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В монографииЮ.Л. Ершова [1] введено важное понятие квазирезольвентного
допустимого множества и доказаны:

1. Если M – модель регулярной (т.е. разрешимой и модельно полной)
теории, то наследственно конечное допустимое множествоHF(M) является
квазирезольвентным;

2. В квазирезольвентных допустимых множествах существует универсальная
Σ-функция.

По аналогии с этим понятием в [2] дано определение квазирезольвентной
модели и доказано, что модель M конечной сигнатуры квазирезольвентна
тогда и только тогда, когда наследственно конечное допустимое множество
HF(M) квазирезольвентно. Поэтому представляет интерес исследование
квазирезольвентных моделей. В данной работе введены понятия 1-квазирезольвентной
модели и установлены связи между квазирезольвентными и 1-квазирезольвентными
моделями. Получены достаточные условия 1-квазирезольвентности и не
квазирезольвентности модели. Описаны квазирезольвентные алгебры Ершова
(теорема 2.2) и абелевы p-группы (теорема 3.3). Из этих теорем следуют:
1) алгебра Ершова (абелева p-группа) квазирезольвентна тогда и только
тогда, когда она 1-квазирезольвентна; 2) если алгебра Ершова (абелева
p-группа) квазирезольвентна, то некоторое ее обогащение конечным числом
констант является моделью регулярной теории.

Мы придерживаемся терминологии и обозначении по допустимым
множествам [1], теории моделей [3, 4], алгебрам Ершова [5, 6] и группам [7].
В дальнейшем рассматриваются модели конечных сигнатур.

Автор выражает благодарность С.С. Гончарову за внимание и поддержку
в работе и рецензенту за замечания, которые помогли улучшить изложение
работы.

§1. 1-квазирезольвентные модели.

Пусть M – модель конечной сигнатуры σ, σ1 = σ ∪ 〈∅,∈, U1
〉

и
HF(M) – наследственно конечное допустимое множество над моделью
M. Зафиксируем геделеву нумерацию Γ всех формул сигнатуры σ1. Через
Φn будем обозначать формулу с номером n. Пусть дана формула Φ

∗Частично поддержано грантами РФФИ №02-01-00593, INTAS-00-499 и
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сигнатуры σ и конечная последовательность ā = 〈a0, . . . , an−1〉 элементов
из M . Через FV (Φ) обозначается множество всех свободных переменных
формулы Φ. Пусть FV (Φ) = {x0, . . . , xm−1}. Если m ≤ n, то Φ(ā) =
(Φ)x0,...,xm−1

a0,...,am−1 получена из формулы Φ подстановкой вместо xi элементов
ai. Если же m > n, то Φ(ā) есть ∃x(x 6= x). Определим 2-х местный
предикат Tr1

M в HF(M) положив

Tr1
M(n, ā) = {〈n, ā〉 | M |= Φn(ā), n ∈ ω, ā ∈ M<ω},

где Φn(x̄) – формула сигнатуры σ номера n, M<ω – множество всех
конечных последовательностей элементов из M .

В [2] введено понятие квазирезольвентной модели.

ОПРЕДЕЛЕНИЕ 1.1 [2] Модель M называется квазирезольвентной,
если существует последовательность подмножеств Mn ⊆ M , n ∈ ω
(квазирезольвента) такая, что

1. M0 ⊆ M1 ⊆ . . .,
2.

⋃
Mi = M ,

3. Предикаты P = {〈n, a〉 | a ∈ Mn}, TrM = {〈n,m, ā〉 | Mn |=
Φm(ā), ā ∈ M<ω

n } являются ∆-предикатами в HF(M).

Введем следующее

ОПРЕДЕЛЕНИЕ 1.2 Модель M назовем 1-квазирезольветной, если
предикат Tr1

M является ∆-предикатом в HF(M).

Отсюда и определения 1.1 следуют

ЗАМЕЧАНИЕ 1.1 Модель M 1-квазирезольвентна тогда и только
тогда, когда квазирезольвенту можно выбрать так, что все множества
последовательности Mn, i ∈ ω в определении 1.1 равны множеству M ,
то есть существует квазирезольвента длины 1.

ЗАМЕЧАНИЕ 1.2 Из доказательства теоремы 3.5.1 [1, стр. 230] следует,
что любая модель регулярной теории 1-квазирезольвентна.

ПРЕДЛОЖЕНИЕ 1.1 Стандартная модель арифметики Ω = 〈ω, 0,
s,+, ·,≤〉 является квазирезольвентной, но не 1-квазирезольвентной
моделью.

ДОКАЗАТЕЛЬСТВО. Легко понять, что модель Ω резольвентна, а
поэтому и квазирезольвентна. Несправедливость 1-квазирезольвентности
непосредственно следует из нетривиальности арифметической иерархии
и того, что любое Σ-подмножество A ⊆ ω в HF(Ω) является вычислимо
перечислимым множеством [1]. ¤
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Приведем пример резольвентной периодической абелевой группы,
которая не 1-квазирезольвентна.

Пусть S – вычислимо перечислимое, но не вычислимое множество
простых чисел и G =

⊕{Cp | p ∈ S}, где Cp – циклическая группа
порядка p. Легко проверить, что группа G, а следовательно наследственно
конечное допустимое множествоHF(G), являются вычислимыми моделями.
Как и в предложении 2 [8] можно доказать, что группа G резольвентна.
Покажем, что группа G не является 1-квазирезольвентной.

Допустим противное, то есть она 1-квазирезольвентна. Для любого
простого числа p через Φf(p) обозначим формулу ∃x(x 6= 0 & px = 0).
Тогда справедливы эквивалентности:

p ∈ S ⇔ G |= Φf(p) ⇔ HF(G) |= Tr1
G(f(p), 0).

Так как Tr1
G(f(p), 0) является ∆-предикатом, а HF(G) – вычислимая

модель, то множество S вычислимо. Противоречие.
Приведем одно достаточное условие, когда квазирезольвентная модель

является 1-квазирезольвентной.

ТЕОРЕМА 1.1 Если модель M квазирезольвентна и счетно-катего-
рична, то модель M 1-квазирезольвентна.

ДОКАЗАТЕЛЬСТВО. Пусть последовательность подмножеств Mi ⊆
M , i ∈ ω является квазирезольвентой модели M. Тогда существуют
последовательность элементов b̄ ∈ M<ω и Σ-формула Φ(n, x, b̄) такие,
что справедлива эквивалентность:

x ∈ Mn ⇔ HF(M) |= Φ(n, x, b̄).

Используя известный метод представления Σ-формулы сигнатуры σ1

в виде дизьюнкции вычислимой последовательности ∃-формул сигнатуры
σ и теорему Рылль-Нардзевского 2.3.13 [4], легко понять, что существует
∃-формула Ψn(x, b̄) сигнатуры

〈
σ, b̄

〉
такая, что для любого элемента

c ∈ M справедлива эквивалентность:

HF(M) |= Φ(n, c, b̄) ⇔ M |= Ψn(c, b̄).

Так как модель M счетно-категорична, то существует такое число r,
что для любого s ≥ r в модели M истинна формула

(Ψs(x, b̄) ≡ Ψ0(x, b̄)) ∨ . . . ∨ (Ψs(x, b̄) ≡ Ψr−1(x, b̄)).

Отсюда все множества Mr+i = M, i ∈ ω. Следовательно модель M

является 1-квазирезольвентной. ¤

Из докательства теоремы 1.1 непосредственно следует
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СЛЕДСТВИЕ 1.1 Если модель M квазирезольвентна и счетно-кате-
горична, то существует конечное константное обогащение 〈M, ā〉 модели
M такое, что теория Th(〈M, ā〉) модельно полна.

Приведем одно достаточное условие 1-квазирезольвентности модели.

ПРЕДЛОЖЕНИЕ 1.2 Пусть для модели M сигнатуры σ справедливы
условия:

1. Теория T = Th(M) модельно полна.
2. Множество номеров A аксиом теории T является Σ-множеством

в HF(M).
Тогда модель M 1-квазирезольвентна.

ДОКАЗАТЕЛЬСТВО. Покажем, что Tr1
M является ∆-предикатом.

Из условия 2 следует, что

Γ−1(T ) ∈ ∆(HF(M)). (1)

Через B и C обозначим соответственно множество всех формул и
Σ-формул сигнатуры σ. Из (1) следует, что

E = {〈m, s〉 | ∀x̄(Φm(x̄) ≡ Φs(x̄)) ∈ T, m ∈ B, s ∈ C}
также является ∆-предикатом в HF(M).

В силу условия 1 имеем

Tr1
M(m, ā) ⇔ HF(M) |= m ∈ B & ∃s(〈m, s〉 ∈ E & TrΣ(s, ā)),

¬Tr1
M(m, ā) ⇔ HF(M) |= m /∈ B ∨ ∃s(〈g(m), s〉 ∈ E & TrΣ(s, ā)),

где Φg(m) = ¬Φm.
Отсюда имеем Tr1

M ∈ ∆(HF(M)). ¤

ЗАМЕЧАНИЕ 1.3 Условие 2 является необходимым для 1-квазире-
зольвентности модели.

Приведем пример 1-квазирезольвентной модели, у которой любое
конечное константное расширение не является моделью регулярной теории.
Пусть S ⊆ ω – бесконечное подмножество и сигнатура σ =

〈
f1

〉
. Пусть

теория TS определяется следующим множеством аксиом Ax ® AxS .

1. ∀x∃z(f(z) = x)

2. ∀z1∀z2(f(z1) = f(z2) → z1 = z2)
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3n∈S . ∃x(fn(x) = x) &
∧

i,j<n,

i 6=j

(f i(x) 6= f j(x))

4n/∈S . ∀x(fn(x) 6= x) ∨
∨

i,j<n,

i6=j

(f i(x) = f j(x))

5n∈ω. ∀x∀y(fn(x) = x & fn(y) = y →
∨

s≤n

y = fs(x)),

где fn = f(f(. . . (f(x) . . .)))︸ ︷︷ ︸
n-раз

.

Легко проверить, что теория TS ∀∃-аксиоматизируемая и несчетно
категорична. По теореме Линдстрема 3.1.12 [4] она модельно полна. Тогда
из предложения 1.2 получаем

СЛЕДСТВИЕ 1.2 Модель M теории TS 1-квазирезольвентна тогда
и только тогда, когда S является ∆-предикатом в HF(M).

СЛЕДСТВИЕ 1.3 Существует 1-квазирезольвентная модель такая,
что любое ее конечное константное расширение не является моделью
регулярной теории.

ДОКАЗАТЕЛЬСТВО. Пусть множество S является дополнением до
вычислимо перечислимого, но не вычислимого множества и M – некоторая
модель теории TS . Легко проверить, что S ∈ ∆(HF(M)). Отсюда по
следствию 1.2 модель M 1-квазирезольвентна. По выбору множества S
любое конечное константное расширение модели M не является моделью
регулярной теории. ¤

Приведем одно достаточное условие не квазирезольвентности модели.
Будем говорить, что модель N Σ0

1-подмодель модели M (N ¹1 M),
если N ⊆ M и для любой ∃-формулы ϕ(x̄) и любой последовательности
ā ∈ N<ω справедлива эквивалентность:

N |= ϕ(ā) ⇔ M |= ϕ(ā).

Введем

ОПРЕДЕЛЕНИЕ 1.3 Пусть для модели M сигнатуры σ справедливо
условие: для любой конечной последовательности элементов ā ∈ M<ω

существуют Π0
1-формула Θā(x̄) без параметров сигнатуры σ, Σ0

1-подмодель
N модели M, ā ∈ N<ω, вложение f : N → N модели N в себя и
последовательность элементов b̄ ∈ N<ω такие, что:

f ¹ ā = id, (2)
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N |= Θā(b̄) ∧ ¬Θā(f b̄). (3)

Тогда модель M назовем E-разделяющейся моделью (или ER-моделью).

ПРЕДЛОЖЕНИЕ 1.3 Любая ER-модель не квазирезольвентна.

ДОКАЗАТЕЛЬСТВО. Допустим, что M является ER-моделью и она
квазирезольвентна. Пусть последовательность M0 ⊆ M1 ⊆ . . . является
ее квазирезольвентой. Тогда существует Σ-формула Ψ(n,m, x, ā) сигнатуры
σ1 = σ∪ 〈∅,∈, U〉 такая, что для любых n,m ∈ ω и b̄ ∈ M<ω

n справедлива
эквивалентность:

M ¹ Mn |= Φm(b̄) ⇔ HF(M) |= Ψ(n, m, b̄, ā), (4)

где Φm(x̄) – формула без параметров сигнатуры σ номера m. Пусть
символы Θā,N, f, b̄ означают тоже, что и в определении 1.3 и Θā =
Φm(x̄) = ∀ȳΦ0

m(x̄, ȳ).
Из (3) следует, что существует такая последовательность c̄ ∈ N<ω,

что

N |= ¬Φ0
m(f b̄, c̄). (5)

Из (5) и N ¹1 M получаем

M |= ¬Φ0
m(f b̄, c̄). (6)

Пусть число n такое, что ā, b̄, f b̄, c̄ ∈ M<ω
n . Тогда из (3), (6) имеем

M ¹ Mn |= Φm(b̄)&¬Φm(f b̄). (7)

Из (4), (7) получим

HF(M) |= Ψ(n,m, b̄, ā). (8)

Из представления Σ-формулы сигнатуры σ1 в виде дизъюнкции вычислимой
последовательности ∃-формул сигнатуры σ получаем: если N ¹1 M, то

HF(N) ¹1 HF(M). (9)

Отсюда и из (8) следует

HF(N) |= Ψ(n, m, b̄, ā). (10)
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Так как вложение f модели N можно расширить до вложения f̄ :
HF(N) → HF(N) и Ψ является Σ-формулой, то из (2), (10) имеем

HF(N) |= Ψ(n,m, f b̄, ā). (11)

Поскольку Ψ является Σ-формулой, используя (4), (7) и (9) получаем

HF(N) |= ¬Ψ(n,m, f b̄, ā).

Получили противоречие с (11). Предложение доказано. ¤

§ 2. Алгебры Ершова

Здесь будут описаны квазирезольвентные алгебры Ершова. Пусть
даны алгебра Ершова A и элемент a ∈ A. Будем использовать следующие
обозначения: â = {x ∈ A | x ≤ a}, a⊥A – ортогональное дополнение
элемента a в алгебре A, F (A) – идеал Фреше, F∗(A) – суператомная
часть алгебры A. Атомный элемент b ∈ A такой, что b /∈ F (A), назовем
бесконечным атомным.

ЛЕММА 2.1 Если cчетная алгебра Ершова A содержит бесконечный
атомный элемент b, то для любой алгебры Ершова B прямая сумма
C = A⊕B является ER-моделью.

ДОКАЗАТЕЛЬСТВО. Пусть дана конечная последовательность элементов
ā ∈ C<ω, ā = 〈a0, . . . , an−1〉. Построим вложение f : C → C алгебры C

в себя такое, что f ¹ ā = id, f ¹ B = id и f удовлетворяет условиям
определения 1.3. Не умаляя общности рассуждения, можно считать, что
ā ∈ A<ω. Пусть c0, . . . , cm−1 – атомы подалгебры, порожденной элементами
a0, . . . , an−1 и a = a0 ∨ . . . ∨ an−1. Тогда имеем

A = â⊕ a⊥A , â = ĉ0 ⊕ ĉ1 ⊕ . . .⊕ ĉm−1. (12)

Пусть b0 = b ∧ a, b1 = b \ a. Тогда b = b0 ∨ b1 и один из элементов
b0, b1 будет бесконечным атомным элементом. Рассмотрим возможные
случаи.

1. Пусть b0 – бесконечный атомный элемент. Тогда существует такое
i, что c ­ b ∧ ci будет бесконечным атомным элементом. Пусть для
определенности i = 0 и c′ = c0 \ c. Тогда имеем

ĉ0 = ĉ⊕ ĉ′.

Пусть {d0, d1, . . .} – множество всех атомов алгебры ĉ. Определим
частичное вложение h : ĉ → ĉ положив

hd0 = d0 ∨ d1, hdi = di+1, i > 0.
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Так как ĉ – атомная булевая алгебра, то существует вложение f :
C → C, продолжающее h и тождественное на c⊥C . Легко проверить, что
f ¹ ā = id, f ¹ B = id и, для формулы Φ(x) = ∀y(y < x → y = 0) и
элемента d0, имеем: C |= Φ(d0)&¬Φ(fd0), то есть C является ER-моделью.

2. Пусть b1 – бесконечный атомный элемент. Тогда a⊥A = b̂1⊕(b1∨a)⊥A .
Отсюда и из (12) имеем

A = â⊕ b̂1 ⊕ (b1 ∨ a)⊥A .

Тогда как и в случае 1 доказывается, что A является ER-моделью. ¤

ЛЕММА 2.2 Если A – счетная специальная алгебра Ершова, а B –
произвольная алгебра алгебра Ершова, то прямая сумма C = A ⊕ B

является ER-моделью.

ДОКАЗАТЕЛЬСТВО. По лемме 2.1 можно считать, что ординальный
тип α(A) алгебры A равен 1. Пусть дана конечная последовательность
элементов ā ∈ C<ω, ā = 〈a0, . . . , an−1〉. Построим вложение f : C → C

алгебры C в себя такое, что f ¹ ā = id, f ¹ B = id и f удовлетворяет
условиям определения 1.3. Не умаляя общности рассуждения, можно
считать, что ā ∈ A<ω. По предложению 10 [6] алгебра A представима в
виде A =

∑
i

Ai, где Ai = {0, 1̄i}. Для элемента a ∈ A через a(i) обозначим

i-ую координату элемента a, то есть a = (a(0), a(1), . . .), где a(i) ∈ Ai.
Пусть число m наименьшее такое, что для любых чисел i < n, j ≥ m

верно равенство a
(j)
i = 0. Легко проверить, что существует изоморфное

вложение f : C → C такое, что f(1i) = 1i, i < m, f(1m) = 1m ∨ 1m+1,
f(1m+j) = 1m+j+1, j > 0, f ¹ B = id, где 1s = (0, . . . , 1̄s, 0, . . .). Также
как и в конце доказательства леммы 2.1 проверяется, что f требуемое
вложение. ¤

ЛЕММА 2.3 Пусть A счетная нормальная алгебра Ершова, супер-
атомная часть F∗(A) которой отлична от нуля, а B – произвольная
алгебра Ершова. Тогда F∗(A) является Σ0

1-подмоделью алгебры C ­ A⊕
B.

ДОКАЗАТЕЛЬСТВО. Пусть дана произвольная последовательность
элементов ā0 = 〈a0, . . . , an−1〉 ∈ F∗(A). Для доказательства леммы достаточно
показать, что для произвольной последовательности элементов b̄ = 〈bn, . . . , br−1〉 ∈
C существует последовательность элементов ā1 = 〈an, . . . , ar−1〉 ∈ F∗(A)
такая, что подалгебры A0, A1, порожденные соответственно элементами
последовательностей ā0, b̄ и ā0, ā1 изоморфны. Покажем это. Пусть
атомы подалгебры A0 будут c0, . . . , cs−1, а c0, . . . , ct−1, t ≤ s, – все атомы
из â, где a ­ a0 ∨ . . . ∨ an−1. Тогда c0, . . . , ct−1 ∈ F∗(A). Так как F∗(A)
специальная алгебра Ершова, то найдутся в F∗(A) атомы dt, . . . , ds−1 ∈
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a⊥A . Через A1 обозначим подалгебру, порожденную элементами c0, . . . , ct−1, dt, . . . , ds−1.
Очевидно, что существует изоморфизм ϕ : A0 → A1 такой, что ϕci = ci,
i < t, ϕcj = dj , t ≤ j < s. Тогда элементы aj = ϕbj , n ≤ j < r будут
искомыми. ¤

ТЕОРЕМА 2.2 Для алгебры Ершова A эквивалентны следующие утверждения:
1. A 1-квазирезольвентна.
2. A квазирезольвентна.
3. A является прямой безатомной алгебры Ершова и конечной алгебры

Ершова.

ДОКАЗАТЕЛЬСТВО. (1)⇒ (2) очевидно. Докажем (2)⇒ (3). Пусть
A квазирезольвентна и A′ некоторая ее счетная элементарная подмодель.
Покажем, что для A′ справедливо условие 3. По предложению 14 [6]
существует разложение

A′ = A0 ⊕ A1,

где A0 – нормальная алгебра Ершова, а A1 – суператомная алгебра
Ершова. Если A1 – бесконечна, то по леммам 2.1, 2.2 алгебра A′, а
следовательно и алгебра A будут ER-моделями. Отсюда по предложению 1.3
алгебра A не квазирезольвентна. Поэтому алгебра A1 конечна.

Рассмотрим нормальную алгебру A0. Суператомная часть F∗(A0) этой
алгебры специальная. Если же F∗(A0) 6= 0, то она бесконечна. Тогда из
лемм 2.2, 2.3 следует, что алгебра A′, а следовательно и алгебра A будут
ER-моделями. Отсюда по предложению 1.3 алгебра A не квазирезольвентна.
Противоречие. Следовательно F∗(A0) = 0, то есть A0 безатомна. Таким
образом для алгебры A′, а следовательно и для алгебры A, справедливо
утверждение 3.

Докажем (3) ⇒ (1). Пусть A = A0
⊕

A1, где A0 безатомна алгебра
Ершова, а A1 конечная алгебра Ершова . Рассмотрим алгебру 〈A, A1〉,
которая является обогащением алгебры B константами для элементов
алгебры B1. Тогда теория Th(〈A, A0〉) разрешима и модельно полна, то
есть 〈A, A0〉 является моделью регулярной теории. Отсюда по замечанию 1.2
алгебра Ершова A 1-квазирезольвентна. ¤

Из доказательства теоремы 2.2 имеем

СЛЕДСТВИЕ 2.4 Если алгебра Ершова квазирезольвентна, то некоторое
ее обогащение конечным числом констант является моделью регулярной
теории.

Модель M назовем квазижесткой, если орбита любого ее элемента
конечна.
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ПРЕДЛОЖЕНИЕ 2.4 [2, 9] Если наследственно конечное допустимое
множество HF(M) над моделью M резольвентно, то существует такое
обогащение конечным числом констант c̄, что 〈M, c̄〉 является квазижесткой
моделью.

СЛЕДСТВИЕ 2.5 Не существует счетной резольвентной алгебры
Ершова.

ДОКАЗАТЕЛЬСТВО. Допустим противное, то есть алгебра Ершова
A резольвентна. Тогда она и квазирезольвентна и по теореме 2.2 изоморфна
A0

⊕
A1, где A0 – безатомная, а A1 – конечная алгебры Ершова. Тогда

алгебра A не является квазижесткой, что противоречит предложению 2.4.
¤

§ 3. Абелевы p-группы

Здесь описаны квазирезольвентные абелевы p-группы. В данном параграфе
под словом группа понимается абелева p-группа. Если G группа, то
через Gω обозначается прямая сумма ω экземпляров группы G, Cpn

– циклическая группа порядка pn, Cp∞ – квазициклическая p-группа,
G[p] = {x | px = 0}. Рангом группы G называется ранг векторного
пространства G[p].

ЛЕММА 3.4 Если для абелевой p-группы G существуют числа r, s ∈
ω, 0 < r < s, такие, что

G = G0

⊕
G1

⊕
G2, G0 ' Cω

pr , G1 ' Cω
ps ,

то G не квазирезольвентна.

ДОКАЗАТЕЛЬСТВО. По предложению 1.3 достаточно доказать, что
G является ER-моделью. Пусть дана конечная последовательность элементов
a0, . . . , an−1 ∈ G. Через H0 обозначим подгруппу, порожденную этими
элементами. Пусть Gi =

⊕
j∈ω

(ai
j), i < 2, где (a0

j ) ∼= Cpr , (a1
j ) ∼= Cps ,

j ∈ ω, и число k наименьшее такое, что для любого элемента x ∈ H0,
если x = x0 + x1 + x2, xj ∈ Gj , j < 3, то выполнено xi ∈ G′

i, где
G′

i ­ (ai
0) ⊕ . . . ⊕ (ai

k−1), i < 2. Тогда H0 ⊆ H1 ­ G′
0

⊕
G′

1

⊕
G2.

Легко проверить, что существует вложение f группы G в себя такое,
что выполнены:

f ¹ H1 = id, fa0
k = ps−ra1

k, fa0
k+i = a0

k+i, i > 0, fa1
k+j = a1

k+j+1, j ≥ 0.

Через Φ(x) обозначим формулу ∀y¬(py = x). Тогда имеем

G |= Φ(a0
k) ∧ ¬Φ(fa0

k).

Следовательно, группа G является ER-моделью. ¤
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ЛЕММА 3.5 Если порядки элементов редуцированной части R абелевой
p-группы G неограниченны в совокупности, то G не квазирезольвентна.

ДОКАЗАТЕЛЬСТВО. Пусть дана последовательность ā и G0 счетная
элементарная подмодель G, содержащая ā. Легко заметить, что редуцированная
часть R0 группы G0 также неограниченна. Известно [8, стр. 83], что
группа R0, а следовательно и G0 имеют прямое слагаемое

G′
0 =

⊕

i∈ω

(ai),

где (ai) ' Cpni , n0 < n1 < . . . . Тогда для некоторой подгруппы G′
1 ⊆ G0

имеем G0 = G′
0

⊕
G′

1. Пусть подгруппа H0 определена как в лемме 3.4
и число k наименьшее такое, что для любого элемента x ∈ H0, если x =
x0 +x1, xi ∈ G′

i, i < 2, то выполнено x0 ∈ Ĝ0, где Ĝ0 ­ (a0)⊕ . . .⊕(ak−1).
Тогда H0 ⊆ H1 ­ Ĝ0

⊕
G′

1. Легко проверить, что существует вложение
f : G0 → G0 группы G0 в себя такое, что выполнены:

f ¹ H1 = id, fak+i = pnk+i+1−nk+iak+i+1, i ≥ 0.

Дальнейшее доказательство аналогично доказательству леммы 3.4.
¤

ЛЕММА 3.6 Если для некоторого числа n > 0 абелева p-группа G
имеет прямое слагаемое G0 ' Cω

pn

⊕
Cω

p∞, то G не квазирезольвентна.

ДОКАЗАТЕЛЬСТВО. Пусть подгруппа H0 определена как лемме 3.4
и

G0 =
⊕

i∈ω

(a0
i )⊕

⊕

i∈ω

Di, G = G0

⊕
G1,

где (a0
i ) ' Cpn , Di ' Cp∞ , i ∈ ω. В каждой подгруппе Di выберем элемент

di порядка pn. Пусть число k наименьшее такое, что для любого элемента
x ∈ H0, если x = x0 +x1 +x2, то выполнено x0 ∈ G′

0 ­ (a0
0)⊕ . . .⊕ (a0

k−1),
x1 ∈ D′ ­ D0

⊕
. . .

⊕
Dk−1, x2 ∈ G1. Тогда H0 ⊆ H1 ­ G′

0

⊕
D′⊕G1 и

существует вложение f : G → G группы G в себя такое, что выполнены:

f ¹ H1 = id, fak = dk, fak+i = ak+i, i > 0, fdk+j = dk+j+1, j ≥ 0.

Дальнейшее доказательство аналогично доказательству леммы 3.4.
¤

ТЕОРЕМА 3.3 Пусть G – абелева p-группа, а R и D – ее соответственно
редуцированная и делимая части. Тогда эквивалентны следующие утверждения:

1. G 1-квазирезольветна.
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2. G квазирезольветна.
3. Если ранг r(D) подгруппы D больше или равен ω, то подгруппа R

конечна. Если же ранг r(D) < ω, то R = R0 ⊕ R1, где R0 конечна, и
существует такое число n ≥ 0, что R1 ' Cα

pn (Cα
p0 ­ 0), α ≥ ω.

ДОКАЗАТЕЛЬСТВО. (1) ⇒ (2) очевидно. Из лемм 3.4—3.6 следует
(2) ⇒ (3). Докажем (3) ⇒ (1). Пусть ранг r(D) = α, α ≥ ω. Тогда
G = R

⊕
D, где R – конечная группа, а D ' Cα

P∞ . Пусть пара 〈G,R〉
есть обогащение группы G константами для элементов подгруппы R.
Тогда теория Th(〈G,R〉) разрешима и модельно полна [3, § 5]. Отсюда
по замечанию 1.2 группа G 1-квазирезольвентна.

Пусть r(D) < ω. Тогда по условию теоремы R = R0
⊕

R1, R0 –
конечная группа, R1 ' Cα

pn , n ≥ 0, α ≥ ω. Пусть пара 〈G,R0〉 есть
обогащение группы G константами для элементов подгруппы R0. Легко
проверить, что теория Th(〈G,R0〉) разрешима и модельно полна [3, § 5].
Отсюда группа G 1-квазирезольвентна. ¤

Из доказательства теоремы 3.3 имеем

СЛЕДСТВИЕ 3.6 Если абелева p-группа квазирезольвентна, то некоторое
ее обогащение конечным числом констант является моделью регулярной
теории.

Из предложения 2.4, как и в случае алгебр Ершова, следует

СЛЕДСТВИЕ 3.7 Не существует счетной резольвентной абелевой
p-группы.

СЛЕДСТВИЕ 3.8 Прямое произведение квазирезольвентных моделей
может быть не квазирезольвентной моделью.

Действительно, пусть G0 = Cω
p , G1 = Cω

p2 . По теореме 3.3 группы G0,
G1 квазирезольвентны, а по лемме 3.4 группа G0

⊕
G1 не квазирезольветна.

¤
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