, i < r. �¯à¥¤¥«¨¬ xt = u1 n ( Wi<r x0i _ u001).� ª¨¬ ®¡à §®¬, ®¯à¥¤¥«¥­ë x1; : : : ; xt; í«¥¬¥­âë xt+1; : : : ; xn ®¯à¥-¤¥«ïîâáï  ­ «®£¨ç­®. ��¥¬¬  5 �á«¨ T (�x; �y), â® T (xi; yi).�®ª § â¥«ìáâ¢®. �ãáâì xi = {i(�pi), �pi = Dpi1; : : : ; pikiE, i = 1; : : : ; k.�®£¤  yi = {i(�qi) ¨ g(�pi) = �qi. �®ª ¦¥¬, ¤«ï ®¯à¥¤¥«¥­­®áâ¨, çâ®T (x1; y1). �ãáâì S = kSj=1 kiSi=1 pji = fp1; : : : ; ps; c1; : : : ; clg ¨ p11 = p1; : : : ;p1k1 = ps. �®ª ¦¥¬, çâ® áãé¥áâ¢ã¥â ¨§®¬®àä¨§¬ g1 : A(�a; �p1) !B(�b; �q1)¨ g1(�p1) = �q1. �â®¬ ¬¨  «£¥¡àë A(�a; �p; �c) ¡ã¤ãâ x�"���
 = �a�" ^ �p�� ^ �c�
 
�a�"�p���c�
 , £¤¥ "i; �j; 
r = 0; 1. �® ®¯à¥¤¥«¥­¨î T (�x; �y) ¨¬¥¥¬, çâ® g(x�"���
) =�b�"�q �� �d�
, £¤¥ g(ci) = di. �â®¬ ¬¨  «£¥¡àë A(�a; �p1) ¡ã¤ãâ x�"�� = S�
 �a�"�p���c�
 .�®£¤  g(x�"��) = S�
 �b�"�q �� �d�
 
 y�"�� . �¥£ª® § ¬¥â¨âì, çâ® í«¥¬¥­âë y�"�� ï¢«ï-îâáï  â®¬ ¬¨  «£¥¡àë B(�b; �q1). �«¥¬¥­â pi = S�"��fx�"�� j �i = 1g. �® ®¯à¥-¤¥«¥­¨î ®â®¡à ¦¥­¨ï g ¨¬¥¥¬ g(p1i ) = g(pi) = S�"��fy�"�� j �i = 1g = qi = q1i .�«¥¤®¢ â¥«ì­®, g(�p1) = �q1. �¥£ª® ¯à®¢¥à¨âì, çâ® jx�"�� j = jy�"��j. �®£¤ g1 
 g � A(�a; �p1) ï¢«ï¥âáï ¨áª®¬ë¬. �ãáâì ç áâ¨ç­ë© ¨§®¬®àä¨§¬72



�.�. �¨á ¬¨¥¢g�1 : HF (A) ! HF (B) ¯à®¤®«¦ ¥â g1. �¥£ª® ¯à®¢¥à¨âì, çâ® g�1 ã¤®-¢«¥â¢®àï¥â ¢á¥¬ ãá«®¢¨ï¬ ®¯à¥¤¥«¥­¨ï T (x1; y1). �­ «®£¨ç­® ¢¥à­®T (xi; yi). ��§ ®¯à¥¤¥«¥­¨ï á®®â¢¥âáâ¢¨ï T ¨ á«¥¤áâ¢¨ï 4 á«¥¤ã¥â�¥¬¬  6 �á«¨ T (x; y), â® hHF (A); �a; xi �1 DHF (B);�b; yE.� ¤ «ì­¥©è¥¬ à áá¬ âà¨¢ îâáï ¯®á«¥¤®¢ â¥«ì­®áâ¨ ¢¨¤ �x = hx1; : : : ; xti, �y = hy1; : : : ; yti, xi; yi 2 A â ª¨¥, çâ® xi^xj = yi^yj = o,i 6= j, _xi = _yi ¨ jxij = jyij.�®á«¥¤®¢ â¥«ì­®áâ¨ �x ¨ �y ­ §®¢¥¬ 1-à ¢­ë¬¨ ¨ ¡ã¤¥¬ ¯¨á âì �x ' �y,¥á«¨ jxi ^ yjj = jxj ^ yij:�®á«¥¤®¢ â¥«ì­®áâ¨ �x ¨ �y ­ §®¢¥¬ íª¢¨¢ «¥­â­ë¬¨ ¨ ¡ã¤¥¬ ¯¨á âì�x � �y, ¥á«¨ áãé¥áâ¢ãîâ â ª¨¥ ¯®á«¥¤®¢ â¥«ì­®áâ¨ �x1; : : : ; �xn â ª¨¥, çâ®�x1 = �x, �xn = �y ¨ �x1 ' �x2 ' : : : ' �xn:�¥¬¬  7 �ãáâì ci � xi, cj � xj ¨ jcij = jcjj. �ãáâì ¯®á«¥¤®¢ â¥«ì-­®áâì �z ¯®«ãç¥­  ¨§ �x § ¬¥­®© xi ­  (xi n ci) _ cj,   xj ­  (xj n cj) _ ci.�®£¤  �x � �z.�®á«¥¤®¢ â¥«ì­®áâì �z ¨§ «¥¬¬ë 7 ®¡®§­ ç¨¬ ç¥à¥§ [�x]cicj .�¥¬¬  8 �ãáâì ci � xi â ª®©, çâ® jxi n cij = jxjj = !. �®á«¥¤®¢ -â¥«ì­®áâì �z ¯®«ãç¥­  ¨§ �x § ¬¥­®© xi ­  xi n ci,   xj ­  xj _ ci. �®£¤ �x � �z.�®á«¥¤®¢ â¥«ì­®áâì �z ¨§ «¥¬¬ë 8 ®¡®§­ ç¨¬ ç¥à¥§ [�x]cij .�¥¬¬  9 �ãáâì ¤ ­ë ¯®á«¥¤®¢ â¥«ì­®áâì �x ¨ �y ¨ jx1j; : : : ; jxkj < !.�®£¤  áãé¥áâ¢ãîâ ¯®á«¥¤®¢ â¥«ì­®áâ¨ �u ¨ �z â ª¨¥, çâ® �x � �u, �y � �z¨ u1 = z1; : : : ; uk = zk.�¥¬¬  10 �ãáâì T (x; y), T (y; z) ¨ '(x). �®£¤   0(x; y).73



�.�. �¨á ¬¨¥¢�®ª § â¥«ìáâ¢®. �ãáâì T (x; y) ¨ T (y; z). �ãáâì u1; : : : ; up, {(�p),x1; : : : ; xt â ª¨¥ ¦¥ ª ª ¢ ®¯à¥¤¥«¥­¨¨ T (x; z). �®£¤  áãé¥áâ¢ã¥â â ª ï¯®á«¥¤®¢ â¥«ì­®áâì �q, çâ® y = {(�q) ¨  â®¬ë y1; : : : ; yn  «£¥¡àë A(�a; �q),çâ® áãé¥áâ¢ã¥â ¨§®¬®àä¨§¬ h : A(�a; �p) ! A(�a; �q), h(ui) = ui. �ã¤¥¬¯à¥¤¯®« £ âì, çâ® h(xi) = yi ¨ jxij = jyij. �ãáâì e { ä¨ªá¨à®¢ ­­®¥ç¨á«®, 1 � e � p ¨ �xe = Dxe1; : : : ; xeteE, �ye = Dye1; : : : ; yeteE  â®¬ë ¡ã«¥¢ëå «£¥¡à A(�a; �p), A(�a; �q) «¥¦ é¨¥ ¯®¤ ue. �®ª ¦¥¬, çâ® ¤«ï ª ¦¤®£® e¢ë¯®«­¥­® �xe � �ye.� ¤ «ì­¥©è¥¬ ¨­¤¥ªá e ¡ã¤¥¬ ®¯ãáª âì ¨ te ®¡®§­ ç¨¬ ç¥à¥§ n.�® «¥¬¬¥ 9 ¬®¦­® áç¨â âì, çâ® ¥á«¨ jxij < !, â® xi = yi. �®íâ®¬ã¬®¦­® áç¨â âì, çâ® ¤«ï «î¡®£® i ¢¥à­® jxij = !. �®¯ãáâ¨¬,çâ® ¯®á«¥-¤®¢ â¥«ì­®áâì �x ­¥ 1-à ¢­  �y. �à¥¤¯®« £ ¥¬, çâ® ¬­®¦¥áâ¢® ¯ à ç¨á¥«ã¯®àï¤®ç¥­® «¥ªá¨ª®£à ä¨ç¥áª¨©. �®«®¦¨¬ cij = xi ^ yj, 1 � i; j � n.�ãáâì hi; ji ¬¨­¨¬ «ì­ ï ¯ à  â ª ï, çâ® jcijj > jcjij ¨ i < j. �®£¤ jcjij < !. � ª ª ª jyij = jxij = !, â® áãé¥áâ¢ã¥â â ª®¥ s 2 !, çâ®jcsij = !.� áá¬®âà¨¬ ¢®§¬®¦­ë¥ á«ãç ¨:I. s < j.�®£¤  jcisj = jcsij = !. � áá¬®âà¨¬ ¯®á«¥¤®¢ â¥«ì­®áâì �x1 = [�x]cijj .� ª ª ª cis � xi n cij, â® jxi n cijj = !. �® «¥¬¬¥ 8 ¨¬¥¥¬ �x1 � �x.�ãáâì �x1 = hx11; : : : ; x1ni. �¥¯¥àì à áá¬®âà¨¬ ¯®á«¥¤®¢ â¥«ì­®áâì �x2 =[�x1]x1j^yii . � ª ª ª x1j ^yi = [xj_cij]^yi = cji, â® jx1j ^yij < !. �âáî¤  ¯®«¥¬¬¥ 8 ¨¬¥¥¬ �x1 � �x2. �¥£ª® § ¬¥â¨âì, çâ® ¤«ï ¯®á«¥¤®¢ â¥«ì­®áâ¥©�x2, �y ¯ à  hi; ji ­¥ ¬¨­¨¬ «ì­  ¨ jx2mj = jymj ¤«ï «î¡®£® 1 � m � n.II. s > j.�¤¥áì à áá¬®âà¨¬ ¢®§¬®¦­ë¥ á«ãç ¨:IIa) jcijj = !�ãáâì �x1 = [�x]cjis . � ª ª ª jcjij < !, â® ¯® «¥¬¬¥ 8 ¨¬¥¥¬ �x � �x1.� áá¬®âà¨¬ í«¥¬¥­â �x2 = [�x1]x1s^yix1i^yj . � ª ª ª jcji _ csij = jcijj = !, â®¯® «¥¬¬¥ 7 �x1 � �x2. �­®¢  ¯ à  hi; ji ­¥ ï¢«ï¥âáï ¬¨­¨¬ «ì­®© ¤«ï¯®á«¥¤®¢ â¥«ì­®áâ¥© �x2,�y ¨ jx2mj = jymj ¤«ï «î¡®£® 1 � m � n.IIb) jcijj = k > jcjij�®£¤  áãé¥áâ¢ã¥â í«¥¬¥­â c � cij â ª®©, çâ® jcij n cj = jcjij. � á-á¬®âà¨¬ �x1 = [�x]cj. �® «¥¬¬¥ 8 ¨¬¥¥¬ �x � �x1. �¥£ª® ¯à®¢¥à¨âì, çâ®¯ à  hi; ji ­¥ ï¢«ï¥âáï ¬¨­¨¬ «ì­®© ¤«ï ¯®á«¥¤®¢ â¥«ì­®áâ¥© �x1 ¨ �y¨ jx1mj = jymj ¤«ï «î¡®£® 1 � m � n. �à®¤®«¦ ï íâ® ¯®áâà®¥­¨¥ ¬ë74



�.�. �¨á ¬¨¥¢¯®«ãç¨¬ ¯®á«¥¤®¢ â¥«ì­®áâì�x ' �x1 ' : : : ' �xm = �y:�­ «®£¨ç­ë¥ ¯®áâà®¥­¨ï ¯à®¢®¤¨¬ ¤«ï «î¡®£® e, 1 � e � p. �®£¤ ¯®«ãç¨¬ ¯®á«¥¤®¢ â¥«ì­®áâ¨�xe = �xe0 ' �xe1 ' : : : ' �xeme = �ye:�ãáâì m = maxfmej 1 � e � pg. �®«®¦¨¬ ¤«ï ª ¦¤®£® e ¨ i, me �i � p, �xei = �ye. �®£¤  ¯®«ãç¨¬ ¯®á«¥¤®¢ â¥«ì­®áâ¨�xe = �xe0 ' �xe1 ' : : : ' �xem = �ye:� áá¬®âà¨¬ ¯®á«¥¤®¢ â¥«ì­®áâ¨�x = h�xe0 j 1 � e � pi ; �x1 = h�xe1 j 1 � e � pi ; : : : ;�xm = h�xem j 1 � e � pi = �y:�§ ¯®áâà®¥­¨ï ¨¬¥¥¬, çâ®�x = �x0 ' �x1 ' : : : ' �xm = �y:�ãáâì í«¥¬¥­âë x1; : : : ; xm�1 2 HF (B) ¯®«ãç¥­ë ¨§ í«¥¬¥­â®¢ �x1; : : : ;�xm�1 â ª¦¥ ª ª, í«¥¬¥­â x ¨§ í«¥¬¥­â®¢ �x. �®£¤  ¨§ á«¥¤áâ¢¨ï 4 ¨¬¥¥¬hHF (B); �a; xi; xi+1i �1 hHF (B); �a; xi+1; xii :�âáî¤  ¨ ¨§ ãá«®¢¨© ­  ¬®¤¥«ì N ¨¬¥¥¬  0(xi; xi+1). � ª ª ª  0 ®¯à¥-¤¥«ï¥â ª®­£àãí­â­®áâì ­  ¬®¤¥«¨ N, â®  0(x; y). �¥¬¬  ¤®ª § ­ .��§ «¥¬¬ �, 3-6 ¨ 10 á«¥¤ã¥â â¥®à¥¬ . ��«¥¤áâ¢¨¥ 5 �á«¨ L { «¨­¥©­ë© ¯®àï¤®ª �-®¯à¥¤¥«¨¬ë© ¢ HF (A) ­ ¤áç¥â­®© ¡ã«¥¢®©  «£¥¡à®© A, â® L { ª®­áâàãªâ¨¢¨§¨àã¥¬.75
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�.�. �¨á ¬¨¥¢� ¯®¯®«­¥­¨¨  à¨ä¬¥â¨ç¥áª¨å­ã¬¥à æ¨©�.�. �¨á ¬¨¥¢� § åáª¨© ­ æ¨®­ «ì­ë© ã­¨¢¥àá¨â¥â ¨¬. �«ì-� à ¡¨�­­®â æ¨ï�§ãç ¥âáï ®¯¥à æ¨ï ¯®¯®«­¥­¨ï ­ã¬¥à æ¨©. � à ¡®â¥ � ¤ ¥¢ -�®­ç à®¢ -�®à¡¨ íâ  ®¯¥à æ¨ï ¨á¯®«ì§ãâáï ¯à¨ ¨§ãç¥­¨¨ ¯®«ã-à¥è¥âª¨ �®¤¦¥àá  �0n -¢ëç¨á«¨¬ëå ­ã¬¥à æ¨© á¥¬¥©áâ¢  à¨ä-¬¥â¨ç¥áª¨å ¬­®¦¥áâ¢ ¨ áâ ï¢¨âáï ¢®¯à®á: ®áâ ­¥âáï «¨ ®á®¡ë©í«¥¬¥­â «î¡®£® ¯®¯®«­¥­¨ï ®á®¡ë¬ ¯à¨ ¯®¢â®à­®¬ ¯®¯®«­¥­¨¨®â­®á¨â¥«ì­® ¤àã£®£® í«¥¬¥­â . �¤¥áì ¯à¨¢®¤¨âáï à¥è¥­¨¥ íâ®£®¢®¯à®á . � «¥¥, à áá¬ âà¨¢ ¥âáï ¢®¯à®á ® à á¯à¥¤¥«¥­¨¨ ®á®¡ëå¨ ­¥®á®¡ëå í«¥¬¥­â®¢ ¯®«­®©  à¨ä¬¥â¨ç¥áª®© ­ã¬¥à æ¨¨.1 �á­®¢­ë¥ ®¯à¥¤¥«¥­¨ï�ãáâì A { á¥¬¥©áâ¢® �0n-¬­®¦¥áâ¢, � : N ! A { �0n -¢ëç¨-á«¨¬ ï ­ã¬¥à æ¨ï á¥¬¥©áâ¢  A â.¥. â ª ï, çâ® ®â­®è¥­¨¥ x 2 �(y)ï¢«ï¥âáï �0n ¯à¥¤¨ª â®¬. �­®¦¥áâ¢® ¢á¥å �0n-­ã¬¥à æ¨© á¥¬¥©áâ¢ A, á«¥¤ãï [1], ®¡®§­ ç e¬ Com0n(A). � [1] ¨§ãç ¥âáï ¯®«ãà¥è¥âª  �®-¤¦¥àá  �0n+1-¢ëç¨á«¨¬ëå ­ã¬¥à æ¨© á¥¬¥©áâ¢  A �0n+1-¬­®¦¥áâ¢ â.¥.¯®«ãà¥è¥âª  ­ã¬¥à æ¨© hCom0n+1(A)=�;6i. £¤¥ � - ®â­®è¥­¨¥ m-íª-¢¨¢ «¥­â­®áâ¨,   6 - ®â­®è¥­¨¥ á¢®¤¨¬®áâ¨ ­ã¬¥à æ¨©. � ª¦¥ à¥«ï-â¨¢¨§®¢ ­­ ï ¯®«ãà¥è¥âª  hCom0n+1(A)= �X;6Xi , £¤¥ ¢ ®â­®è¥­¨ïå�X;6X ¢¬¥áâ® íª¢¨¢ «¥­â­®áâ¨ ¨ á¢®¤¨¬®áâ¨ ¢ëç¨á«¨¬ë¬¨ äã­ªæ¨-ï¬¨ à áá¬ âà¨¢ îâáï c¢®¤¨¬®áâ¨ X-¢ëç¨á«¨¬ë¬¨ äã­ªæ¨ï¬¨ �®«¥§-­ë¬ ¨­áâàã¬¥­â®¬ ¨§ãç¥­¨ï â ª¨å ¯®«ãà¥è¥â®ª ®ª § « áì ®¯¥à æ¨ï¯®¯®«­¥­¨ï (¡¥§ ®à ªã« ) ¨ X-¯®¯®«­¥­¥­¨ï, ¢¢¥¤¥­­ ï �àè®¢ë¬ [3].� ª, ®¯¥à æ¨ï ¯®¯®«­¥­¨ï ¯®§¢®«ï¥â ¯®«ãç âì ­®¢ë¥ í«¥¬¥­âë ¢ ¯®-«ãà¥è¥âª¥ �®¤¦¥àá , «¥¦ é¨¥ "¢ëè¥" â¥å í«¥¬¥­â®¢, ª ª®â®àë¬ ¯à¨-¬¥­ï¥âáï ¯®¯®«­¥­¨¥. � à ¡®â¥ [1] áâ ¢¨âáï ¢®¯à®á (¢®¯à®á 2): ®áâ -­¥âáï «¨ ®á®¡ë© í«¥¬¥­â ®á®¡ë¬, ¥á«¨ ­ã¬¥à æ¨î ¯®¯®«­¨âì ¥é¥ à §77



�.�. �¨á ¬¨¥¢­® ®â­®á¨â¥«ì­® ¤àã£®£® í«¥¬¥­â ? �¤¥áì ¤ ¥âáï ®â¢¥â ­  íâ®â ¢®-¯à®á. � «¥¥, ®¯¥à æ¨ï 00-¯®¯®«­¥­¨ï ¤ ¥â ­ã¬¥à æ¨î ¢ ª®â®à®© ª -¦¤ë© í«¥¬¥­â ï¢«ï¥âáï ®á®¡ë¬ ¯à¨ íâ®¬ ¯®¯®«­¥­¨¥ ¬®¦¥â ¯¥à¥áâ âì¡ëâì �0n-¢ëç¨á«¨¬ë¬ (n = 2). � [2] ¯à¨¢®¤ïâáï ¯à¨¬¥àë ­ã¬¥à æ¨©á ª®­¥ç­ë¬ ç¨á«®¬ í«¥¬¥­â®¢, ª ¦¤ë© ¨§ ª®â®àëå ®á®¡ë©. �à®¨§¢¥-¤¥­¨ï â ª¨å ­ã¬¥à æ¨© ¨ ­ã¬¥à æ¨© á ®¤­¨¬ ®á®¡ë¬ í«¥¬¥­â®¬ ¤ îâ­ã¬¥à æ¨¨ á ª®­¥ç­ë¬ ç¨á«®¬ ®á®¡ëå ¨ ¯à®¨§¢®«ì­ë¬ ç¨á«®¬ ­¥®á®-¡ëå í«¥¬¥­â®¢. � [4],   â ª¦¥ ¢ [3] ¯à¨¢®¤ïâáï ­ã¬¥à æ¨¨ á ¡¥áª®­¥ç-­ë¬ ç¨á«®¬ ®á®¡ëå ®¡ê¥ªâ®¢. �§ [4] â¥®à¥¬  2 ¬®¦­® ¨§¢«¥çì ­ã¬¥-à æ¨î á ¡¥áª®­¥ç­ë¬ ç¨á«®¬ ®á®¡ëå ¨ ¡¥áª®­¥ç­ë¬ ç¨á«®¬ ­¥®á®¡ëåí«¥¬¥­â®¢. �áâ ¥âáï á«ãç © ¡¥áª®­¥ç­®£® ç¨á«  ®á®¡ëå ¨ ª®­¥ç­®£®ç¨á«  ­¥®á®¡ëå í«¥¬¥­â®¢. � ­ áâ®ïé¥© à ¡®â¥, ¨á¯®«ì§ãï ¢ ª ç¥-áâ¢¥ ¨­áâàã¬¥­â , ®¯¥à æ¨î ¯®¯®«­¥­¨ï ¤¥« ¥âáï á«¥¤ãîé¥¥. �® «î-¡ë¬ ¤¢ã¬ �0n+2-­ã¬¥à®¢ ­­ë¬ á¥¬¥©áâ¢ ¬ (A; �); (B; �) â.¥. â ª¨¬, çâ®� 2 Com0n+2(A); � 2 Com0n+2(B); áâà®¨âáï ­ã¬¥à®¢ ­­®¥ á¥¬¥©áâ¢®(C; 
), C = A[B[f;g; 
 2 Com0n+2(C) â ª®¥, çâ®: (A; �) ¨ (B; �) ¯®¤®¡ê-¥ªâë (C; 
); ª ¦¤ë© í«¥¬¥­â A [ f;g; ï¢«ï¥âáï ®á®¡ë¬ ®â­®á¨â¥«ì­®
; ¥á«¨ A [ f;g n B 6= ;, â® ª ¦¤ë© í«¥¬¥­â ¨§ B ­¥ ï¢«ï¥âáï ®á®¡ë¬®â­®á¨â¥«ì­® 
.�¥®¡å®¤¨¬ë¥ ®¯à¥¤¥«¥­¨ï.�ë ¯à¨¤¥à¦¨¢ ¥¬áï ®¯à¥¤¥«¥­¨© ¨§ [1]. �ãáâì Kn+1(x0; x1; :::; xn){ ã­¨¢¥àá «ì­ ï ª«¨­¨¥¢áª ï äã­ªæ¨ï ¤«ï n-¬¥áâ­ëå ç áâ¨ç­®-¢ë-ç¨á«¨¬ëå äã­ªæ¨©, K(x) � K2(< x >1; < x >2) - ã­¨¢¥àá «ì­ ï ®¤-­®¬¥áâ­ ï ç áâ¨ç­®-¢ëç¨á«¨¬ ï äã­ªæ¨ï, < x >i - «¥¢ ï ¨ ¯à ¢ ïäã­ªæ¨¨, i = 1; 2 . �®®â¢¥âáâ¢¥­­® ç¥à¥§ KXn+1(x0; x1; :::; xn) ¨ KX(x)®¡®§­ ç îâáï à¥«ïâ¨¢¨§®¢ ­­ë¥ ã­¨¢¥àá «ì­ë¥ äã­ªæ¨¨. �ãáâì X =degT (X) = fY jY �T Xg; §¤¥áì �T - íª¢¨¢ «¥­â­®áâì ¯® �ìîà¨­£ã,0 � deg(;);0n � deg(;n). �ãáâì A { �0n-á¥¬¥©áâ¢®, � 2 Com0n(A),A 2 A.�¯à¥¤¥«¥­¨¥. [3]. �®¯®«­¥­¨¥¬ (X-¯®¯®«­¥­¨¥¬) ­ã¬¥à æ¨¨ �,®â­®á¨â¥«ì­® í«¥¬¥­â  A ­ §ë¢ ¥âáï ­ã¬¥à æ¨ï �A (�XA ) ®¯à¥¤¥«¥­-­ ï á«¥¤ãîé¨¬ ®¡à §®¬�A(x)� 8<:�(K(x)) ¥á«¨ K(x) #;A ¢ ¯à®â¨¢­®¬ á«ãç ¥:�®¯®«­¥­¨¥ á ®à ªã«®¬ X ¨«¨ X-¯®¯®«­¥­¨¥ ¯®«ãç ¥âáï § ¬¥­®© ¢®¯à¥¤¥«¥­¨¨ äã­ªæ¨¨ K ­  äã­ªæ¨î KX.�«¥¤ãîé¨¥ âà¨ á¢®©áâ¢  å®à®è® ¨§¢¥áâ­ë, ¨ ç áâ® ¡ã¤ãâ ¨á¯®«ì-78



�.�. �¨á ¬¨¥¢§®¢ âìáï ¢ ¤ «ì­¥©è¥¬.1. � ¯®«­  ®â­®á¨â¥«ì­® A â®£¤  ¨ â®«ìª® â®£¤ , ª®£¤  � � �A.2. �á«¨ � ¯®«­ , â® ¤«ï ¢áïª®© ¢ëç¨á«¨¬®© äã­ªæ¨¨ g ­ã¬¥à -æ¨ï � ¨¬¥¥â ­¥¯®¤¢¨¦­ãî â®çªã, â.¥. áãé¥áâ¢ã¥â x 2 N , çâ® �(x) =�(g(x)):3. �á«¨ � � � ¨ � ¯®«­  ®â­®á¨â¥«ì­® A, â® � ¯®«­  ®â­®á¨â¥«ì­®A. � ª¦¥ ¢¥à­ë à¥«ïâ¨¢¨§®¢ ­­ë¥  ­ «®£¨ íâ¨å á¢®©áâ¢. �¬¥áâ®¯®«­®âë, ¯®¯®«­¥­¨ï à áá¬ âà¨¢ ¥âáï X-¯®«­®â  ¨ X-¯®¯®«­¥­¨¥,  ¢¬¥áâ® á¢®¤¨¬®áâ¨ X-á¢®¤¨¬®áâì.2 �®¢â®à­ë¥ ¯®¯®«­¥­¨ï� [1] áä®à¬ã«¨à®¢ ­  á«¥¤ãé ï ¯à®¡«¥¬ . �ãáâì � : N !A: �¥à-­® «¨, çâ® ((�0nA )0nB )0nA � (�0nA )0nB ? � ç áâ­®áâ¨, ¢¥à­® «¨, çâ® ((�A)B)A �(�A)B?�¥®à¥¬  5 �«ï «î¡®£® n; cãé¥áâ¢ãîâ �0n+2-¢ëç¨á«¨¬®¥ á¥¬¥©áâ¢®A, á®¤¥à¦ é¥¥ ¯® ªà ©­¥© ¬¥à¥ ¤¢  à §«¨ç­ëå í«¥¬¥­â  A;B ¨ ­ã¬¥-à æ¨ï � 2 Com0n+2(A) â ª¨¥, çâ® ((�0nA )0nB )0nA 6� (�0nA )0nB : �ã¬¥à æ¨î �¬®¦­® ¢ë¡à âì ª ª 0n-¯®«­®© ®â­®á¨â¥«ì­® A; â ª ¨, 0n-­¥¯®«­®©®â­®á¨â¥«ì­® A:�®ª § â¥«ìáâ¢®. 1) �ãáâì B { ¯à®¨§¢®«ì­®¥ �0n+2-¢ëç¨á«¨¬®¥á¥¬¥©áâ¢®, ®â«¨ç­®¥ ®â ª« áá  �0n+2: �ãáâì A 2 �0n+2; A 62 B ¨ ¯ãáâì� { ¯à®¨§¢®«ì­ ï ­ã¬¥à æ¨ï ¨§ Com0n+2(B) � áá¬®âà¨¬ ¢­¥è­¥¥ 0n-¯®¯®«­¥­¨¥ ­ã¬¥à æ¨¨ ��0nA (x)� 8<:�(K0n(x)) ¥á«¨ K0n(x) #;A ¢ ¯à®â¨¢­®¬ á«ãç ¥:�­¥è­¥¥ 0n-¯®¯®«­¥­¨¥ â ª¦¥ 0n-¯®«­ ï ­ã¬¥à æ¨ï ®â­®á¨â¥«ì­®A ¨ ï¢«ï¥âáï �0n+2-¢ëç¨á«¨¬®© ­ã¬¥à æ¨¥© á¥¬¥©áâ¢  A� B[fAg: �®á¢®©áâ¢ã 1 (�0nA )0nA �0n �0nA �¡®§­ ç¨¬ �� �0nA . �®¯ãáâ¨¬ ¯à®â¨¢­®¥.�®£¤  ¯® á¢®©áâ¢ã 3 (�0nA )0nB ï¢«ï¥âáï 0n-¯®«­®© ­ã¬¥à æ¨¥© á¥¬¥©áâ¢ A ®â­®á¨â¥«ì­® í«¥¬¥­â®¢ A;B . � ª ª ª � �0n �0nA , â® �0nB 0n -¯®«­ ®â­®á¨â¥«ì­® í«¥¬¥­â®¢ A;B.�¯à¥¤¥«¨¬ ¢«®¦¥­­ãî X-¢ëç¨á«¨¬ãî ¯®á«¥¤®¢ â¥«ì­®áâì X-¢ëç¨á«¨¬®-¯¥à¥ç¨á«¨¬ëå ¬­®¦¥áâ¢ UXn ; n 2 N .79



�.�. �¨á ¬¨¥¢UX0 � N , UXn+1 � fKXg�1(UXn ), .�®¬¥à  í«¥¬¥­â®¢ ¨§ A à á¯à¥¤¥«¥­ë ¢ ­ã¬¥à æ¨¨ �0nB á«¥¤ãîé¨¬®¡à §®¬ �0nB (x) = 8>><>>:�(K0n(x)) ¥á«¨ x 2 U0n2 ;A ¥á«¨ x 2 U0n1 n U0n2 ;B ¥á«¨ x 2 U0n0 n U0n1 :�¯à¥¤¥«¨¬ 0n-ç áâ¨ç­®-¢ëç¨á«¨¬ãî äã­ªæ¨î '1. �ãáâì e 2 U0n1 nU0n2'1(x)� 8<:e ¥á«¨ x 2 U0n2 ;" ¥á«¨ x 62 U0n2 :�ãáâì f1 � 0n-¢ëç¨á«¨¬ ï äã­ªæ¨ï, ¯à®¤®«¦ îé ï '1, ®â­®á¨-â¥«ì­® ­ã¬¥à æ¨¨ �0nB á ®á®¡ë¬ í«¥¬¥­â®¬ B, â®£¤ �0nB (f1(x)) = 8<:A ¥á«¨ x 2 U0n2 ;B ¥á«¨ x 62 U0n2 :�®«®¦¨¬ '2 � f1 � U0n1 . �®£¤  '2 � 0n-ç áâ¨ç­®-¢ëç¨á«¨¬ ïäã­ªæ¨ï. � «¥¥, ¯ãáâì f2 � 0n -¢ëç¨á«¨¬ ï äã­ªæ¨ï, ¯à®¤®«¦ î-é ï '2, ®â­®á¨â¥«ì­® �0nB á ®á®¡®¡ë¬ í«¥¬¥­â®¬ A. �®£¤  ¤«ï «î¡®£®x �0nB (f2(x)) = 8>><>>:A ¥á«¨ x 2 U0n2 ;B ¥á«¨ x 2 U0n1 n U0n2 ;A ¥á«¨ x 2 U0n0 n U0n1 :�«¥¤®¢ â¥«ì­® f2 ­¥ ¨¬¥¥â ­¥¯®¤¢¨¦­ëå â®ç¥ª ®â­®á¨â¥«ì­® �0nB . �à®-â¨¢®à¥ç¨¥. � ¯®áâà®¥­­®¬ ¯à¨¬¥à¥ ­ã¬¥à æ¨ï � 0n- ¯®«­  ®â­®á¨-â¥«ì­® A: 2) �ª ¦¥¬ â¥¯¥àì ª ª ¯®áâà®¨âì �0n+2-¢ëç¨á«¨¬ãî ­ã¬¥à -æ¨î � c ­¥®á®¡ë¬¨ í«¥¬¥­â ¬¨ A;B â ªãî,çâ® ((�0nA )0nB )0nA 6� (�0nA )0nB :�ãáâì (B; �); (C; 
) � �0n+2-­ã¬¥à®¢ ­­ë¥ á¥¬¥©áâ¢  â ª¨¥,çâ® A 62C; B 62 B: �®«®¦¨¬ �� � � 
: �¨ ®¤¨­ ¨§ í«¥¬¥­â®¢ A;B ­¥ ï¢«ï-¥âáï ®á®¡ë¬ ®â­®á¨â¥«ì­® �; â ª ª ª ¨å ­®¬¥à  à¥ªãàá¨¢­® ®â¤¥«¨-¬ë.�á«¨ ¡ë ¨¬¥«  ¬¥áâ® íª¢¨¢ «¥­â­®áâì ((�0nA )0nB )0nA 6� (�0nA )0nB : â®£¤ ,¡ë ­ã¬¥à æ¨ï (�0nA )0nB ¡ë ¯®«­  ®â­®á¨â¥«ì­® í«¥¬¥­â®¢ A ¨ B. �®-áâà®¨¬ ¯®áâà®¨¬ 0n-¢ëç¨á«¨¬ãî äã­ªæ¨î, ­¥ ¨¬¥éîéãî ­¥¯®¤¢¨¦-­ëå â®ç¥ª ®â­®á¨â¥«ì­® ­ã¬¥à æ¨¨ (�0nA )0nB : � ä¨ªá¨àã¥¬ e â ª®¥,80



�.�. �¨á ¬¨¥¢çâ® (�0nA )0nB (e) = A ¨ ¤«ï ª ¦¤®£® x 2 N ®¯à¥¤¥«¨¬'3(x)� 8<:e ¥á«¨ K0n(K0n(x))� ­¥ç¥â­®;" ¢ ¯à®â¨¢­®¬ á«ãç ¥:� ª ª ª (�0nA )0nB 0n-¯®«­  ®â­®á¨â¥«ì­® B, â®£¤  '3 ¬®¦­® ¯à®¤®«-¦¨âì ¤® 0n-ç áâ¨ç­®-¢ëç¨á«¨¬®© äã­ªæ¨¨ '4 c ®¡« áâìî ®¯à¥¤¥«¥­¨ïU0n1 ; § â¥¬ íâã äã­ªæ¨î ¯à®¤®«¦¨âì ¤® 0n-¢ëç¨á«¨¬®© äã­ªæ¨¨ f3:� á¯à¥¤¥«¥­¨¥ ­®¬¥à®¢ íâ®© äã­ªæ¨¨ â ª®¢®, çâ® ®­  ­¥ ¨¬¥¥â ­¥¯®-¤¢¨¦­ëå â®ç¥ª.3 � á¯à¥¤¥«¥­¨¥ ®á®¡ëå ¨ ­¥®á®¡ëå í«¥¬¥­â®¢�¥®à¥¬  6 . �ãáâì (A; �); (B; �) { ¯à®¨§¢®«ì­ë¥ �0n+2-­ã¬¥à®¢ ­­ë¥á¥¬¥©áâ¢ .�®£¤  áãé¥áâ¢ã¥â �0n+2-­ã¬¥à æ¨ï � á¥¬¥©áâ¢  A[B[f;gâ ª ï, çâ®1. �� � � �:2. � ¯®«­  ®â­®á¨â¥«ì­® «î¡®£® í«¥¬¥­â  ¨§ A [ f;g:3. �á«¨ A [ f;g n B 6= ;; â® «î¡®© í«¥¬¥­â ¨§ B n A [ f;g ­¥ï¢«ï¥âáï ®á®¡ë¬ ®â­®á¨â¥«ì­® �:�®ª § â¥«ìáâ¢®. � áá¬®âà¨¬ á«¥¤ãîé¨¥ ¯®á«¥¤®¢ â¥«ì­®áâ¨ ¢ëç¨á-«¨¬®-¯¥à¥ç¨á«¨¬ëå ¬­®¦¥áâ¢.U0 � N; Un+1 � K�1(Un).E0 � fxjK(x) = xg; En+1 � K�1(En).�ãáâì C { ¢ëç¨á«¨¬®¥ ¡¥áª®­¥ç­®¥ ¯®¤¬­®¦¥áâ¢® ­®¬¥à®¢ â®¦¤¥-áâ¢¥­­ëå äã­ªæ¨© C � fciji 2 N;K(< ci; x >) = x+i�0; x 2 Ng, a E0 =feiji 2 Ng { ª ª®¥-­¨¡ã¤ì ¯¥à¥ç¨á«¥­¨¥ E0: �ãáâì (A; �); (B; �) ��0n+2-­ã¬¥à®¢ ­­ë¥ á¥¬¥©áâ ¢ . �¯à¥¤¥«¨¬ ­ã¬¥à æ¨î � á¥¬¥©áâ¢ A [ B [ f;g á«¥¤ãîé¨¬ ®¡à §®¬,�(z)� 8>>>>>>>>>>>><>>>>>>>>>>>>:�(0) ¥á«¨ z 2 S(Ui n Ui+1)&hzi1 62 C;�(i) ¥á«¨ z 2 U1 n U2&hzi1 = ci;�(0) ¥á«¨ z 2 SEi+1&hzi1 62 C;�(i) ¥á«¨ z = ei;�(K(hzi2)) ¥á«¨ z 2 Si6=1(Ui n Ui+1) [ SEi+1&hzi1 2 C;; ¢ ¯à®â¨¢­®¬ á«ãç ¥ : :81



�.�. �¨á ¬¨¥¢�ã¬¥à æ¨ï � ®¯à¥¤¥«ï¥âáï à §¡®à®¬ á«ãç ¥¢, ¯®íâ®¬ã ¤®áâ â®ç­®¤®ª § âì çâ® ª ¦¤ ï  «â¥à­ â¨¢  ¢ëà ¦ ¥âáï �0n+2-¯à¥¤¨ª â®¬. �áâ -­®¢¨¬áï ­  ¯à¥¤¯®á«¥¤­¥¬ á«ãç ¥, ®áâ «ì­ë¥ ¡®«¥¥ ®ç¥¢¨¤­ë. �à¥¡ã-¥âáï ¤®ª § âì, çâ® ¢ íâ®¬ á«ãç ¥ y 2 �(z) ¢ëà ¦ ¥âáï �0n+2-¯à¥¤¨ª â®¬.y 2 �(z) $ z 2 Si6=1(Ui n Ui+1) [ Si6=0Ei&hzi1 2 C&y 2 �(K(z)) $9ci0:::cik�1 2 C 9z0:::zk 9j[z = z0 = hci0 ; zi0i&z1 = K(zi0); :::; zk�1 =hcik�1 ; zik�1i&zk = K(zik�1)&f(hzki1 = cj&zk 2 U1 n U2&y 2 �(j)) _9n 6= 1(zk 2 Un n Un+1&hzki1 62 C&y 2 �(0)) _ (zk = ej&y 2 �(j)) _9n(zk 2 En+1 n En&hzki1 62 C&y 2 �(0))g]:�á¯®«ì§ãï �-äã­ªæ¨î �¥¤¥«ï, ¬®¦­® ¨§¡ ¢¨âììáï ®â ¯¥à¥¬¥­­®£®ª®«¨ç¥áâ¢  ª¢ ­â®à®¢ áãé¥áâ¢®¢ ­¨ïy 2 �(z) $ 9w 9k 9n 9i 8jhk[�(w; 0) = z&h�(w; j)i1 2 C&�(w; j + 1) = K(h�(w; j)i2)&f(h�(w; k)i1 = ci&�(w; k) 2 U1 n U2&y 2�(i)) _ (h�(w; k)i1 62 C&�(w; k) 2 Un n Un+1&y 2 �(0)) _ (�(w; k)i =ei&y 2 �(i)) _ (h�(w; k)i1 62 C&�(w; k) 2 En+1 n En&y 2 �(0))g]:�¤¥áì ª ¦¤ ï ¤¨§êî­ªæ¨ï { �0n+2-¯à¥¤¨ª â.1. �ãáâì e { ­®¬¥à ­¨£¤¥ ­¥ ®¯à¥¤¥«¥­­®© äã­ªæ¨¨. �¯à¥¤¥«¨¬¢ëç¨á«¨¬ãî äã­ªæ¨î f(z).f(z)� 8<:hcx; ei ¥á«¨; z = 2x;ex ¥á«¨z = 2x+ 1:�¬¥¥¬ �(f(2x)) = �(hcx; ei) = �(x);�(f(2x + 1)) = �(ex) = �(x):� ª¨¬ ®¡à §®¬, �� � 6 �:2. �®«®¦¨¬ f(x)� hci; xi ¨ ¤®ª ¦¥¬, çâ® f m-á¢®¤¨â ��(i) ª �:�«ãç © 1. x 2 U0 n U1. � íâ®¬ á«ãç ¥hci; xi 2 U1 n U2, �(f(x)) = �(hci; xi) = �(i) ¨ ��(i)(x) = �(i):�«ãç © 2. x 2 S(Ui+1 n Ui+2) [ SEi:� íâ®¬ á«ãç ¥ hci; xi 2 S(Ui+2nUi+3)[SEi+1; ¨ �(hci; xi) = �(K(x)) =��(i)(x):�«ãç © 3. x 2 I; £¤¥ N n I � S(Ui n Ui+1) [ SEi:� íâ®¬ á«ãç ¥ K(x); hci; xi 2 I, â.¥. �(hci; xi) = �(K(x)) = ��(i)(x) =;: 3. �¥¯¥àì ¤®ª ¦¥¬, çâ® �; 6 �. �®áâà®¨¬ ¢ëç¨á«¨¬ãî äã­ª-æ¨î f â ªãî, çâ® ¥á«¨ x 2 U0 n U1; â® f(x) 2 I: �¯à¥¤¥«¨¬ ¢­ ç «¥82



�.�. �¨á ¬¨¥¢¢ëç¨á«¨¬ãî äã­ªæ¨î '. � ä¨ªá¨àã¥¬ c 2 C'(x; y; z)� 8<:hc; hp(z; z; x); y + 1ii ¥á«¨ x 62 U1;y;K(x) ¢ ¯à®â¨¢­®¬ á«ãç ¥:�¤¥áì p(x; y; z)�s43-äã­ªæ¨ï   U1;y { ç áâì U1 ¢ëç¨á«¨­­ ï §  y è £®¢.�ãáâì a { ­®¬¥à '(x; y; z) â.¥. '(x; y; z) = K(hp(a; z; x); yi) � áá¬®âà¨¬¯®á«¥¤®¢ â¥«ì­®áâ¨ ç¨á¥«: p0 � hp(a; a; x); 0i; :::; py � hp(a; a; x); yi; :::¨ q0 � hc; hp(a; a; x); 0ii; :::; qy � hc; hp(a; a; x); yii; ::: �¡¥ ¯®á«¥¤®¢ â¥«ì-­®áâ¨ áâà®£® ¬®­®â®­­ë ¨ ­¥ ¯¥à¥á¥ª îâáï. �®­®â®­­®áâì ®ç¥¢¨¤­ .�®¯ãáâ¨¬ pi = qj,â®£¤  p(a; a; x) = c&0 = hc; hc; 1ii { ¯à®â¨¢®à¥ç¨¥.�¥¬¬  11 . �ãáâì x 62 U1;s�1, â®£¤  K2i+1(q0) = pi;K2i+2(q0) = qi+1;i < s,   K2s+1(q0) = ps; ¨K2s+2(q0) = 8<:qs+1 ¥á«¨ x 62 U1;s ;K(x) ¢ ¯à®â¨¢­®¬ á«ãç ¥:�¤¥ K i(x) { ¨â¥à æ¨ï K(x):�®ª § â¥«ìáâ¢®. �­¤ãªæ¨¥© ¯® i. �«ï i = 0 K(q0) = p0;K2(q0) = q1¯® ®¯à¥¤¥«¥­¨î. �®¯ãáâ¨¬ ãâ¢¥à¦¤¥­¨¥ ¢¥à­® ¤«ï i < s, â®£¤  x 62U1;i;K2i+3(q0) = K(qi+1) = pi+1 ¨K2i+4(q0) = 8<:qi+2 ¥á«¨ i+ 1 < s _ x 62 U1;s;K(x) ¢ ¯à®â¨¢­®¬ á«ãç ¥:�¥¬¬  12 �á«¨ x 2 U0 n U1; â® �(q0) = ;:�®ª § â¥«ìáâ¢®. �á«¨ x 2 U0 n U1; â®£¤  ¤«ï «î¡®£® s 62 U1;s ¨¯®á«¥¤®¢ â¥«ì­ë¥ §­ ç¥­¨ï ¯®á«¥¤®¢ â¥«ì­ëå ¨â¥à æ¨¨ ¢¨¤  K i(q0) {¯®¯ à­® à §«¨ç­ë¥ ç¨á«  p0; q1:::; py; qi+1::: �â® §­ ç¨â, çâ® q0 2 I:�¥¬¬  13 �á«¨ x 2 U1, â® �(K(x)) = �(q0):�®ª § â¥«ìáâ¢®. �ãáâì x 2 U1;s n U1;s�1, â®£¤  ¤®ª ¦¥¬, çâ®�(q0) = �(K2(i+1)(q0); i � s ¨­¤ãªæ¨¥© ¯® i. �ãáâì i = 0, â®£¤  �(q0) =�(K(p0)) ¨ �(K2(q0)) = �(K(p0)) : �ãáâì ãâ¢¥à¦¤¥­¨¥ ¢¥à­® ¤«ïihs, â®£¤  x 62 U1;i ¨ �(q0) = �(K2(i+1)(q(0)) = �(qi+1) = �(K(pi+1)) =�(K2(i+2)(q0):�à¨ i+1 = s, ¨¬¥¥¬K2(i+2)(q0) = K(x); �(q0) = �(K(x)):�¥¯¥àì ®¯à¥¤¥«¨¬ ¢ëç¨á«¨¬ãî äã­ªæ¨î f(x) f(x)� q0. �§ «¥¬-¬ë 2,3 á«¥¤ã¥â, çâ® f(x) m-á¢®¤¨â �; ª �: �83
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