
УДК 512.540+510.5
О Σ-подмножествах натуральных чисел в наследственно

конечном допустимом множестве ∗

А.Н.Хисамиев

19 августа 2004 г.

Аннотация

В данной работе получены условия Σ-определимости подмножества
натуральных чисел в наследственно конечном допустимом множестве
над моделью. Приведены условия вычислимости семейства подмножеств
натуральных чисел в наследственно конечном допустимом множестве.
Доказаны: для любого e-идеала I существует абелева группа без
кручения A такая, что семейство e-степеней Σ-подмножеств ω в
HF(A) совпадает c I; существует вполне разложимая абелева группа
без кручения, в наследственно конечном допустимом множестве
над которой, не существует универсальной Σ-функции; для любого
главного e-идеала I существует периодическая абелева группа A
такая, что семейство e-степеней Σ-подмножеств ω вHF(A) совпадает
c I.

Ключевые слова:Допустимые множества, e-сводимость, вычислимость,
Σ-определимость, абелева группа.

Проблемы Σ-определимости подмножеств множества конечных ординалов
в допустимых множествах исследовались в работах [1]—[5]. В [2], [3],
[5] изучались взаимосвязи T -сводимости и Σ-определимости, в [1], [4]
– соотношения между e-сводимостью и семейством Σ-подмножеств ω в
допустимых множествах. В [1] приведены примеры моделей, в наследственно
конечных надстройках над которыми, семейство Σ-определимых подмножеств
ω совпадает с I∗ = {S ⊆ ω | de(S) ∈ I}, где I – произвольный e-идеал.
Данная статья навеяна этой работой.

Все необходимые сведения о допустимых множествах можно найти
в [6] или [7]. Основные сведения по классической теории вычислимости
и теории групп можно узнать, например, из [8] и [9] соответственно. В
данной работе мы рассматриваем наследственно конечные допустимые
множества над моделями конечных сигнатур.

∗Частично поддержано грантами РФФИ №02-01-00593, INTAS-00-499 и
Минобразования PD02-1.1-201.
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Мы используем стандартные обозначения. Напомним некоторые из
них. Через Wn обозначается n-е вычислимо перечислимое множество.
Через Dn – n-е конечное множество, то есть Dn = {a1, . . . , ak}, если

n =
k∑

i=1
2ai . Сводимость по перечислению (сокращенно e-сводимость)

определяется следующим образом:

A ≤e B ⇔ ∃n∀t(t ∈ A ⇔ ∃m(〈t,m〉 ∈ Wn&Dm ⊆ B)).

Определим операторы перечисления Φn как

Φn(S) = {x | ∃m(〈x, m〉 ∈ Wn&Dm ⊆ S)}.

Мы получим другое определение e-сводимости

A ≤e B ⇔ ∃n(Φn(B) = A).

В этом случае будем говорить, что множество Wn задает оператор
Φn.

Последовательность {Θn}n∈ω операторов перечисления назовем вычислимой,
если существует вычислимая последовательность {An}n∈ω вычислимо
перечислимых множеств, задающих операторы Θn.

Произвольное непустое семейство e-степеней множеств натуральных
чисел называется e-идеалом I, если выполнены следующие условия:

1. a ≤e b и b ∈ I ⇒ a ∈ I.
2. a, b ∈ I ⇒ a t b ∈ I.
В дальнейшем, через (Mn)6= обозначим множество всех последовательностей

попарно различных элементов из M длины n, то есть (Mn)6= = {ā ∈ Mn |
ai 6= aj , i < j}.

Будем считать, что если сигнатуры моделей M0, M1 различны, то
M0 не вложима в M1.

§ 1 Условие Σ-определимости подмножеств натуральных
чисел.

Пусть даны модель M конечной сигнатуры σ и некоторое подмножество
M0 ⊆ M . Предположим,что справедливы условия:

1. Для любой конечной последовательности попарно различных элементов
ā = 〈a0, . . . , an−1〉 ∈ (M<ω

0 )6= определено Σ-подмножество Sā ⊆ ω в
HF(M). Если n = 0, то Sā ­ S∅.

2. Для любого числа n ∈ ω определен вычислимый класс конструктивных
моделей Kn = {〈Mn

r , b̄
〉 | r ∈ ω}, b̄ = 〈b0, . . . , bn−1〉, b̄ ∈ (Mn

r )6= и
для каждого числа r ∈ ω эффективно определено конечное множество
Sn

r ⊆ ω такое, что модель
〈
Mn

r , b̄
〉
изоморфно вложима в 〈M, ā〉 тогда и

только тогда, когда Sn
r ⊆ Sā, ā ∈ (Mn

0 )6=.
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3. Для любой конечно порожденной подмодели 〈M′, ā〉 ⊆ 〈M, ā〉,
ā ∈ (Mn

0 )6= существует такое число r, что Sn
r ⊆ Sā и модель 〈M′, ā〉

изоморфно вложима в
〈
Mn

r , b̄
〉
.

Тогда справедливо

ПРЕДЛОЖЕНИЕ 1. Пусть даны Σ-формула ϕ(x, y0, . . . , yn−1) сигнатуры
σ′ = {σ,∈, ∅} без параметров и последовательность элементов ā =
〈a0, . . . , an−1〉 ∈ (Mn

0 )6=. Если множество A ⊆ ω определимо формулой
ϕ(x, ā) в HF(M), то A ≤e Sā и, наоборот, если A ≤e Sā, то множество
A Σ-определимо в HF(M).

ДОКАЗАТЕЛЬСТВО. Вторая часть предложения доказана в [1]. Докажем
первую часть. Пусть

A = ϕHF(M)[x, ā] ⊆ ω,

и множество

Ws = {〈m, r〉 | HF(Mn
r , b̄) |= ϕ(m, b̄)}. (1)

По условию 2 множество Ws вычислимо перечислимо.
Покажем справедливость равенства

A = {m | ∃r(〈m, r〉 ∈ Ws & Sn
r ⊆ Sā)}. (2)

Обозначим правую часть этого равенства через B.
Пусть m ∈ A. Тогда

HF(M) |= ϕ(m, ā). (3)

Существует конечно порожденная подмодель 〈M′, ā〉 ⊆ 〈M, ā〉 такая,что

HF(M′, ā) |= ϕ(m, ā). (4)

По условию 3 существует такое число r , что Sn
r ⊆ Sā и модель 〈M′, ā〉

изоморфно вложима в
〈
Mn

r , b̄
〉
. Отсюда из (4) имеем

HF(Mn
r , b̄) |= ϕ(m, b̄). (5)

Следовательно имеем

〈m, r〉 ∈ Ws & Sr
n ⊆ Sā,

т.е. m ∈ B.
Пусть наоборот, m ∈ B. Тогда из (1) следует (5). По условию 2 модель〈

Mn
r , b̄

〉
изоморфно вложима в 〈M, ā〉. Следовательно имеем (3). Отсюда

m ∈ A.
Таким образом равенство (2) доказано.
Пусть вычислимая функция f такая, что Sn

r = Df(r), и множество
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W ′
s = {〈m, f(r)〉 | 〈m, r〉 ∈ Ws}. (6)

Ясно, что W ′
s вычислимо перечислимо. Из (2) и (6) имеем

A = {m | ∃t(〈m, t〉 ∈ W ′
s & Dt ⊆ Sā},

т.е. A 6e Sā. ¤

ЗАМЕЧАНИЕ 1. Пусть для последовательности ā ∈ (Mn
0 )6= множество

Sā определимо Σ-формулой с параметрами ā. Тогда множество A ⊆ ω
Σ-определима некоторой формулой ϕ(x, ā), если и только если A ≤e Sā.

Введем условие 2′.
2′. Для любого числа n ∈ ω равномерно по n определен вычислимый

класс конструктивных моделей Kn = {〈Mn
r , b̄

〉 | r ∈ ω}, b̄ = 〈b0, . . . , bn−1〉,
b̄ ∈ (Mn

r )6= и для любых чисел n, r равномерно по n и r эффективно
определено конечное множество Sn

r ⊆ ω такое, что модель
〈
Mn

r , b̄
〉
изоморфно

вложима в 〈M, ā〉, тогда и только тогда, когда Sn
r ⊆ Sā, ā ∈ (Mn

0 )6=.

ЗАМЕЧАНИЕ 2. Пусть для модели M и множества M0 справедливы
условия 1, 2′, 3. Тогда в предложении 1 требуемый оператор перечисления
находится по формуле ϕ эффективно.

Пусть для модели M и множества M0, кроме условий 1 − 3 также
справедливо:

4. Для любого элемента x ∈ M существуют последовательность ā ∈
(M<ω

0 )6= и Σ-формула ϕ(x, ȳ) без параметров такие, что x определяется
формулой ϕ(x, ā) в HF(M).

Тогда будем говорить, что модель M SΣ-порождена множеством
M0.

Если модель M SΣ-порождена основным множеством M , то будем
говорить, что модель M SΣ-порождена.

Из предложения 1 получаем

СЛЕДСТВИЕ 1. Пусть M SΣ-порождена множеством M0. Множество
A ⊆ ω Σ-определимо в HF(M) тогда и только тогда, когда существует
такая последовательность ā ∈ (M<ω

0 )6= такая, что A ≤e Sā.

ДОКАЗАТЕЛЬСТВО. Пусть A = ϕHF(M)[x, b̄], где b̄ = 〈b0, . . . , bm−1〉 ∈
(Mn)6=. По условию 4 существует последовательность ā ∈ (M<ω

0 )6= такая,
что для любого i < m существует формула ϕi(y, ā), сигнатуры σ′∪ā, σ′ =
σ ∪ {U,∈, ∅}, определяющая элемент bi в HF(M). Рассмотрим формулу

ψ(x, ā) = ∃y0 . . .∃ym−1(ϕ(x, ȳ) ∧
∧

i<m

ϕi(yi, ā)).
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Легко проверить, что справедливо равенство

ϕHF(M)[x, b̄] = ψHF(M)[x, ā].

Отсюда и из предложения 1 получаем требуемое. ¤

ЛЕММА 1. Любая модель M конечной чисто предикатной сигнатуры
σ SΣ-порождена.

ДОКАЗАТЕЛЬСТВО. Проверим справедливость условий 1—4. Пусть
дано число n ∈ ω. Через Kn обозначим класс всех конечных моделей
сигнатуры σ∪b̄, b̄ = 〈b0, . . . , bn−1〉, основные множества которых являются
начальным отрезком упорядоченного множества 〈{bi | i ∈ ω}, <〉, где bi <
bj , если i < j. Пусть Γn — эффективная нумерация этого класса, Mn

r =
Γn(r), Sn

r = {r}. Легко проверить, что класс Kn является равномерно по
n вычислимой последовательностью конструктивных моделей.

Пусть дана последовательность ā ∈ (M<ω)6=, a = 〈a0, . . . , an−1〉. Через
Sā обозначим множество таких чисел r, что модель

〈
Mn

r , b̄
〉
изоморфно

вложима в 〈M, ā〉.
Покажем, что множество Sā ⊆ ω является Σ-определимым в HF(M).

Пусть дано число r ∈ ω. Предположим, что множество Mn
r = {b0, . . . , bm−1}.

Через Φ′r(b0, . . . , bn−1, . . . , bm−1) обозначим открытую диаграмму модели〈
Mn

r , b̄
〉
. Пусть F – множество всех формул сигнатуры σ, а γ : ω → F

– эффективная нумерация этого множества. Пусть γ(r′) = Φr′(x̄) =
∃yn . . . ∃ym−1Φ′r(x0, . . . , xn−1, yn, . . . , ym−1). Тогда последовательность множеств〈
γ−1Fn

0 | n ∈ ω
〉
, где Fn

0 = {Φr′(x̄) | r ∈ ω}, вычислима. Функция f(n, r) =
r′ вычислима, а следовательно, она Σ-определима в HF(M). Существует
Σ-функция h : M<ω → ω такая, что h(ā) = n, где ā = 〈a0, . . . , an−1〉.

Поэтому множество

Sā = {r | HF(M) |= TrM(f(h(ā), r), ā)},
где TrM(m, ā) = {〈m, ā〉 | m является номером ∃-формулы Φm(x̄) сигнатуры
σ, ā ∈ M<ω и HF(M) |= Φm(ā)}, является Σ-множеством в HF(M).

Отсюда и из определения множества Sn
r следует, что условия 1, 2 для

модели M и множества M выполнены. Покажем справедливость условия
3. Пусть дана конечная подмодель 〈M′, ā〉 ⊆ 〈M, ā〉. Тогда существует
такое число r ∈ ω, что модели

〈
Mn

r , b̄
〉 ' 〈M′, ā〉. Отсюда Sn

r = {r} ⊆ Sā,
то есть условие 3 для модели M и множества M справедливо. Проверка
условия 4 очевидна. Следовательно M SΣ-порождена. ¤

ЗАМЕЧАНИЕ 3. Из доказательства леммы следует, что
10. для модели M и ее основного множества M справедливо условие

2′.
20. Sā Σ-определимо формулой с параметроми ā.

Отсюда, по лемме 1 и замечаниям 1, 2 получаем
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СЛЕДСТВИЕ 2. Пусть M является моделью чисто предикатной
сигнатуры σ. Множество A ⊆ ω определимо некоторой Σ-формулой
ϕ(x, ā) в HF(M) тогда и только тогда, когда A ≤e Sā. Более того,
оператор перечисления по формуле ϕ находится эффективно.

Для модели M через Ie(M) обозначим идеал e-степеней Σ-подмножеств
натуральных чисел в HF(M).

СЛЕДСТВИЕ 3. [1] Пусть дана модель M конечной чисто предикатной
сигнатуры σ. Тогда идеал Ie(M) порождается e-степенями
de(Th∃(M, ā)), где ā ∈ M<ω.

Действительно, по лемме 1 модель M SΣ-порождена. Пусть A ⊆ ω
Σ-определимо формулой ϕ(x, ā). По предложению 1 имеем A ≤e Sā. Из
доказательства леммы 1 следует, что Sā ≡e Th∃(M, ā). ¤

В [9] доказано, что любая абелева p-группа, алгебра Ершова локально
конструктивизируемы. Отсюда и из следствия 3 получаем

СЛЕДСТВИЕ 4. Пусть M является абелевой p-группой или алгеброй
Ершова. Тогда любое Σ-подмножество натуральных чисел в HF(M)
вычислимо перечислимо.

В [1] по любому непустому семейству непустых множеств натуральных
чисел U и последовательности бесконечных кардиналов Λ = 〈αS | S ∈ U〉
построена модель M′

〈U,Λ〉. На самом деле это построение корректно и
в случае, когда U содержит пустое множество. Пусть даны непустое
семейство множеств натуральных чисел U и последовательность Λ. Тогда
справедлива

ЛЕММА 2. Если U содержит все конечные множества, то модель
M ­ M′

〈U,Λ〉 SΣ-порождена множеством M0 = {〈S, γ〉 | S ∈ U, γ < αS}.
ДОКАЗАТЕЛЬСТВО. Проверим условия 1–4 определения SΣ-поро-

жденной модели M множеством M0.
1. Пусть дана последовательность элементов ā = 〈a0, . . . , an−1〉 ∈

(Mn
0 )6=, ai = 〈Si, αi〉. Положим

Sā = S0 ⊕ . . .⊕ Sn−1.

Легко проверить, что Sā является Σ-подмножеством в HF(M).
2. Пусть дано число n. Зафиксируем эффективную нумерацию γn :

ω → A, где A – множество всех конечных последовательностей попарно
различных пар чисел длины m ≥ n, m ∈ ω. Пусть γnr = {

〈
ej , p

′
j

〉
} |

j < m}. Положим Un
r′ = {De0 , . . . , Dem−1}. Пусть Un

r = {Dr0 , . . . , Drt−1},
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где Drj 6= Drj′ , j < j′ < t, prj = max{p′k | Drj = Dek
, k < m} + 1,

Λn
r = {pr0 , . . . , prt−1}, Mn

r = M′
〈Un

r ,Λn
r 〉, bi = 〈Dei , p

′
i〉. Положим

Sn
r = De0 ⊕ . . .⊕Den−1 .

Легко проверить, что модель
〈
Mn

r , b̄
〉
изоморфно вложима в 〈M, ā〉

тогда и только тогда, когда Sn
r ⊆ Sā.

3. Пусть дана конечно-порожденная подмодель 〈M′, ā〉 ⊆ 〈M, ā〉, ā =
〈a0, . . . , an−1〉 ∈ (Mn

0 )6=. Не умоляя общности, можно считать, что если
элемент вида 〈S, γ, n〉 ∈ M ′, то 〈S, γ〉 ∈ M ′. Допустим, что {aj | j < m},
m ≥ n — множество всех элементов из M ′, принадлежащих M0, aj =
〈Sj , αj〉 и De′j = {n | 〈Sj , αj , n〉 ∈ M ′}.

Легко проверить, что существуют такие числа ej , p
′
j , что для любого

j < m выполнены:
1) De′j ⊆ Dej ⊆ Sj .

2)
〈
Dej , p

′
j

〉
6=

〈
Dej′ , p

′
j′

〉
, j < j′ < m.

Пусть γr =
〈〈

ej , p
′
j

〉
| j < m

〉
. Легко проверить, что модель 〈M′, ā〉

изоморфно вложима в
〈
Mn

r , b̄
〉
, где bi = 〈Dei , p

′
i〉, i < n, и Sn

r ⊆ Sā.
4. Пусть дан элемент x ∈ M . Если x ∈ ω, то очевидно, что элемент x

является Σ-определимым относительно сигнатуры 〈0, s〉. Допустим x =
〈S, γ, n〉. Тогда

x = 〈S, γ, n〉 ⇔ Q(x, 〈S, γ〉 , n).

Следовательно любой элемент x является Σ-определимым в модели
M с константами из M0.

Таким образом все условия выполняются. Поэтому модель M′
〈U,Λ〉

SΣ-порождена множеством M0. ¤

ЗАМЕЧАНИЕ 4. Из доказательства пункта 2 леммы 2 следует, что
модель M удовлетворяет условию 2′.

Пусть модель M сигнатуры σ и множество M0 ⊆ M удовлетворяют
условиям 1, 2′, 3 и

5. Существует вычислимая последовательность Σ-формул
ϕe

r(x, x0, . . . , xr−1) без параметров сигнатуры σ′, r, e ∈ ω, такая, что
выполнены условия: a) для любых чисел r, e и последовательности ā ∈
(M r

0 )6= множество {x ∈ M | HF(M) |= ϕe
r(x, ā)} не более чем одноэлементно;

b) для любого элемента x ∈ M существуют числа rx, ex и последовательность
āx ∈ (M rx

0 )6= такие, что элемент x определяется в HF(M) формулой
ϕex

rx
(x, āx).
Тогда будем говорить, что модель M вычислимо SΣ-порождена множеством

M0.
Легко заметить, что справедлива
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ЛЕММА 3. Пусть даны модель M и формула ψ(x, y0, . . . , yn−1, b̄), b̄ ∈
(M t)6=. Тогда по формуле ψ можно эффективно определить множество
формул {ψi(x, y0, . . . , ymi−1, b̄) | i < s, mi < n} такое, что справедливо
равенство:

{ψM[x, ā, b̄] | ā ∈ Mn} = {ψM
i [x, ā, b̄] | i < s, ā ∈ (Mmi)6=, aj 6= bk} (7)

ТЕОРЕМА 1. Пусть M вычислимо SΣ-порождена множеством M0.
Если семейство S подмножеств натуральных чисел вычислимо в HF(M),
то семейство S ∪ {∅} представимо в виде

{Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈ (Mmi
0 )6=, aj 6= bk}

для некоторой вычислимой последовательности операторов перечисления
Θi, b̄ ∈ (M t

0)6= и функция m(i) = mi вычислима.

ДОКАЗАТЕЛЬСТВО. Пусть дано вычислимое семейство S подмножеств
натуральных чисел в HF(M). Тогда по предложению 4.4 [1] и условию 5
найдется Σ-формула Ψ(x0, x1, b̄) такая, что

S ∪ {∅} = {ΨHF(M)[x0, c, b̄] | c ∈ HF(M)} (8)

для некоторой фиксированной последовательности b̄ ∈ (M t
0)6=.

Следуя Ю. Л. Ершову [7] введем множества Hn = HF(n = {i | i <
n}), H0 = HF(∅). Тогда HF(ω) =

⋃
n

Hn. Существует Σ-нумерация α :

ω → HF (ω) в HF(M) множества HF (ω). Через tm обозначим элемент
из HF (ω) номера m и пусть tm ∈ Hkm , где km = min{k | tm ∈ Hk}, и

Ψ(m)(x0, z0, . . . , zkm−1, b̄) = Ψ(x, tm(z0, . . . , zkm−1), b̄). (9)

Функция k(m) = km вычислима. Множество всех конечных последовательностей
натуральных чисел вида α = 〈m, r0, e0, . . . , rkm−1, ekm−1〉 обозначим через
R. Очевидно, что множество R вычислимо. Пусть вычислимая функция
ν перечисляет множество R.

Для любого числа i ∈ ω определим следующую формулу Ψi. Пусть
ν(i) = α и km ­ q. Тогда положим

Ψi(x, y0
0, . . . , y

0
r0−1, y

1
0, . . . , y

q−1
rq−1−1, b̄) = ∃z0 . . .∃zq−1(

∧

j<q

U(zj)∧

∧Ψ(m)(x0, z0, . . . , zq−1, b̄) ∧
∧

j<q

ϕ
ej
rj (zj , y

j
0, . . . , y

j
rj−1)),

где формулы ϕ
ej
rj такие же как в условии 5.

Из условия 5 следует, что для любой последовательности элементов
c̄ = 〈c0, . . . , cq−1〉 ∈ M<ω существуют последовательность элементов α ∈
R и ā =

〈
āc0 , . . . , ācq−1

〉 ∈ M<ω
0 такие, что ν(i) = α и

ΨHF(M)[x0, tm(c̄), b̄] = ΨHF(M)
i [x0, ā, b̄].
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Отсюда и из (8), (9) имеем

S ∪ {∅} = {ΨHF(M)
i [x0, ā, b̄] | i ∈ ω, ā ∈ Mmi

0 }. (10)

По лемме 3 в равенстве 10 можно считать, что
〈
ā, b̄

〉 ∈ (Mmi+t
0 )6=.

Тогда по замечанию 2 имеем

S ∪ {∅} = {Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈ (Mmi
0 )6=, aj 6= bk},

для некоторой вычислимой последовательности операторов перечисления
Θi, i ∈ ω, b̄ ∈ (M t

0)6= и функция m(i) = mi вычислима. ¤

Для модели M и подмножества M0 ⊆ M введем условия:
6. Множество M0 является Σ-подмножеством в HF(M).
7. существует Σ-формула Φ1(x, ȳ) (возможно с параметрами) такая,

что для любой последовательности ā ∈ (M<ω
0 )6= справедливо равенство

ΦHF(M)
1 [x, ā] = Sā.

ЗАМЕЧАНИЕ 5. Из доказательства леммы 1 следует, что для модели
M чисто предикатной сигнатуры и множества M справедливо условия
6, 7.

СЛЕДСТВИЕ 5. Пусть модель M вычислимо SΣ-порождена множеством
M0 и справедливы условия 6, 7. Тогда семейство S подмножеств натуральных
чисел вычислимо в HF(M) тогда и только тогда, когда S∪{∅} представимо
в виде

{Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈ (Mmi
0 )6=, aj 6= bk} (11)

для некоторой вычислимой последовательности операторов перечисления,
b̄ ∈ (M t

0)6= и функция m(i) = mi вычислима.

ДОКАЗАТЕЛЬСТВО. По теореме 1 требуется доказать достаточность.
Пусть S∪{∅} представимо в виде (11) и вычислимая последовательность
вычислимо перечислимых множеств {Ai} определяет операторы {Θi}.
Тогда существует Σ-формула Φ2 такая, что

ΦHF(M)
2 [x, i] = Ai.

Отсюда и из (11), по условию 7 имеем

S ∪ {∅} = {λx.∃tΦ2(〈x, t〉 , i) & ∀y ∈ t (y ∈ Dt → Φ1(y,
〈
ā, b̄

〉
) |

i ∈ ω, ā ∈ (Mmi
0 )6=, aj 6= bk}.

Так как множество {ā ∈ (Mmi
0 ) 6= | i ∈ ω, aj 6= bk} Σ-определимо в

HF(M), то семейство S ∪ {∅} вычислимо. Отсюда S вычислимо. ¤

Пусть M′
〈U,Λ〉 – модель, построенная в [1].
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СЛЕДСТВИЕ 6. [1] Если I – некоторый e-идеал и модель M = M′
〈I∗,Λ〉.

Тогда семейство множеств натуральных чисел S вычислимо в HF(M)
тогда и только тогда, когда S ∪ {∅} представимо в виде

{Θi(R,A) | i ∈ ω, R ∈ I∗}

для некоторой вычислимой последовательности операторов перечисления
Θi и A ∈ I∗.

ДОКАЗАТЕЛЬСТВО. Достаточность легко следует из существования
универсального Σ-предиката для допустимых множеств конечной сигнатуры.
Докажем необходимость. Пусть семейство S вычислимо. Тогда из теоремы 1
следует

S ∪ {∅} = {Θ1
i (S〈ā,b̄〉) | i ∈ ω, ā ∈ (Mmi

0 )6=, aj 6= bk}

для некоторой вычислимой последовательности операторов перечисления
Θ1

i , b̄ ∈ (M t
0)6= и функция m(i) = mi вычислима. Из доказательства

леммы 2 вытекает

S〈ā,b̄〉 = S0 ⊕ . . .⊕ Smi−1 ⊕A0 ⊕ . . .⊕At−1,

где aj = 〈Sj , γj〉, j < mi, bk = 〈Ak, βk〉, k < t.
Тогда существует вычислимая последовательность операторов перечисления

Θi такая, что

S ∪ {∅} = {Θi(S0 ⊕ . . .⊕ Smi−1, A0 ⊕ . . .⊕At−1) | Sj ∈ I∗, j < mi, i ∈ ω}.

Осталось заметить, что {S0 ⊕ . . .⊕ Smi−1 | Sj ∈ I∗, j < mi} = I∗. ¤

§ 2 Σ-подмножества натуральных чисел над абелевыми
группами.

Пусть P — множество всех простых чисел и S = {Sα | α < β}
– некоторое непустое семейство подмножеств простых чисел, где β –
некоторый бесконечный ординал. Для любого ординала α < β и числа
i ∈ ω определим группу A

(i)
α следующим заданием порождающих и

определяющих соотношений:

A(i)
α = gr(ai

α, {bα
p,i | p ∈ Sα} : pbα

p,i = ai
α),

и положим

Aα =
⊕

i∈ω

A(i)
α , AS =

⊕

α<β

Aα.

Тогда справедлива
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ЛЕММА 4. Группа A ® AS вычислимо SΣ-порождена множеством
A0 = {ai

α | α < β, i ∈ ω}.
ДОКАЗАТЕЛЬСТВО состоит в проверке условии 1, 2′, 3, 5 определения

вычислимой SΣ-порожденной модели.
1. Пусть дана конечная последовательность ā =

〈
at0

α0
, . . . , a

tn−1
αn−1

〉
∈

(A<ω
0 )6=. Определим множество

Sā = Sα0 ⊕ . . .⊕ Sαn−1 ⊕ ω.

Легко проверить, что условие 1 выполнено.
2′. Пусть [ ] : ω<ω → ω эффективная нумерация конечных последовательностей

натуральных чисел и даны числа n и r = [u0, . . . , un−1,m] такие, что
Dui ⊆ P , i < n, m ∈ ω. Для каждого i < n определим группу

Br
i = gr(bi, {ci

p | p ∈ Dui} : pci
p = bi)

и положим

Mn
r =

⊕

i<n

Br
i

⊕
Zm, b̄ = 〈b0, . . . , bn−1〉,

Sn
r = Du0 ⊕ . . .⊕Dun−1 ⊕ {m},

где Zm - прямая сумма m экземпляров бесконечной циклической группы.
Легко проверить, что отображение f : bi → ati

αi
, i < n, можно продолжить

до изоморфного вложения модели 〈Mn
r , b̄〉 в 〈A, ā〉 тогда и только тогда,

когда Sn
r ⊆ Sā.

3. Пусть дана последовательность элементов ā = 〈at0
α0

, . . . , a
tn−1
αn−1〉 ∈

(A<ω
0 )6= и конечно порожденная подгруппа A′ ⊆ A, содержащая элементы

ai ® ati
αi
. Для каждого i < n определим множество

Ri ® Ri
A′ = {p ∈ P | A′ |= ∃y(py = ai)}.

Пусть Ri = {pi
0, . . . , p

i
li−1

} и для любого j < li число ui и элемент bi
j

такие, что

Dui = Ri, pi
jb

i
j = ai.

Обозначим через A′′ подгруппу, порожденную множеством {bi
j , ai |

j < li, i < n}. Легко понять, что подгруппа A′′ сервантна в A′, а потому
A′ = A′′

⊕
B для некоторой конечно порожденной подгруппы B. По

основной теореме о конечно порожденных абелевых группах существует
такое число m, что группы B и Zm изоморфны. Пусть r = [u0, . . . , un−1,m].
Тогда Sn

r ⊆ Sā и группы 〈A′, ā〉 и 〈Mn
r , b̄〉 изоморфны.

5. Любой элемент группы A линейно зависит от последовательности
〈ai

α | α < β, i ∈ ω〉. Отсюда легко следует, что условие 5 справедливо. ¤
Из леммы 4 и следствия 1 получаем

11



СЛЕДСТВИЕ 7. Множество M ⊆ ω является Σ-определимым в
наследственно конечном допустимом множестве HF(AS) над группой
AS тогда и только тогда, когда существует последовательность ā ∈
(A<ω

0 )6= такая, что M ≤e Sā.

ТЕОРЕМА 2. Для любого e-идеала I существует абелева группа без
кручения A такая, что I∗ совпадает с семейством всех Σ-подмножеств
натуральных чисел в HF(A). Кроме того, эту группу можно выбрать
так, что card(A) = card(I∗).

ДОКАЗАТЕЛЬСТВО. Пусть дан e-идеал I и I∗ = {Sα ⊆ ω | α <
β}. Для любого α < β определим множество S′α = {px | x ∈ Sα}, где
px – x-ое простое число и положим I ′ = {S′α | α < β}, A = AI′ , где
группа A построена по I ′ как перед леммой 4. Покажем, что группа A
требуемая. Из построения группы A следует, что для любого α < β и
i ∈ ω справедливо равенство

S′α = {p | A |= ∃y(py = ai
α)}.

Отсюда множество S′α, а следовательно и Sα, Σ-определимы в HF(A).
Пусть дано Σ-подмножество M ⊆ ω вHF(A). По следствию 7 существуют
число n и последовательность ā ∈ (An

0 ) 6=, такие что

M ≤e Sā = Sα0 ⊕ . . .⊕ Sαn−1 ⊕ ω.

Так как S′αi
∈ I∗, то и Sā ∈ I∗. Отсюда имеем M ∈ I∗. ¤

СЛЕДСТВИЕ 8. Пусть дан e-идеал I и по нему построена группа
A также как в теореме 2. Тогда семейство множеств натуральных
чисел S вычислимо в HF(A) тогда и только тогда, когда S∪{∅} представимо
в виде

{Θi(R,B) | i ∈ ω, R ∈ I∗}
для некоторой вычислимой последовательности операторов перечисления
Θi и B ∈ I∗.

ДОКАЗАТЕЛЬСТВО. Как и для следствия 6 докажем необходимость.
Пусть семейство S вычислимо. Тогда из теоремы 1 следует

S ∪ {∅} = {Θ1
i (S〈ā,b̄〉) | i ∈ ω, ā ∈ (Ami

0 )6=, ai 6= bk}
для некоторой вычислимой последовательности операторов перечисления
Θ1

i , b̄ ∈ (At
0)6= и функция m(i) = mi вычислима. Из доказательства

леммы 4 существует вычислимая последовательность операторов перечисления
Θ2

i такая, что

S ∪ {∅} = {Θ2
i (S

′
α0
⊕ . . .⊕ S′αmi−1

, B′
0 ⊕ . . .⊕B′

t−1 ⊗ ω) | S′αj
∈ I ′,

j < mi, i ∈ ω}.
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Так как S′α0
⊕ . . . ⊕ S′αmi−1

≡m Sα0 ⊕ . . . ⊕ Sαmi−1 , где Sαj ­ {x |
px ∈ S′αj

}, j < mi, и I∗ = {Sα0 ⊕ . . . ⊕ Sαmi−1 | Sαj ∈ I∗}, то существует
вычислимая последовательность операторов перечисления Θi такая, что

S ∪ {∅} = {Θi(R,B′
0 ⊕ . . .⊕B′

t−1 ⊗ ω) | R ∈ I∗, i ∈ ω}.

¤
Пусть e-идеал I порожедается тотальными e-степенями и не является

главным, I∗ = {Sα | Sα 6= ∅, α < β} и группа A = AI′ построена как
в доказательстве теоремы 2. Также как и в [1] для группы A можно
показать, что справедливо

СЛЕДСТВИЕ 9. Существует вполне разложимая абелева группа без
кручения A такая, что в наследственно конечном допустимом множестве
HF(A) не существует универсальной Σ-функции.

Пусть дано подмножество S ⊆ P простых чисел. По множеству S
определим группу G ® GS =

⊕{Zp | p ∈ S}. В каждой группе Zp

зафиксируем элемент ap 6= 0 и пусть G0 = {ap | p ∈ S}.
ЛЕММА 5. Группа G вычислимо SΣ-порождена множеством G0.

ДОКАЗАТЕЛЬСТВО состоит в проверке условий 1, 2′, 3, 5 определения
вычислимо SΣ-порожденной модели.

1. Для любой последовательности ā = 〈ap0 , . . . , apn−1〉 ∈ (G<ω
0 )6= положим

Sā = {[p0, . . . , pn−1, q0, . . . , qm−1] | q̄ ∈ (S<ω)6=, pi 6= qj , i < n, j < m}.

Легко проверить, что множество S, а следовательно и множество Sā,
Σ-определимы в HF(G).

2′. Пусть даны числа n и r такие, что r = [p0, . . . , pn−1, q0, . . . , qm−1],
где 〈p0, . . . , pn−1, q0, . . . , qm−1〉 последовательность попарно различных
простых чисел. Положим

Gn
r =

⊕
{Zpi | i < n− 1} ⊕

⊕
{Zqj | j < m− 1},

Sn
r = {[p0, . . . , pn−1, q0, . . . , qm−1]}.

Пусть Zpi = (bpi). Ясно, что модель 〈Gn
r , b̄〉, b̄ = 〈bp0 , . . . , bpn−1〉, вложима

в 〈G, ā〉 тогда и только тогда, когда Sn
r ⊆ Sā.

3. Пусть 〈G′, ā〉, ā = 〈ap0 , . . . , apn−1〉 ∈ (Gn
0 )6= – некоторая конечно

порожденная подгруппа в 〈G, ā〉. Обозначим через H0 ⊆ G′ подгруппу,
порожденную элементами ai ® api , i < n. Тогда существует такая
последовательность простых чисел q0, . . . , qm−1, что G′ = H0

⊕
Zq0

⊕
. . .

⊕
Zqm−1 .

Пусть число r = [p0, . . . , pn−1, q0, . . . , qm−1]. Тогда модель 〈Gn
r , b̄〉, определенная

в пункте 2, изоморфна 〈G′, ā〉, и Sn
r ⊆ Sā, то есть справедливость условия

3 установлена.
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5. Для любого числа r = [m0, . . . , mn−1, p0, . . . , pn−1], mi ∈ ω, pi ∈ P ,
mi < pi, pi 6= pj , i < j < n, определим формулу

ϕn
r (x, x0, . . . , xn−1) ­ (x = m0x0 + . . . + mn−1xn−1) &∧

i<n

(xi 6= 0 & pixi = 0).

Легко проверить, что для любого элемента x ∈ G существует такое
число r, что формула ϕr(x, ap0 , . . . , apn−1) определяет элемент x в HF(G),
и для любой последовательности ā ∈ G0 множество ϕ

〈G,ā〉
r [x, ā] не более,

чем одноэлементно.
Таким образом, все условия определения вычислимо SΣ-порожденной

модели для группы G и множества G0 выполнены. ¤

СЛЕДСТВИЕ 10. Пусть S ⊆ P и группа G =
⊕{Zp | p ∈ S}.

Множество A ⊆ ω Σ-определимо в HF (G) тогда и только тогда, когда
A ≤e S. Идеал Ie(G) является главным.

Действительно, по лемме 5 и следствию 1 существует последовательность
ā ∈ (G<ω

0 )6= такая, что A ≤ Sā. Отсюда и из Sā ≤e S следует, что
A ≤e S. Множество S является Σ-определимым в HF(G). Следовательно
de(S) ∈ Ie(G). Поэтому идеал Ie(G) является главным.

СЛЕДСТВИЕ 11. Для любого главного e-идеала I существует периодическая
абелева группа G такая, что Ie(G) = I.

Действительно, пусть множество S ⊆ P такое, что I = d̂e(S). Тогда
по следствию 10 группа G ­ GS требуемая.

ОПРЕДЕЛЕНИЕ. Функцию Uω(x0, x1) будем называть строго универсальной
числовой функцией в наследственно конечном допустимом множестве
HF(M), если семейство всех одноместных числовых Σ-функций HF(M)
представимо в виде:

{Uω(x0, x1) | x0 ∈ ω}.

ЛЕММА 6. [10] Существует главный e-идеал, что в I не существует
универсальной функции для класса одноместных функций из I.

Отсюда и следствия 11 получаем

СЛЕДСТВИЕ 12. Существует периодическая абелева группа G такая,
что в HF(G) не существует строго универсальной числовой Σ-функции.

ЗАМЕЧАНИЕ 6. Существует модель M такая, что в HF(M) нет
универсальной функции, но имеется строго универсальная числовая Σ-
функция.
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Действительно, в [11] построена такая сильно конструктивизируемая
модель M, что в HF(M) нет универсальной Σ-функции. По следствию 3
имеем Ie(M) = 0. Поэтому в Ie(M) существует универсальная числовая
функция. Следовательно, вHF(M) имеется строго универсальная числовая
функция, то есть M требуемая.
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