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ОБ ОПРЕДЕЛЕНИИ ЛАХЛАНОВСКОЙ ПОЛУРЕШЕТКИ

С. Ю. ПОДЗОРОВ∗)

В 1972 году А. Лахлан [6] получил описание типов изоморфизма
главных идеалов в полурешетке рекурсивно перечислимых m-степеней.
Им было доказано, что полурешетка изоморфна главному идеалу рекурсивно
перечислимых m-степеней тогда и только тогда, когда она представима
в виде прямого предела последовательности конечных дистрибутивных
решеток с определенными алгоритмическими свойствами. Впоследствии
такие полурешетки получили название лахлановских.

Лахлановские полурешетки играют важную роль в теории нумераций.
Легко доказать, что главных идеалы в полурешетках вычислимых нумераций
конечных семейств, в полурешетках Σ0

2-вычислимых нумераций конечных
семейств, состоящих из попарно не сравнимых по включению множеств
(см. [1]) и во многих других полурешетках есть в точности лахлановские
полурешетки. В работе [7] доказано, что полурешетка является лахлановской
тогда и только тогда, когда она изоморфна главному идеалу m-степеней,
порожденному гиперпростым множеством. В той же работе показывается,
что каждую лахлановскую полурешетку можно вложить как начальный
сегмент и как интервал в произвольную полурешетку Роджерса Σ0

n-вы-
числимых нумераций. В 1978 году С. Д. Денисов [3] ввел в рассмотрение
универсальную лахлановскую полурешетку и с ее помощью доказал, что
все полурешетки вычислимых нумераций конечных семейств высоты 2
с наименьшим по включению элементом изоморфны. Этот технически
сложный результат стал важным этапов на пути к решению (так до сих
пор и не решенной) проблемы изоморфизма полурешеток вычислимых
нумераций конечных семейств (см. [4, 5]).

∗)Работа выполнена при частичной поддержке программы "Университеты
России"УР.04.01.013, гранта КЦФЕ PD02-1.1-475 и гранта INTAS 00-499.
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Вместе с тем лахлановские полурешетки сами по себе до сих пор
не были объектом исследования. Громоздкое определение лахлановской
полурешетки, состоящее из нескольких пунктов, полезно для построения
различных эффективных конструкций, подобных лахлановской конструкции
с ”башнями”, однако лишено естественности и нуждается в доработке.
Так, например, легко показать, что каждая лахлановская полурешетка
есть дистрибутивная верхняя полурешетка с наибольшим и наименьшим
элементами, имеющая Σ0

3-представление. Вместе с тем несложно установить,
что любая дистрибутивная решетка с наибольшим и наименьшим элементами,
имеющая Σ0

3-преставление, является лахлановской. В связи с этим возникает
естественный вопрос: верно ли, что класс лахлановских полурешеток
совпадает с классом Σ0

3-полурешеток, имеющих наибольший и наименьший
элементы? Ответ на этот вопрос автору неизвестен, однако гипотеза о
том, что он положителен, звучит достаточно правдоподобно. В частности,
из положительного ответа на этот вопрос следует, что в определении
лахлановской полурешетки условие на вычислимость семейства функций,
представляющих пересечения, можно опустить.

В настоящей работе автор доказывает, что условие на эффективность
пересечений действительно может быть опущено. Результат доказан в
релятивизованном варианте, для произвольной n-лахлановской полурешетки.
В таком виде он может быть полезен при изучении полурешеток арифметических
нумераций.

Перейдем непосредственно к изложению. Основные понятия, относящиеся
к теории вычислимости, можно найти в [8], а к теории решеток — в [2].
Мы предполагаем, что читателю они известны.

Для предупорядоченного множества A = 〈A,6〉 ассоциированное с
ним частично упорядоченное множество будем обозначать через Ã =
〈Ã, 6〉 (сохраняя одно и то же обозначение для предпорядка и ассоциированного
с ним порядка), а элемент Ã, содержащий x ∈ A (класс эквивалентности) —
через [x]A (либо просто через [x], если ясно, о каком A идет речь).
Предупорядоченное множествоA будем называть предрешеткой, (верхней
предполурешеткой, нижней предполурешеткой), если Ã является решеткой
(верхней полурешеткой, нижней полурешеткой). Предрешетку (верхнюю
предполурешетку) будем называть дистрибутивной, если ассоциированная
с ней решетка (верхняя полурешетка) дистрибутивна. В дальнейшем
верхние полурешетки (верхние предполурешетки) мы называем просто
полурешетками (предполурешетками), поскольку нижние полурешетки

2



мы рассматривать не будем. Для предрешетки (предполурешетки) A
запись A = 〈A, 6; u, v〉 (A = 〈A,6; u〉) будет означать, что u и v —
бинарные операции на A, представляющие на Ã операции взятия точной
верхней и точной нижней граней соответственно.

Полурешетку L назовем n-лахлановской, если для некоторой предполурешетки
L = 〈N,6ω〉 c носителем, равным множеству натуральных чисел, L ∼= L̃ и
существует последовательность конечных дистрибутивных предрешеток
{Di = 〈Di,6i〉}i∈N, для которой выполнены следующие 7 условий:

1. Di — конечные подмножества натурального ряда, сильно вычислимые
равномерно по i;

2. для всех i 0, 1 ∈ Di, 0 <i 1, для всех x ∈ Di 0 6i x 6i 1;

3. Π0
n+2-индексы отношений 6i вычислимы равномерно по i;

4. для всех i Di ⊆ Di+1, для x, y ∈ Di из x 6i y следует x 6i+1 y,
определенные естественным образом вложения D̃i в D̃i+1 сохраняют
точные верхние грани;

5.
⋃

i∈NDi = N, x 6ω y ⇔ ∃i(x 6i y);

6. существует последовательность функций {ui : D2
i → Di}i∈N, вычислимая

равномерно по i, такая что Di = 〈Di,6i; ui〉;
7. существует последовательность функций {vi : D2

i → Di}i∈N, вычислимая
равномерно по i, такая что Di = 〈Di,6i; ui, vi〉.

Ясно, что каждая n-лахлановская полурешетка дистрибутивна, содержит
наибольший и наименьший элементы (можно заметить, что она изоморфна
прямому пределу D̃i-ых, рассматриваемых как полурешетки). 0-лахла-
новскую полурешетку мы называем просто лахлановской.

Пусть A = 〈A, 6; u〉 — произвольная предполурешетка. Молекулой в
A назовем произвольное B ⊆ A, для которого выполнены следующие 2
условия:

1. если x ∈ B, y ∈ A и x 6 y, то y ∈ B;

2. если u(x, y) ∈ B, то x ∈ B или y ∈ B.

Множество молекул в A обозначим через Mol(A).
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Предложение 1 Пусть A = 〈A, 6; u〉 — предполурешетка. Тогда Ã
изоморфна подполурешетке в 〈P(Mol(A)),⊆;∪〉, причем изоморфизм задается
правилом [x] 7→ {B ∈ Mol(A) : x ∈ B}.

Доказательство. Из определения молекулы очевидно, что данное
отображение определено корректно и сохраняет верхние грани. Покажем,
что оно инъективно. Пусть x 66 y и S — множество порядковых фильтров
в A, содержащих x и не содержащих y. По лемме Цорна в 〈S,⊆〉 найдется
максимальный элемент M . Если M — не молекула, то для некоторых
a1, a2 6∈ M имеем a = u(a1, a2) ∈ M . Так как a 66 y, то для некоторого
i ∈ {1, 2} ai 66 y. Но тогда M ∪ {z ∈ A : ai 6 z} ∈ S. ¤

Предложение 2 Пусть A1 = 〈A1, 61; u1〉 и A2 = 〈A2,62; u2〉 — предполурешетки,
A1 ⊆ A2, для всех x, y, z ∈ A1 u1(x, y) ≡1 z ⇒ u2(x, y) ≡2 z и B ⊆ A2 —
молекула в A2. Тогда B ∩ A1 — молекула в A1.

Доказательство. Если x ∈ B ∩ A1, y ∈ A1 и x 61 y, то y ≡1 u1(x, y);
значит, x 62 u2(x, y) ≡2 y и y ∈ B. Аналогично, если для x, y ∈ A1

u1(x, y) ∈ B, то u2(x, y) ≡2 u1(x, y), u2(x, y) ∈ B и x ∈ B или y ∈ B. ¤
Атомом будем называть молекулу, содержащую наименьший элемент.

Множество атомов конечной предполурешеткиA обозначим через Atom(A).

Предложение 3 В конечной дистрибутивной предполурешетке каж-
дая молекула единственным образом представляется в виде объединения
попарно несравнимых (по включению) атомов

Доказательство. Пусть A = 〈A, 6; u〉 — конечная дистрибутивная
предполурешетка, M — молекула в A. Пусть C(M) — семейство всех
подмножеств M вида {x : b 6 x}, где [b] — минимальный элемент в
{[x] : x ∈ M}. Ясно, что различные элементы C(M) попарно несравнимы
и что объединение C(M) равно M .

Пусть B ∈ C(M): покажем, что B — атом. Ясно, что в B есть наименьший
элемент и что для B выполняется условие 1 из определения молекулы.
Пусть b — наименьший в B и u(x, y) ∈ B. По дистрибутивности найдутся
xb 6 x и yb 6 y, такие что u(xb, yb) ≡ b. Тогда один из элементов xb, yb

лежит в M и, в силу того, что b — минимальный в M , эквивалентен b.
Но тогда либо b 6 x, либо b 6 y.

Осталось доказать единственность. Пусть C ′ — некоторое семейство
попарно несравнимых атомов, дающих в объединении M . Пусть B ∈ C ′
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и b′ — наименьший в B′, а B — элемент C(M), содержащий b′. Пусть b —
наименьший в B, а B′′ — элемент C ′, содержащий b. Тогда B′ ⊆ B ⊆ B′′ и,
в силу несравнимости элементов C ′, B′ = B ∈ C(M). Значит, C ′ ⊆ C(M).
Обратное включение доказывается аналогично. ¤

Предложение 4 Пусть A = 〈A,6; u, v〉 — конечная дистрибутивная
предрешетка. Тогда Ã изоморфна подрешетке в 〈P(Atom(A)),⊆;∪,∩〉,
причем изоморфизм задается правилом [x] 7→ {B ∈ Atom(A) : x ∈ B}.

Доказательство. Так как каждый атом является молекулой, то, по
предложению 1, отображение определено корректно и сохраняет верхние
грани. Чтобы доказать инъективность, рассмотрим x 66 y и молекулу M ,
такую что x ∈ M и y 6∈ M ; тогда, по предложению 3, существует атом,
содержащий x и содержащийся в M .

Остается доказать, что это отображение сохраняет пересечения.
Пусть для атома M x ∈ M и y ∈ M . Так как M содержит наименьший
элемент, то v(x, y) ∈ M . ¤

Под точечным n-рекурсивным оператором мы будем понимать Σ0
n+1-

множество пар натуральных чисел. В этом случае для точечного n-ре-
курсивного оператора Ψ и X ⊆ N Ψ(X) = {y : x ∈ X & 〈x, y〉 ∈ Ψ},
причем если X ∈ Σ0

n+1, то Ψ(X) ∈ Σ0
n+1 и Σ0

n+1-индекс Ψ(X) вычисляется
равномерно по Σ0

n+1-индексам Ψ и X. Отметим еще одно важное для нас
свойство таких операторов: для X, Y ⊆ N Ψ(X ∪ Y ) = Ψ(X) ∪ Ψ(Y ).
Точечный n-рекурсивный оператор Ψ мы называем конечным, если для
каждого x ∈ N множество Ψ({x}) конечно.

Теорема 1 В определении n-лахлановской полурешетки условие 7 можно
опустить.

Доказательство. Пусть L = 〈N, 6ω〉— предполурешетка, для которой
выполняются условия 1 – 6 из определения лахлановской полурешетки.
Зафиксируем последовательностьDi = 〈Di,6i; ui〉 из определения. Зафиксируем
также функции vi, представляющие пересечения на D̃i (последовательность
{vi}i∈N не обязана быть вычислимой). Для B ⊆ Di определим vi(B) ∈ Di:
vi(∅) = 1, vi({x}) = x, vi({x < y}) = vi(x, y), vi({x1 < . . . xk < y}) =
vi(vi({x1, . . . , xk}), y).

Построим последовательности Σ0
n+1-множеств {V i

x}i∈N,x∈Di
и конечных

точечных n-рекурсивных операторов {Ψi}i∈N, такие что Σ0
n+1-индекс V i

x
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вычисляется равномерно по i и x, Σ0
n+1-индекс Ψi вычисляется равномерно

по i и выполняются следующие 5 свойств:

1. x 6i y ⇒ V i
x ⊆ V i

y ;

2. V i
ui(x,y) = V i

x ∪ V i
y ;

3. для x, y ∈ Di если x 66i y, то V i
x \ V i

y бесконечно;

4. (V i
x ∩ V i

y ) \ V i
vi(x,y) конечно;

5. Ψi(V
i
x) = V i+1

x .

Пусть v — некоторая функция из P(Di) в Di. Π0
n+2-индекс условия

(∀B ⊆ Di)(∀x ∈ B)(v(B) 6i x) вычисляется равномерно по v и i. Значит,
существует ∅(n)-вычислимая неубывающая по t функция r(i, v, t), которая
неограниченно растет с ростом t тогда и только тогда, когда это условие
выполнено. Пусть r(i, v) = limt→∞ r(i, v, t).

Через T обозначим множество всех конечных последовательностей
вида (vk, . . . , v0), где для i 6 k vi — функция из P(Di) в Di. Для τ =
(vk, . . . , v0) ∈ T число k назовем длиной τ (обозначается |τ |), а min{r(i, vi) :
i 6 k} — рангом τ . Зафиксируем ∅(n)-вычислимую последовательность
τ0, τ1, . . . элементов из T, такую что для каждого m ∈ N почти все
элементы этой последовательности имеют ранг > m, а каждый элемент T

бесконечного ранга встречается бесконечно часто. Существование такой
последовательности легко доказать методом конечного приоритета, перемежая
в эффективной с оракулом ∅(n) конструкции требования вида "включить
τ ∈ T в последовательность не менее m раз"с требованиями вида "не
включать в последовательность элементы T ранга 6 m". Будем также
считать, что последовательность τi-ых обладает еще одним дополнительным
свойством: если для i ∈ N τi = (vk+1, . . . , v0), то для некоторого j > i
τj = (vk, . . . , v0) (легко понять, как это можно сделать).

Для B ⊆ Di Σ0
n+2-индекс условия "B — молекула в Di"вычисляется

эффективно по B и i. Зафиксируем ∅(n)-вычислимую неубывающую по t
функцию Mod(i, B, t), такую что limt→∞ Mod(i, B, t) < ∞ тогда и только
тогда, когда это условие выполнено.

Каркасом будем называть пару F = (Ak, . . . ,A0; ck, . . . , c1), состоящую
из двух конечных последовательностей, такую что:

F1) для i 6 k элементами Ai являются непустые подмножества Di;
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F2) для i < k ci+1 : Ai+1 → P(Ai) — отображение Ai+1 в множество
непустых подмножеств Ai, Ai =

⋃
A∈Ai+1

ci+1(A);

F3) для i < k и A ∈ Ai+1 элементы ci+1(A) попарно несравнимы и A ∩
Di =

⋃
ci+1(A);

F4) множество Ak одноэлементно.

Число k в этом определении называется длиной каркаса F . Модулем
каркаса F (на шаге t) назовем число Mod(F , t) =

∑
i6k,B∈Ai

Mod(i, B, t).
Для τ = (vk, . . . , v0) ∈ T будем говорить, что F согласован с τ , если
(∀i 6 k)(∀B ∈ Ai)(v

i(B) ∈ B). Для τ ∈ T множество всех каркасов
длины |τ |, согласованных с τ , обозначим через Cons(τ).

Пусть F = (Ak, . . . ,A0; ck, . . . , c1) — каркас, m 6 k и A ∈ Am. Существует
единственный каркас (Bm, . . . ,B0; dm, . . . , d1) длины m, определяемый следующими
соотношениями:

1. Bm = {A};
2. для i < m Bi =

⋃
B∈Bi+1

ci+1(B);

3. для i < m di+1 = ci+1 ¹ Bi+1.

Построенный таким образом каркас обозначим через Fm
A . Для m 6 k

каркас G длины m назовем подкаркасом каркаса F (обозначается G 4 F),
если для некоторого A ∈ Am G = Fm

A . Заметим, что если G 4 F и
на некотором шаге модуль G растет, то модуль F на этом шаге также
увеличивается.

Перейдем к описанию пошаговой конструкции. Предлагаемая конструкция
эффективна с оракулом ∅(n). На каждом шаге мы будем выполнять следующие
действия: ассоциировать пару (i,F), где i ∈ N и F ∈ Cons(τi), с неиспользованным
ранее натуральным числом (после чего оно будет считаться использованным);
отбраковывать ранее использованные натуральные числа; перечислять
множества V i

x ; перечислять операторы Ψi. Если пара (i,F) ассоциирована
на шаге t с некоторым числом, то мы называем такую пару использованной.
Натуральное число i мы называем исчерпанным на шаге t, если на этом
шаге для всех F ∈ Cons(τi) пары (i,F) уже использованы.

Шаг t разбивается на четыре этапа.
Этап 1. Для каждой использованной пары (i,F), такой что модуль F

увеличился по сравнению с предыдущим шагом, отбраковываем число,
с которым ассоциирована эта пара.
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Этап 2. Ищем наименьшее неисчерпанное i. Выбираем F ∈ Cons(τi),
такой что пара (i,F) еще не использована, берем наименьшее неиспользованное
натуральное число и ассоциируем с ним пару (i,F).

Этап 3. Для каждого i ∈ N и x ∈ Di перечисляем в V i
x числа z, такие

что с z ассоциирована пара (j,F), |τj| = i и либо z отбраковано, либо
F = (Ai, . . . ,A0; ci, . . . , c1), A ∈ Ai и x ∈ A для некоторого A ⊆ Di.

Этап 4. Для каждого k ∈ N перечислим в Ψk все такие пары 〈x, y〉,
что перед выполнением этого этапа c x ассоциирована пара (j,G) для G =
(Bk, . . . ,B0; dk, . . . , d1), с y ассоциирована пара (i,F) для F = (Ak+1, . . . ,
A0; ck+1, . . . , c1), i < j и либо y отбраковано, либо x не отбраковано и
G 4 F .

Покажем, что множества V i
x удовлетворяют требуемым пяти свойствам.

1. Пусть x 6i y, z включается в V i
x на шаге t, F и A — такие, как в

описании этапа 3 шага t. Если z когда-либо будет отбраковано, то z ∈ V i
y .

Если же это не так, то модуль F после шага t не растет, A — молекула
в Di, y ∈ A и опять z ∈ V i

y .
2. То, что V i

x∪V i
y ⊆ V i

ui(x,y), следует из предыдущего. Пусть z включается
в V i

ui(x,y) на шаге t и опять F и A — такие, как в описании этапа 3 шага
t. Если z когда-либо будет отбраковано, то z ∈ V i

x . Если нет, то A —
молекула в Di, x ∈ A или y ∈ A и z ∈ V i

x ∪ V i
y .

3. Пусть для x, y ∈ Dk x 66k y. По предложению 4 найдется атом A в
Dk, такой что x ∈ A и y 6∈ A. Пусть τ = (vk, . . . , v0): τ имеет бесконечный
ранг и встречается в последовательности τi-ых бесконечно часто. По
предложениям 2 и 3 существует каркас F = (Ak, . . . ,A0; ck, . . . , c1) с
ограниченным модулем, такой что для i 6 k все элементы Ai — атомы
и A ∈ Ak. Ясно, что F ∈ Cons(τ). Пусть после шага t модуль F не
растет. Существует бесконечно много чисел, с которыми после шага t
будет ассоциирована пара (i,F) для τi = τ . Все они попадут в V k

x \ V k
y .

4. Пусть для x, y ∈ Dk z ∈ V k
x ∩ V k

y . Пусть с z по ходу конструкции
ассоциируется пара (i,F), F = (Ak, . . . ,A0; ck, . . . , c1) и A ∈ Ak. Если
z когда-либо отбраковывается, то z ∈ V k

vk(x,y). Предположим, что z не
отбраковывается: тогда x ∈ A и y ∈ A. Поскольку модуль F ограничен,
то A — молекула. Так как существует лишь конечное число элементов
T длины k, то с точностью до конечного числа чисел z можно считать,
что τi имеет бесконечный ранг. Но тогда, поскольку F согласован с τi, A
содержит наименьший элемент и является атомом. Значит, по предложению 4,
vk(x, y) ∈ A и z ∈ V k

vk(x,y) (почти для всех z).
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5. Покажем, что для x ∈ Dk Ψk(V
k
x ) ⊆ V k+1

x . Пусть p ∈ V k
x и 〈p, q〉 ∈

Xk. Если q когда-либо становится отбракованным, то q ∈ V k+1
x . Пусть

это не так. Тогда на шаге, на котором пара 〈p, q〉 перечисляется в Ψk, с p
ассоциирована пара (j,G) для G = (Bk, . . . ,B0; dk, . . . , d1), а с q ассоциирована
пара (i,F) для F = (Ak+1, . . . ,A0; ck+1, . . . , c1) и G 4 F . Если после
этого шага модуль G вырастет, то модуль F также вырастет и q станет
отбракованным. Значит, модули F и G ограничены. Но тогда для B ∈ Bk

и A ∈ Ak+1 B и A — молекулы, причем B ⊆ A. Число p никогда не
становится отбракованным и, значит, x ∈ B. Следовательно, x ∈ A и
q ∈ V k+1

x .
Покажем обратное включение. Пусть q ∈ V k+1

x : тогда с q на некотором
шаге ассоциируется пара (i,F) для F = (Ak+1, . . . ,A0; ck+1, . . . , c1) и
τi = (vk+1, . . . , v0). Если q когда-либо отбраковывается, то рассмотрим
произвольное достаточно большое p ∈ V k

x : пара 〈p, q〉 будет перечислена
в Ψk. Пусть q никогда не становится отбракованным. Тогда для A ∈ Ak+1

A — молекула в Dk+1 и x ∈ A. Из определения каркаса видно, что
найдется B ∈ Ak, такое что x ∈ B. Пусть G = Fk

B и для j > i τj =
(vk, . . . , v0). Так как F ∈ Cons(τi), то G ∈ Cons(τj) и пара (j,G) будет
использована, но после пары (i,F). Значит, число p, с которым будет
ассоциироваться пара (j,G), никогда не станет отбракованным (иначе
бы q тоже стало отбракованным). Но тогда p ∈ V k

x и 〈p, q〉 ∈ Ψk.

Переходим к следующему этапу доказательства теоремы. Для произвольного
множества D через T (D) обозначим свободную дистрибутивную решетку
с множеством образующих D. Элементы T (D) мы интерпретируем как
термы сигнатуры {∨,∧} от переменных из множества D, находящиеся в
дизъюнктивной нормальной форме. Операции объединения и пересечения
(которые мы обозначим также через ∨ и ∧) задаются на T (D) стандартным
образом. Если множество D конечно, то T (D) также конечна.

Пусть ϕ — произвольное отображение из D в P(N), α — естественное
вложение D в T (D), сопоставляющее каждому элементу D соответствующий
односимвольный терм. Через ϕ∗ обозначим отображение T (D) в P(N),
однозначно определяемое правилами: ϕ∗(α(x)) = ϕ(x), ϕ∗(t1∨t2) = ϕ∗(t1)∪
ϕ∗(t2) и ϕ∗(t1 ∧ t2) = ϕ∗(t1) ∩ ϕ∗(t2). Пусть 6ϕ — предпорядок на T (D),
такой что t1 6ϕ t2 ⇔ ϕ∗(t1) ⊆ ϕ∗(t2); тогда 〈T (D),6ϕ〉 является дистрибутивной
предрешеткой (ассоциированная с ней решетка изоморфна 〈ϕ∗(T (D)),⊆
;∪,∩〉), причем ∨ и ∧ представляют в этой предрешетке операции объединения
и пересечения соответственно.
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Через t обозначим операцию дизъюнктного объединения множеств.
Определим по индукции последовательности конечных дистрибутивных
решеток {Tj}j∈N:

T0 = T (D0),

Tj+1 = T (Tj tDj+1);

Через αj и βj обозначим естественные вложения Tj ⊆ Tj t Dj+1 ⊆ Tj+1

множества Tj в Tj+1 и Dj ⊆ Tj−1 t Dj ⊆ Tj (D0 ⊆ T0 для j = 0)
множества Dj в Tj соответственно, сопоставляющие элементам Tj и Dj

соответсвующие им односимвольные термы.
Определим по индукции последовательности множеств {Xi,j}i,j∈N и

отображений {ψi,0 : D0 → P(N)}i∈N, {ψi,j+1 : Tj t Dj+1 → P(N)}i,j∈N,
{ϕi,j : Tj → P(N)}i,j∈N:

Xi,0 = {a : a 6 i},
Xi,j+1 = Ψj(Xi,j) ∪ {a : a 6 i};

ψi,0(x) = V 0
x ∪Xi,0,

ϕi,0 = ψ∗i,0,

ψi,j+1(x) =

{
V j+1

x ∪Xi,j+1, x ∈ Dj+1,

Ψj(ϕi,j(x)) ∪Xi,j+1, x ∈ Tj,

ϕi,j+1 = ψ∗i,j+1.

Множества Xi,j конечны и образуют ∅(n)-вычислимую (но не обязательно
сильно ∅(n)-вычислимую) последовательность, причем для любых i, j ∈ N
[0, . . . , i] ⊆ Xi,j ⊆ Xi+1,j (второе включение легко доказать индукцией по
j). Введем в рассмотрение дистрибутивные предрешетки Ti,j = 〈Tj,6i,j

;∨j,∧j〉, где для t1, t2 ∈ Tj t1 6i,j t2 ⇔ ϕi,j(t1) ⊆ ϕi,j(t2), а ∨j и ∧j —
операции объединения и пересечения на Tj как на свободной дистрибутивной
решетке. Докажем еще несколько свойств введенных обозначений.

1.) t ∈ Tj ⇒ ϕi+1,j(t) = ϕi,j(t) ∪Xi+1,j.
Доказательство. Для j = 0 равенство следует из определений. Пусть

оно справедливо для некоторого j; докажем его для j + 1. Достаточно
доказать это равенство в предположении t ∈ αj(Tj) ∪ βj+1(Dj+1).

В случае x ∈ Dj+1 ϕi+1,j+1(βj+1(x)) = V j+1
x ∪Xi+1,j+1 = (V j+1

x ∪Xi,j+1)∪
Xi+1,j+1 = ϕi,j+1(βj+1(x)) ∪ Xi+1,j+1. Для t ∈ Tj имеем ϕi+1,j+1(αj(t)) =
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Ψj(ϕi+1,j(t)) ∪ Xi+1,j+1 = Ψj(ϕi,j(t) ∪ Xi+1,j) ∪ Xi+1,j+1 = Ψj(ϕi,j(t)) ∪
Ψj(Xi+1,j) ∪ Xi+1,j+1 = Ψj(ϕi,j(t)) ∪ Xi+1,j+1 = (Ψj(ϕi,j(t)) ∪ Xi,j+1) ∪
Xi+1,j+1 = ϕi,j+1(αj(t)) ∪Xi+1,j+1. ¤

2.) Для t1, t2 ∈ Tj t1 6i,j t2 ⇒ t1 6i+1,j t2. Отображение T̃i,j в T̃i+1,j,
индуцированное тождественным отображением Tj на себя, сохраняет операцию
объединения.

Доказательство. Это прямое следствие предыдущего утверждения. ¤
Пусть для t1, t2 ∈ Tj t1 6j t2 ⇔ ∃i(t1 6i,j t2). В связи с доказанным

выше утверждением Tj = 〈Tj,6j;∨j,∧j〉— дистрибутивная предрешетка,
которая совпадает с Ti,j для всех достаточно больших i.

3.) Для всех i, j ∈ N и t1, t2 ∈ Tj t1 6j t2 ⇔ множество ϕi,j(t1) \ϕi,j(t2)
конечно.

Доказательство. Это опять следствие утверждения 1. Действительно,
если ϕi,j(t1) \ ϕi,j(t2) конечно, то для k > i ϕk,j(t1) \ ϕk,j(t2) = (ϕi,j(t1) ∪
Xk,j)\ (ϕi,j(t2)∪Xk,j); последнее равно ∅ при всех достаточно больших k.
Обратно, если для некоторого i ϕi,j(t1) \ ϕi,j(t2) = ∅, то (ϕ0,j(t1) ∪Xi,j) \
(ϕ0,j(t2) ∪ Xi,j) = ∅ и (ϕ0,j(t1) ∪ Xk,j) \ (ϕk,j(t2) ∪ Xk,j) конечно для всех
k > 0. ¤

4.) Для любого j ∈ N существует отображение γj : Tj → Dj, обладающее
следующим свойством: для любых i ∈ N и t ∈ Tj множества ϕi,j(t),
ϕi,j(βj(γj(t))) и V j

γj(t)
совпадают по модулю конечных множеств.

Доказательство. Докажем утверждение индукцией по j.
Для j = 0 рассмотрим γ0 : T0 → D0, обладающее следующими

свойствами: для x ∈ D0 γ0(β0(x)) ≡0 x, γ0(t1 ∨0 t2) ≡0 u0(γ0(t1), γ0(t2)),
γ0(t1 ∧0 t2) ≡0 v0(γ0(t1), γ0(t2)) (в силу дистрибутивности D̃0 такое γ0

существует). В силу свойств 1, 2 и 4 множеств V 0
x имеем ϕi,0(t) =∗ ϕi,0(β0(γ0(t))) =∗

V 0
γ0(t) для всех i.
Пусть для j утверждение справедливо; покажем, что оно справедливо

для j + 1. Сначала докажем это утверждение для элементов Tj+1 вида
αj(t), где t ∈ Tj. В силу свойства конечных точечных операторов сохранять
равенство по модулю конечных множеств имеем: ϕi,j+1(αj(t)) = Ψj(ϕi,j(t))∪
Xi,j+1 =∗ Ψj(ϕi,j(t)) =∗ Ψj(V

j
γj(t)

) = V j+1
γj(t)

=∗ ϕi,j+1(βj(γj(t))) и можно
положить γj+1(αj(t)) = γj(t). Далее действуем по тому же принципу, что
и при доказательстве базы индукции; доопределяем γj+1 на остальных
элементах Tj+1 так, чтобы выполнялись свойства: для x ∈ Dj+1 γj+1(βj+1(x)) ≡j+1

x, γj+1(t1∨j+1t2) ≡j+1 uj+1(γj+1(t1), γj+1(t2)), γj+1(t1∧j+1t2) ≡j+1 vj+1(γj+1(t1), γj+1(t2)).
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Требуемые равенства опять следуют из свойств 1, 2 и 4 множеств V j+1
x ,

а существование доопределения — из дистрибутивности D̃j+1. ¤
Зафиксируем отображения γj, о которых говорится в предыдущем

утверждении. Будем считать (из доказательства утверждения видно,
что это можно сделать), что для x ∈ Dj γj(βj(x)) = x, а для t ∈ Tj

γj+1(αj(t)) = γj(t).

5.) Решетки T̃j и D̃j изоморфны. Изоморфизм определяется отображением
γj.

Доказательство. Действительно, из утверждений 3 и 4, а также свойств
1 и 3 множеств V j

x следует, что для t1, t2 ∈ Tj t1 6j t2 ⇔ γj(t1) 6j

γj(t2). Значит, γj, как отображение из T̃j в D̃j, определено корректно,
сохраняет порядок и переводит несравнимые элементы в несравнимые.
Так как γj ◦ βj тождественно на Dj, то γj, как отображение из T̃j в D̃j,
сюрьективно. ¤

6.) Для i, j ∈ N и t1, t2 ∈ Tj t1 6i,j t2 ⇒ αj(t1) 6i,j+1 αj(t2) и αj(t1 ∨j

t2) ≡i,j+1 αj(t1) ∨j+1 αj(t2).
Доказательство. Первое следует из очевидной импликации: ϕi,j(t1) ⊆

ϕi,j(t2) ⇒ Ψj(ϕi,j(t1)) ∪ Xi,j+1 ⊆ Ψj(ϕi,j(t2)) ∪ Xi,j+1. Второе следует из
следующей цепочки равенств: ϕi,j+1(αj(t1 ∨j t2)) = Ψj(ϕi,j(t1 ∨j t2)) ∪
Xi,j+1 = Ψj(ϕi,j(t1)∪ϕi,j(t2))∪Xi,j+1 = (Ψj(ϕi,j(t1))∪Xi,j+1)∪(Ψj(ϕi,j(t2))∪
Xi,j+1) = ϕi,j+1(αj(t1)) ∪ ϕi,j+1(αj(t2)) = ϕi,j+1(αj(t1) ∨j+1 αj(t2)). ¤

7.) β0(0) — наименьший, а β0(1) — наибольший элементы в T0,0 соответсвенно.
Если t0, t1 ∈ Tj — наименьший и наибольший элементы в Ti,j соответсвенно,
то t0 — наименьший в Ti+1,j, t1 — наибольший в Ti+1,j, αj(t0) — наименьший
в Ti,j+1 и αj(t1) — наибольший в Ti,j+1.

Доказательство. Первое утверждение следует из определения ϕ0,0

и свойства 1 множеств V 0
x . Второе утверждение в той части, которая

касается Ti+1,j, является прямым следствием утверждения 2.
Для остального докажем индукцией по j, что ϕi,j(t0) = V j

0 ∪ Xi,j и
ϕi,j(t1) = V j

1 ∪ Xi,j. Для j = 0 справедливость этого утверждения уже
отмечена выше. Пусть для j это верно: тогда, в силу монотонности Ψj,
наименьшим по включению множеством в ϕi,j+1(αj(Tj)) будет Ψj(V

j
0 ∪

Xi,j)∪Xi,j+1 = Ψj(V
j
0 )∪Ψj(Xi,j)∪Xi,j+1 = V j+1

0 ∪Xi,j+1, а наибольшим —
Ψj(V

j
1 ∪Xi,j)∪Xi,j+1 = Ψj(V

j
1 )∪Ψj(Xi,j)∪Xi,j+1 = V j+1

1 ∪Xi,j+1. Однако
эти же множества будут соответственно наибольшим и наименьшим по
включению в ϕi,j+1(βj+1(Dj+1)) и, следовательно, останутся таковыми в
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ϕi,j+1(Tj+1). Остается лишь, опираясь на это утверждение, заметить, что
ϕi,j+1(αj(t0)) = V j+1

0 ∪Xi,j+1 и ϕi,j+1(αj(t1)) = V j+1
1 ∪Xi,j+1. ¤

Для i 6 j через αi,j обозначим вложение Ti в Tj, равное αj−1 ◦ . . . ◦ αi

(αi,i — тождественное отображение Ti на себя при j = i). Отметим, что
γj ◦ αi,j = γi. Как следует из утверждений 2 и 6, для t1, t2 ∈ Ti t1 6i,i

t2 ⇒ αi,j(t1) 6j,j αi,j(t2) и αi,j(t1 ∨i t2) ≡j,j αi,j(t1) ∨j αi,j(t2), то есть αi,j

индуцирует гомоморфизм полурешетки T̃i,i в полурешетку T̃j,j. Пусть
T =

⊔
i∈N Ti, а для t1 ∈ Ti и t2 ∈ Tj t1 6T t2 ⇔ (∃k > i, j)(αi,k(t1) 6k,k

αj,k(t2)). Тогда T = 〈T, 6T 〉 — дистрибутивная предполурешетка, такая
что ассоциированная с ней полурешетка T̃ изоморфна прямому пределу
системы {T̃i,i, αi,j}i,j∈N.

8.) Полурешетки T̃ и L̃ изоморфны.
Доказательство. Пусть γ — отображение из T в N, действующее по

следующему правилу: для t ∈ Ti γ(t) = γi(t). Покажем, что γ определяет
требуемый изоморфизм.

Покажем, что t1 6T t2 ⇔ γ(t1) 6ω γ(t2). Пусть t1 ∈ Ti и t2 ∈
Tj. Если t1 6T t2, то пусть k > i, j таково, что αi,k(t1) 6k,k αj,k(t2).
Поскольку αi,k(t1) 6k αj,k(t2), то из утверждения 5 получаем γ(t1) =
γi(t1) = γk(αi,k(t1)) 6k γk(αj,k(t1)) = γj(t1) = γ(t1). Пусть, наоборот,
γ(t1) 6ω γ(t2). Пусть k > i, j таково, что γi(t1) 6k γj(t2). Пусть m > k
настолько велико, что Tm,k = Tk. Тогда γi(t1) = γk(αi,k(t1)) 6k γk(αj,k(t2)) =
γj(t2), по утверждению 5 αi,k(t1) 6m,k αj,k(t2) и, по утверждению 6,
αi,m(t1) = αk,m(αi,k(t1)) 6m,m αk,m(αj,k(t2)) = αj,m(t2).

Мы доказали, что γ, как отображение из T̃ в L̃, определено корректно,
сохраняет порядок и переводит несравнимые элементы в несравнимые.
Осталось заметить, что γ(T ) = N и, следовательно, γ, как отображение
из T̃ в L̃, сюрьективно. ¤

Для завершения доказательства теоремы осталось интерпретировать
последовательность предрешеток {Ti,i}i∈N как последовательность со
свойствами 1 – 7 из определения лахлановской полурешетки. Множества
Ti заданы эффективно; в связи с этим имеют смысл (и справедливы)
следующие утверждения: множества Ti и отображения αi вычислимы
равномерно по i, функции t1 ∨i t2, t1 ∧i t2 вычислимы как функции от t1,
t2 и i, Π0

n+2-индекс отношения t1 6i,i t2 вычислим равномерно по t1, t2
и i (это следует из того, что Σ0

n+1-индексы множеств ϕi,i(t) вычислимы
равномерно по i и t). Пусть ε — вычислимая функция из T на N, такая
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что для каждого i ∈ N ε ¹ Ti инъективна и ε(αi(t)) = ε(t) для любого
t ∈ Ti, ε(β0(0)) = 0, ε(β0(1)) = 1. Пусть D′

i = ε(Ti) и для всех t1, t2 ∈ D′
i

ε(t1) 6′
i ε(t2) ⇔ t1 6i,i t2, u′i(ε(t1), ε(t2)) = ε(t1 ∨i t2), v′i(ε(t1), ε(t2)) =

ε(t1 ∧i t2). Тогда последовательность {〈D′
i,6′

i; u
′
i, v

′
i〉}i∈N удовлетворяет

условиям 1 – 7 определения лахлановской полурешетки и полурешетка,
задаваемая этой последовательностью, изоморфна T̃ . Доказательство
этого факта, равно как и технические детали определения функции ε,
не представляют принципиальной трудности и могут быть опущены. ¤

Замечание 1 Можно еще ослабить условия из определения n-лахла-
новской полурешетки, полагая, в пункте 6 функции ui ∅(n+1)-вычисли-
мыми равномерно по i.

Доказательство. Действительно, единственное место, где мы в доказательстве
теоремы используем вычислимость ui-ых — это вычислимость Σ0

n+2-ин-
декса условия "B — молекула в Di"равномерно по B и i. Однако это
остается верным и при ∅(n+1)-вычислимости ui-ых. ¤
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