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О ГОМЕОМОРФИЗМАХ ЭФФЕКТИВНЫХ

ТОПОЛОГИЧЕСКИХ ПРОСТРАНСТВ

А. С. Морозов

Аннотация: Изучаются эффективные представления и гомеоморфизмы эффек-

тивных топологических пространств. С помощью построения функтора из катего-
рии вычислимых моделей в категорию эффективных топологических пространств,
в частности, показано, что существуют гомеоморфные эффективные топологиче-
ские пространства, между которыми не существует гиперарифметического гомео-
морфизма; существуют эффективные топологические пространства с группой ав-
тогомеоморфизмов мощности континуум, среди которых только тривиальный авто-
гомеоморфизм является гиперарифметическим. Показано также, что если группа
автогомеоморфизмов гиперарифметического топологического пространства имеет
мощность менее 2ω , то эта группа гиперарифметическая.

Введено понятие сильного вычислимого гомеоморфизма и решена проблема
числа эффективных представлений T0-пространств с эффективной базой открыто-
замкнутых множеств относительно сильных гомеоморфизмов.

Ключевые слова: эффективное топологическое пространство, эффективная то-
пология, гомеоморфизм, автогомеоморфизм, вычислимая модель, конструктивная
модель.

1. Введение

В работе изучаются проблема числа эффективных представлений эффек-
тивных топологических пространств и их гомеоморфизмы и автогомеоморфиз-
мы.

Мы предполагаем, что читатель знаком с основными понятиями топологии
и теории вычислимости. Для понимания п. 4 и некоторых результатов п. 5 тре-
буются знания о допустимых множествах и гиперарифметических множествах
(см. [1]).

В работе существенно используются результаты об автоморфизмах вычис-
лимых моделей. При этом может создаться впечатление, что рассмотрение та-
ких пространств не дает ничего нового по сравнению с вычислимыми моделями.
Однако это не так. Одна из причин состоит в том, что у гомеоморфизмов топо-
логических пространств имеется одно свойство, которое существенно отличает
их от автоморфизмов моделей. А именно, заметим, что если ϕ — перестановка
на основном множестве модели M, каждая конечная часть которой содержится
в некотором ее автоморфизме, то и сама она является автоморфизмом. В топо-
логических пространствах это не так. Достаточно рассмотреть топологическое
пространство ω+ 1 + ω с интервальной топологией и перестановку, переставля-
ющую между собой элементы первого и второго сегментов ω и оставляющую
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средний элемент 1 на месте. Любая ее конечная часть содержится в некотором
автогомеоморфизме этого пространства, но сама она не является автогомеомор-
физмом, поскольку не сохраняет пределы.

Мы обозначаем гомеоморфность топологических пространств A и B через
A ∼= B. Множество изолированных точек топологического пространства X обо-
значается через Is(X), а множество его предельных точек — через Lim(X). Если
X — топологическое пространство, то X = Is(X) ∪ Lim(X) и Is(X) ∩ Lim(X) = ∅.
Если A — открытое подмножество в X, то мы обозначаем этот факт так: A⊂◦X.
Мощность множества X обозначается символом |X |. Симметрическая разность
A и B, равная (A\B)∪(B\A), обозначается через A△B. Если множество A△B
конечно, то пишем A ≈ B. Отношение ≈ является отношением эквивалентности
на любом семействе множеств. Произвольное непустое подмножество T ⊆ 2<ω

называется бинарным деревом, если с каждым своим элементом оно содержит
все свои начальные сегменты. Если T0 и T1 — бинарные деревья и T0 ⊆ T1, то
мы говорим, что T0 — поддерево T1. Если ε0, ε1 ∈ 2<ω и ε0 — начальный сегмент
ε1, мы обозначаем это так: ε0 ⊑ ε1. Пустая последовательность обозначается
через �. Обозначим для ε ∈ 2<ω и m ∈ ω через ε ↾ m последовательность,
полученную из ε отбрасыванием всех элементов начиная с m+ 1-го.

Зафиксируем некоторое вычислимое взаимно-однозначное отображение
c(x, y) из ω × ω на ω. Вычислимые функции ck(x1, . . . , xk), устанавливающие
взаимно-однозначное соответствие между ωk, k = 2, 3, . . . , и ω, определяются
по индукции как обычно:

c2(x, y) = c(x, y), cn+1(x1, . . . , xn, xn+1) = c(cn(x1, . . . , xn), xn+1).

Зафиксируем также некоторые вычислимые функции r и ℓ, обладающие свой-
ствами ℓc(x, y) = x и rc(x, y) = y, предназначенные для раскодировки пар нату-
ральных чисел. Для A,B ⊆ ω положим

A⊕B = {c(x, 0) | x ∈ A} ∪ {c(x, 1) | x ∈ B}.
Под индексом конечного множества S = {a0 < · · · < am−1} понимается нату-

ральное число
m
∑

i=0

2ai (отсюда следует, что индекс пустого множества равен 0).

Конечное множество с индексом m обозначается через Dm. Тьюрингова сво-
димость обозначается знаком ≤T . Эквивалентость по Тьюрингу обозначается
через ≡T . Символом Autc(M) обозначим группу всех вычислимых автоморфиз-
мов вычислимой модели M.

Изучению эффективности в топологических пространствах, понимаемой в
различных смыслах, посвящено немало работ (см., например, [2–8]; этот список
ни в коем случае не претендует на полноту).

Здесь мы будем пользоваться довольно-таки сильным определением эф-
фективных топологических пространств, под которое, впрочем, подпадает зна-
чительная часть естественных примеров.

Определение 1. Эффективное топологическое пространство — это упо-
рядоченная пара S = 〈S,B〉, где S — начальный сегмент ω и B = (Bi)i∈ω —
семейство подмножеств S такое, что

(1) отношение {c(x, i) | x ∈ Bi} вычислимо;
(2) отношение Bi1 ∩ · · · ∩ Bik ⊆ Bj1 ∪ · · · ∪ Bjs вычислимо по индексам

i1, . . . , ik, j1, . . . , js.
(3) семейство B образует базу топологии на S, т. е. множества Bi удовле-

творяют следующему условию:
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для любых i, j ∈ ω существует подмножество I ⊆ ω такое, что

Bi ∩Bj =
⋃

k∈I

Bk.

Обозначим топологию, определенную этой базой B = (Bi)i∈ω , через τB.
Семейство B = (Bi)i∈ω называется эффективной базой S.

Определение гиперарифметических топологических пространств получает-
ся из определения эффективных топологических пространств заменой слова
«вычислимый» словом «гиперарифметический».

Приведем пример эффективного топологического пространства. Зафик-
сируем нумерацию ν : ω → Q множества рациональных чисел, в которой по
любому номеру i ∈ ω можно эффективно выписать дробь m

n
= ν(i), а также по

любой записи дроби m
n

можно вычислить ее ν-номер, т. е. такое натуральное
число i, что m

n
= ν(i). Основным множеством этого пространства будет мно-

жество всех натуральных чисел ω, а база открыто-замкнутых множеств этого
пространства состоит из множеств

Ui = {x ∈ ω |
√

2 · ν(ℓ(i)) < ν(x) <
√

2 · ν(r(i))}, i ∈ ω.

Если X — эффективное топологическое пространство и (Ui)i<ω — его эф-
фективная база, то существует алгоритм, позволяющий отвечать на все вопросы
следующих типов: «t(U1, . . . , Un) = ∅?» и «t(U1, . . . , Un) = q(U1, . . . , Un)», где t
и q — булевы выражения. В самом деле, второй тип вопросов сводится к перво-
му, поскольку t = q эквивалентно (t ∩ q̄)∪ (q ∩ t̄) = ∅. Для того чтобы отвечать
на вопросы первого типа, преобразуем выражение t к объединению выражений
вида Ui1 ∩ · · · ∩ Uin ∩ U j1 ∩ · · · ∩ U jm . Условие t = ∅ эквивалентно, таким об-

разом, конъюнкции условий Ui1 ∩ · · · ∩ Uin ∩ U j1 ∩ · · · ∩ U jm = ∅. Последнее, в
свою очередь, эквивалентно Ui1 ∩ · · · ∩ Uin ⊆ Uj1 ∪ · · · ∪ Ujm , что уже является
вычислимым по условию.

2. Основные категории и функторы

Здесь определяются основные категории и функторы, которые будут слу-
жить инструментом для переноса некоторых результатов из теории вычисли-
мых моделей на эффективные топологические пространства.

Все, что нам нужно в данной работе — это функтор из категории вычис-
лимых моделей в категорию эффективных топологических пространств, сохра-
няющий ряд свойств морфизмов между объектами. Для облегчения доказа-
тельства определим этот функтор как композицию двух функторов. Идеи кон-
струкций, описанных в этом параграфе, известны как фольклор. Тем не менее
мы вынуждены детально описать эти конструкции, поскольку нам понадобится
тщательная проверка их свойств в ходе доказательства.

Нам предстоит определить три категории: M (категорию вычислимых мо-
делей), O (категорию упорядоченных множеств), T (категорию моделей, тес-
но связанных с топологическими пространствами), и функторы F : M → O,
G : O → T . Функтор, нужный нам, является композицией F ◦ G.

Определим эти категории.

Категория M . Объекты категории M — это модели счетных предикат-
ных сигнатур

〈

Pn0
0 , Pn1

1 , . . .
〉

(ni — число аргументов соответствующего пре-
дикатного символа), основные множества которых являются подмножествами
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множества всех натуральных чисел ω. Для любых объектов M0 и M1 этой
категории класс всех морфизмов из M0 в M1 состоит в точности из всех изо-
морфизмов из M0 на M1.

Категория O. Объекты категории O суть частично упорядоченные под-
множества ω. Для любых объектов S0 и S1 этой категории класс всех морфиз-

мов из S0 в S1 состоит из всех изоморфизмов из S0 на S1.

Категория T . Объекты категории T — упорядоченные пары 〈S,B〉, пер-
вые компоненты которых — непустые подмножества S ⊆ ω, а вторые компонен-
ты — семейства B = (Bi)i∈S ∈ (P(S))S такие, что {Bi | i ∈ S} образует базу
топологии.

Для каждой пары 〈S,B〉, 〈T, V 〉 объектов этой категории класс всех мор-
физмов из 〈S,B〉 в 〈T, V 〉 состоит из всех гомеоморфизмов из топологического
пространства 〈S, τB〉 на 〈T, τV 〉.

Для объекта A = 〈A,B〉 ∈ T обозначим через Top(A) его топологическое
пространство 〈A, τB〉.

Замечание 1. Поскольку каждая операция g : Mn →M модели M может
быть представлена своим графом

� (g) = {〈x1, . . . , xn, g(x1, . . . , xn)〉 | x1, . . . , xn ∈M},

для каждой модели M определено ее предикатное представление MP , в кото-
ром все операции g заменены их графами � (g). Легко проверить, что группы
автоморфизмов моделей M и MP , рассматриваемые как семейства перестано-
вок на M , совпадают. Более того, если M — вычислимая модель, то такова
и M

P . Если сигнатура модели M конечна, то для наших целей мы можем
рассматривать ее как модель бесконечной сигнатуры, добавив ω символов, ин-
терпретируемых как равенство. После этих изменений группа автоморфизмов
модели и ее категорные свойства не изменятся. Таким образом, ограничение
на сигнатуру, содержащееся в определении категории M , не означает потерю
общности в наших рассмотрениях.

Пусть M — модель счетной предикатной сигнатуры
〈

Pn0

0 , Pn1

1 , . . .
〉

и ее
основное множество M является подмножеством ω. Определим ее диаграмму

D(M) следующим образом:

D(M) = M ⊕
({

c3(i, 1, cni(a1, . . . , ani
)) | M |= Pni

i (a1, . . . , ani
)
}

∪
{

c3(i, 0, cni(a1, . . . , ani
)) | M |= ¬Pni

i (a1, . . . , ani
)
})

.

Первый функтор F определяется в доказательстве следующей теоремы.

Теорема 2.1. Существует функтор F из категории M в категорию O,

обладающий следующими свойствами:

(1) F(M) = F(N) влечет M = N для всех объектов M, N ∈ M ;

(2) D(M) ≡T D(F(M)) для всех объектов M ∈ M ;

(3) для всех M,N ∈ M F — взаимно-однозначное соответствие между

классами Mor(M,N) и Mor(F (M), F (N));
(4) для всех морфизмов f ∈ Mor(M0,M1) выполнены условия f ≤T F(f) и

F(f) ≤T f ⊕ D(M0) ⊕ D(M1).

Доказательство. Пусть M =
〈

M ;Pn0
0 , Pn1

1 , . . .
〉

— объект категории M .
Идея конструкции состоит в том, что вначале мы берем множество {2x | x ∈M}
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и затем для каждого истинного утверждения M |= Pni

i (a1, . . . , ani
) добавляем в

построение новые нечетные элементы b1, b2, b3, . . . ; c1, . . . ; d1, d2i+1, e, f , g и
упорядочиваем их, как показано на рис. 1.

2a1
r

2a2
r

2a3
r

2ani

r· · ·

b1 r

b2r

b3r

d1 r

d2i+1 r

e r

gr

fr

c1r

c2r

c3r

c4
r

c5
r

c6
r

c7
r

HHH

�
�

�
�

�
�

!!!!!!!!!!!!!!!

�
�
�

A
A
A
... Pni

i (a1, . . . , ani
)

Рис. 1.

В дополнение для каждого истинного в M утверждения ¬Pni

i (a1, . . . , ani
)

мы добавляем в нашу модель новые различные нечетные элементы b1, b2, b3 . . . ;
c1, . . . ; d1, d2i+2, e, f, g и упорядочиваем их почти так же, как и в предыдущем
случае, с единственным исключением, что берем 2i+2 элементов d с индексами
вместо 2i+ 1 в предыдущем случае.

Построим эту модель равномерно по диаграмме модели M. Более точ-
но, перечисляем эту диаграмму в порядке возрастания, и каждый раз, когда
в этом перечислении встретим номер, сообщающий, что верно Pni

i (a1, . . . , ani
)

или ¬Pni

i (a1, . . . , ani
), просто берем последовательные новые нечетные элемен-

ты b1 < b2 < b3 < c1 < · · · < d1 < d2 < · · · < e < f < g, где b1 — первый
нечетный элемент, еще не использованный в данный момент времени, и доба-
вим их к построению, как описано выше.

Таким образом, модель F(M) полностью определена. Обозначим порядок
на модели F(M) через ⊳.

Назовем компанией каждое множество элементов вида

{b1, b2, b3, c1, . . . , d1, d2, . . . , e, f, g},

добавленное на некотором шаге.

Определим теперь функтор F на морфизмах. Для каждого отображения
f ∈ Mor(M0,M1) пусть F(f) будет единственным расширением отображения
f ′ = {〈2x, 2y〉 | 〈x, y〉 ∈ f} до изоморфизма между M0 и M1. Докажем существо-
вание такого расширения. Для его построения достаточно для каждого корте-
жа 2a1, . . . , 2ani

отобразить нечетные элементы, образующие фигуру, подобную
изображенной на рис. 1, и находящиеся под этим кортежем, в элементы, образу-
ющие изоморфную ей фигуру и находящиеся под кортежем f ′(2a1), . . . , f

′(2ani
).

Это возможно, поскольку f является изоморфизмом. Ясно, что F — функтор.

Докажем теперь свойства (1)–(4) для функтора F.

(1) Покажем, как восстановить M по F(M).
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Сначала заметим, что основное множество модели M полностью определено
основным множеством объекта F(M), так как это множество совпадает с

{x/2 | x — четный элемент носителя F(M)}.

Затем заметим, что функция i 7→ ni полностью определена упорядочени-
ем ⊳. В самом деле, достаточно описать способ перечисления всех пар вида
〈i, ni〉 относительно диаграммы объекта F(M). Мы перечисляем все конеч-
ные наборы последовательно расположенных нечетных чисел вида b1, b2, b3 . . . ;
c1, . . . ; d1, d2i+1, e, f, g, упорядоченные, как показано на рис. 1, и по количествам
элементов вида dj и cj определяем одновременно некоторые i и ni. Этим спо-
собом все пары вида 〈i, ni〉 будут перечислены.

Чтобы определить, удовлетворяет ли кортеж a1, . . . , ani
предикату Pni

i , на-
до просто рассмотреть элементы 2a1, . . . , 2ani

и искать конечную структуру,
образованную элементами, находящимися под 2a1, 2a2, . . . , 2ani

, как на рис. 1,
которая подтвердит (если число элементов типа d нечетно) или опровергнет это
(в противном случае). Ниже мы покажем, что это можно осуществить эффек-
тивно.

(2) Сводимость D(F(M)) ≤T D(M) достаточно очевидна, поскольку носи-
тель F(M) равен M ⊕ A, где A — начальный сегмент ω. Оставшаяся часть
доказательства очевидна.

Докажем, что D(M) ≤T D(F(M)). Сначала заметим, что имеет место сво-
димость M ≤T D(F(M)), поскольку x ∈M ⇔ c(2x, 0) ∈ D(F(M)).

Алгоритм, который по данному i ∈ ω вычисляет ni относительно диаграм-
мы F(M), уже описан в доказательстве п. 1.

Следующий наш шаг состоит в том, чтобы научиться использовать оракул
D(F(M)) для ответов на вопросы «c(m, 1) ∈ D(M)?», что будет достаточно для
доказательства п. 2.

Уже умея вычислять ni, восстановим по m кортеж a1, . . . , an такой, что
m = c3(i, 1, cni(a1, . . . , ani

)). Если все элементы этого кортежа лежат в M , то
продолжим выполнение процедуры; в противном случае выдадим отрицатель-
ный ответ. Ищем под элементами 2a1, . . . , 2ani

фигуру типа изображенной
на рис. 1, образованную последовательно расположенными нечетными числами
b1 < b2 < b3 < c1 < · · · < d1 < d2 < · · · < e < f < g. Если число элементов вида
di нечетно, то ответ положительный, в противном случае — отрицательный.

(3) Это свойство легко следует из того, что F(f) — единственное расши-
рение множества {〈2x, 2y〉 | 〈x, y〉 ∈ f}, и из фактически установленного выше
свойства, что каждый изоморфизм f между моделями F(M0) и F(M1) опреде-
ляет изоморфизм

g = {〈x/2, y/2〉 | f(x) = y & x, y четные}

между M0 и M1 со свойством F(g) = f .

(4) Поскольку f = {〈x, y〉 | 〈2x, 2y〉 ∈ F(f)}, имеем f ≤T F(f). Дока-
жем оставшуюся часть F(f) ≤T f ⊕ D(M0) ⊕ D(M1). Надо показать, что по
данному изоморфизму f из M0 на M1 и диаграммам D(M0) и D(M1) можно
эффективно вычислить F(f). Легко видно, как делать это относительно f на
четных числах. На нечетных числах делаем следующее. Используем оракул
для D(M0)(≡T D(F(M0))) для перечисления всех элементов вида d1 и элемен-
тов из компании, в которую входит d1. Для каждого такого d1 используем тот
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же самый оракул для вычисления соответствующих элементов 2a1, . . . , 2ani
, на-

ходящихся выше их. Затем используем оракул f для вычисления их образов
2f(a1), . . . , 2f(ani

) и оракул D(M1)(≡T D(F(M1))) для нахождения элементов
единственной компании под 2f(a1), . . . , 2f(ani

), которая изоморфна фигуре, со-
держащей d1. Расширим изоморфизм, определенный к этому моменту, добавив
к нему изоморфизм между этими компаниями. �

Для объекта R = 〈R, (Bi)i∈R〉 ∈ T определим диаграмму D(R) как диа-

грамму модели 〈R,B〉, где B(x, i)
df⇐⇒ x ∈ Bi.

Второй функтор G определяется в доказательстве следующей теоремы.

Теорема 2.2. Существует функтор G из категории O в категорию T ,

обладающий следующими свойствами:

(1) G(M) = G(N) влечет M = N для всех объектов M, N ∈ O;

(2) D(M) ≡T D(G(M)) для всех объектов M ∈ O;

(3) для всех M,N ∈ O G — взаимно-однозначное соответствие между

классами Mor(M,N) и Mor(G(M),G(N));
(4) для всех морфизмов f ∈ Mor(M0,M1) из O выполнено f ≡T G(f).

Доказательство. Пусть R = 〈R,⊳〉 — объект из O. Пусть также G(R) =
〈R, (x̌)x∈R〉, где x̌ = {y ∈ R | x E y}. Очевидно, что G(R) ∈ T . Если f ∈
Mor(M,N), M,N ∈ O, то положим G(f) = f . Рутинная проверка показывает,
что G(R) — функтор.

Теперь докажем утверждение теоремы.

(1) В случае частично упорядоченных множеств объект R = 〈R,⊳〉 может
быть однозначно восстановлен по G(R) = 〈R,B〉 с использованием следующего
свойства:

∀x, y ∈ R (x E y ⇔ ∀i ∈ R(x ∈ Bi ⇒ y ∈ Bi)).

(2) Тривиально.

(3) Заметим, что каждый гомеоморфизм f : 〈R, τB〉 → 〈R′, τ ′B〉 отображает
открытые множества в открытые. По этому свойству и по эквивалентности

∀x, y ∈ R (x E y ⇔ ∀Q ∈ τB(x ∈ Q⇒ y ∈ Q))

каждый такой гомеоморфизм изоморфно отображает исходное упорядочение E

на R на упорядочение на R′ и, таким образом, этот гомеоморфизм, рассматри-
ваемый как множество, является морфизмом категории O.

(4) Тривиально. �

3. Перенос результатов с вычислимых

моделей на топологические пространства

В этом разделе мы используем свойства функтора F ◦ G для переноса ре-
зультатов об автоморфизмах и изоморфизмах вычислимых моделей на эффек-
тивные топологические пространства.

Замечание 2. Заметим, что если M — вычислимая модель с основным
множеством ω, то G(F(M)) — эффективное топологическое пространство. В
самом деле, по каждому i ∈ ω можно эффективно определить индекс конеч-
ного множества Bi в G(F(M)), откуда следует свойство (3) из определения 1
эффективных топологических пространств.
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Пусть d — тьюрингова степень и M — модель, у которой носитель — началь-
ный сегмент ω и S — топологическое пространство со счетной базой (Ui)i<ω ,
носителем которого является начальный сегмент ω. Обозначим группу всех
d-вычислимых автоморфизмов M (группу всех d-вычислимых автогомеомор-

физмов S) через Autd(M) (соответственно через AHomd(S)).

Следствие 3.1. Для каждой вычислимой модели M существуют эффек-

тивное топологическое пространство S и изоморфизм ψ : Aut M → AHomS
такие, что для каждой тьюринговой степени d справедливо равенство

ψ(Autd(M)) = AHomd(S).

Доказательство. Пусть S = G(F(M)). Изоморфизм ψ : AutM → AHomS
можно выбрать как ψ(f) = G(F(f)). Требуемые свойства следуют из замеча-
ния 2 и теорем 2.1 и 2.2. �

Следствие 3.2. (1) Существует эффективное топологическое простран-

ство, имеющее 2ω автогомеоморфизмов, но не имеющее нетривиальных гипе-

рарифметических автогомеоморфизмов. Более того, каждое гиперарифмети-

ческое представление этого пространства не обладает нетривиальными гипера-

рифметическими автогомеоморфизмами.

(2) Существуют эффективное топологическое пространство X и два его эле-

мента a и b, которые гомеоморфны, но каждый автогомеоморфизм, переводя-

щий a в b, не является гиперарифметическим. Более того, таким же свойством

обладает каждое гиперарифметическое пространство, гомеоморфное X вместе

с образами элементов a и b относительно этого гомеоморфизма.

Доказательство. В [9] доказано, что существует вычислимая модель M

такая, что

(1) |Aut M| = 2ω;

(2) Каждая гиперарифметическая модель M′, изоморфная M, не имеет
нетривиальных гиперарифметических автоморфизмов.

Топологическое пространство G(F(M)) годится для доказательства пп. 1
и 2.

В части, где речь не идет о различных гиперарифметических представлени-
ях пространства, это непосредственно следует из теорем 2.1, 2.2 и замечания 2.

Докажем оставшуюся часть. Рассмотрим некоторое гиперарифметическое
представление X′ этого пространства (возможно, с совсем другой базой топо-
логии). Как и в доказательстве теоремы 2.2, по этой базе можно однозначно
восстановить исходный гиперарифметический порядок ⊳, а по нему и некоторое
гиперарифметическое представление исходной модели. Из свойств функторов
F и G следует, что топологическое пространство X′ гомеоморфно гиперариф-
метическому топологическому пространству G(F(M)), не имеющему нетриви-
альных гиперарифметических автогомеоморфизмов, причем в качестве гомео-
морфизма между этими пространствами может быть выбрано тождественное
отображение. Отсюда следует, что у X′ нет нетривиальных гиперарифметиче-
ских автогомеоморфизмов. �

Следствие 3.3. Для каждой гиперарифметической группы G существует

эффективное топологическое пространство, у которого группа всех автогомео-

морфизмов изоморфна G.
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Доказательство. В [10] доказано, что для каждой гиперарифметической
группы существует вычислимая модель M, у которой группа всех автоморфиз-
мов изоморфна этой группе. По теоремам 2.1, 2.2 и замечанию 2 топологическое
пространство G(F(M)) годится для доказательства нашего утверждения. �

Следствие 3.4. Существуют два гомеоморфные эффективные топологи-

ческие пространства, для которых не существует гиперарифметических гомео-

морфизмов из одного на другое.

Доказательство. Рассмотрим две изоморфные не гиперарифметически
изоморфные вычислимые модели M0 и M1 из работы [9]. По замечанию 2
и теоремам 2.1, 2.2 эффективные топологические пространства G(F(M0)) и
G(F(M1)) удовлетворяют следствию. �

Семейство (Xi)i<ω эффективных топологических пространств назовем вы-

числимым, если существует эффективная процедура, которая по данному i <
ω выдает алгоритмы, участвующие в определении эффективных топологиче-
ских пространств, т. е. алгоритм для перечисления основного множества, ал-
горитм для распознавания отношения x ∈ Bj и алгоритм для распознавания
истинности утверждений вида Bi1 ∩ · · · ∩ Bik ⊆ Bj1 ∪ · · · ∪ Bjs для данных
i1, . . . , ik, j1, . . . , js.

Следствие 3.5.

(1) Существует вычислимое семейство (Si)i<ω эффективных топологиче-

ских пространств такое, что множество {c(i, j) | Si
∼= Sj} является �1

1-полным.

(2) Существует вычислимое семейство (Si)i<ω эффективных топологиче-

ских пространств такое, что множество {i | Si
∼= S0} является �1

1-полным.

Доказательство. Заметим, что если (Mi)i<ω — вычислимое семейство
моделей, то семейство (G(F(Mi)))i<ω — вычислимое семейство эффективных
топологических пространств.

Чтобы доказать п. 1, достаточно взять вычислимое семейство (Mi)i<ω мо-
делей из [9], для которого множество {c(i, j) | Si

∼= Sj} �1
1-полно, и применить

замечание 2 вместе с теоремами 2.1 и 2.2.
П. 2 получается точно так же из существования вычислимого семейства

(Mi)i<ω моделей, для которого множество {i | Si
∼= S0} �1

1-полно (см. [9]). �

Следствие 3.6. Существует эффективное топологическое пространство S
такое, что для любой вычислимой модели M найдется его эффективное пред-

ставление S′ такое, что AHomS′ ∼= Autc(M).

Доказательство. В [11] построена вычислимая модель M такая, что для
любой вычислимой модели N существует вычислимая изоморфная копия M

′,
для которой Autc M ∼= Autc M′. Теперь мы можем положить S = G(F(M)) и
применить замечание 2 вместе с теоремами 2.1 и 2.2. �

Теорема 3.7. Для каждого n ≥ 1, n ≤ ω, существует эффективное топо-

логическое пространство S, для которого существуют эффективные топологи-

ческие пространства S = S1, . . . ,Sn такие, что

(1) для каждого эффективного топологического пространства W если W го-

меоморфно S, то оно вычислимо изоморфно одному из пространств S1, . . . ,Sn;

(2) пространства S1, . . . ,Sn попарно вычислимо не гомеоморфны.

Доказательство. В [12] С. С. Гончаровым доказано, что для любого
n ≥ 1, n ≤ ω, существует вычислимая модель с n вычислимыми вычислимо
неизоморфными представлениями. Остается применить теоремы 2.1 и 2.2. �
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4. Эффективные топологические пространства

со счетными группами автогомеоморфизмов

Теорема 4.1. Пусть группа автогомеоморфизмов гиперарифметического

топологического пространства имеет мощность менее 2ω. Тогда эта группа изо-

морфна некоторой гиперарифметической группе.

Доказательство использует допустимые множества [1]. Пусть 〈S,U〉 —
гиперарифметическое топологическое пространство, удовлетворяющее посылке
теоремы. Сначала запишем формулу ϕ(F ) в языке арифметики, расширенном
предикатными символами для U и F , которые говорят, что F — автогомеомор-
физм 〈S,U〉. Эта формула будет конъюнкцией следующих трех формул:

• формула, утверждающая, что F — перестановка;

• формула, утверждающая, что F переводит открытые множества в откры-
тые:

∀x∀i (x ∈ Ui → ∃ j (F (x) ∈ Uj ⊆ F (Ui))).

• формула, утверждающая, что F−1 переводит открытые множества в от-
крытые (записывается аналогично).

Поскольку отношение x ∈ Ui гиперарифметическое, т. е. имеет род �1
1, эта

формула эквивалентна некоторой �1
1-формуле ϕ′(F ) такой, что ей удовлетворя-

ют менее чем 2ω функций F . По теореме о совершенном множестве [1, теорема
4.4, c. 128] все такие F гиперарифметические.

Теперь покажем, что множество всех таких F является элементом допусти-
мого множества HYP〈ω;+,·,0〉. По �0-выделению для этого достаточно показать,
что существует элемент b ∈ HYP〈ω;+,·,0〉, содержащий все такие F . Если такого b
не существует, построим�-семейство � предложений из допустимого фрагмента
LHYP〈ω;+,·,0〉

, которые говорят, что F — не гиперарифметическая перестановка,

удовлетворяющая ϕ(F ). Это семейство � состоит из следующих предложений
в сигнатуре σ = 〈+, ·, s, 0〉, где s обозначает функцию взятия следующего нату-
рального числа:

• ∀x ∨

n∈ω

(x = sn(0));

• все бескванторные предложения сигнатуры σ, истинные в гиперарифме-
тической модели 〈ω; +, ·, U, 0〉;

• формула, утверждающая, что F — автогомеоморфизм 〈S,U〉; такая фор-
мула может быть получена из ϕ(F ), описанной выше, заменой формул вида
x ∈ Ui на

∨

m∈Un

(x = sm(0) & i = sn(0));

• семейство, утверждающее, что F — не гиперарифметическая перестановка
на ω, а именно семейство, состоящее из предложений

∨

n∈ω

(F (sn(0)) 6= sg(n)(0))

для всех гиперарифметических перестановок g на натуральных числах.

Каждая HYP〈ω;+,·,0〉-конечная часть семейства � имеет модель. По теореме
компактности Барвайса [1] это семейство имеет модель. Эта модель изоморфна
модели 〈ω; +, ·, U, 0〉 с добавленным предикатом F , являющимся негиперариф-
метическим автоморфизмом 〈S,U〉, что противоречит сказанному ранее.

Итак, семейство автогомеоморфизмов 〈S,U〉 есть элемент из HYPω . Поэто-
му группа всех автогомеоморфизмов пространства 〈S,U〉 является элементом
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HYPω. Поскольку существует �-вложение множества HYPω в ω (см. [1, след-
ствие 5.5, с. 171]), эта группа изоморфна подходящей гиперарифметической
группе. �

Следствие 4.2. Пусть группа всех автогомеоморфизмов гиперарифмети-

ческого топологического пространства имеет мощность менее чем 2ω. Тогда эта

группа изоморфна группе всех автоморфизмов подходящей вычислимой моде-

ли.

Доказательство. По теореме 4.1 эта группа изоморфна гиперарифме-
тической группе. В [10] доказано, что каждая гиперарифметическая группа
изоморфна группе всех автоморфизмов подходящей вычислимой модели. �

5. О числе эффективных представлений пространств

В предыдущих разделах мы рассматривали топологические пространства
со слабыми свойствами отделимости. Здесь рассмотрим T0-пространства с эф-
фективными базами из открыто-замкнутых множеств и опишем зависимость
числа эффективных гомеоморфных представлений от числа изолированных то-
чек. Следует заметить, что любое T0-пространство с базой, состоящей из от-
крыто-замкнутых множеств, является T2-пространством.

Будем говорить, что эффективные топологические пространства X0 =
〈X0, (Ui)i<ω〉 и X = 〈X1, (Vi)i<ω〉 сильно вычислимо гомеоморфны, если суще-
ствуют вычислимое отображение ϕ из X0 на X1, являющееся гомеоморфизмом
из X0 на X1 и вычислимые функции h0 и h1 такие, что для каждого i ∈ ω
выполнены следующие два равенства:

ϕ(Ui) =
⋃

j∈Wh0(i)

Vj , ϕ−1(Vi) =
⋃

j∈Wh1(i)

Uj.

Если X0 и X1 сильно вычислимо гомеоморфны, то будем обозначать этот факт
как X0

∼=s X1. Легко убедиться, что отношение сильного вычислимого гомео-
морфизма является отношением эквивалентности на эффективных топологиче-
ских пространствах.

Нам понадобится ряд технических утверждений. Сначала докажем

Предложение 5.1. Пусть X = 〈X, (Ui)i∈ω〉 — счетное топологическое T0-

пространство со счетной базой из открыто-замкнутых подмножеств и бесконеч-

ным множеством изолированных точек.

Пусть семейство (Fa)a∈Is(X) конечных множеств обладает следующим свой-

ством:

∀a, b ∈ Is(X) (a 6= b→ Fa ∩ Fb = ∅) & ∀a ∈ Is(X)(Fa ∩X) = ∅.

Пусть топологическое пространство X
∗ получается из X следующим обра-

зом: его основное множество равно

X∗ = X ∪
⋃

a∈Is(X)

Fa,

а база X∗ образована множествами вида

U ∪
⋃

a∈Is(X)∩U

Fa,
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U⊂◦X, и множествами {x} такими, что x ∈ {a} ∪ Fa, a ∈ Is(X).
Тогда X ∼= X

∗.

Доказательство. Рассмотрим отображение h : X∗ → X , определенное
следующим образом:

h(x) =

{

x, если x ∈ X,

a, если x ∈ Fa.

В ходе доказательства нам потребуется ряд свойств X∗ и h:

Лемма 5.2. (1) Отображение h непрерывно; для каждого x ∈ Is(X) его

прообраз h−1(x) — конечное множество, состоящее из изолированных точек;

для каждого x ∈ Is(X∗) справедливо h(x) ∈ Is(X);
(2) Lim(X) = Lim(X∗);
(3) для каждого B⊂◦X∗ выполнено h(B)⊂◦X;

(4) для каждого A ⊆ X

| Is(X) ∩A| = ω тогда и только тогда, когда | Is(X∗) ∩ h−1(A)| = ω;

(5) для каждого B ⊆ X∗

| Is(X∗) ∩B| = ω тогда и только тогда, когда | Is(X) ∩ h(B)| = ω;

(6) если S — конечное множество изолированных точек из X, то h−1(S) —

конечное множество изолированных точек из X∗;

(7) если S — конечное множество изолированных точек из X∗, то h(S) —

конечное множество изолированных точек из X.

Доказательство леммы. П. (1) непосредственно следует из определения
топологии на X∗.

Докажем (2). Сначала докажем включение Lim(X) ⊆ Lim(X∗). Пусть a ∈
Lim(X), но a /∈ Lim(X∗). Тогда точка a изолирована в X

∗, т. е. {a}⊂◦X∗. Из
определения X∗ следует, что единственно возможный случай — это a ∈ Is(X),
что противоречит a ∈ Lim(X).

Докажем другое включение Lim(X∗) ⊆ Lim(X). Пусть a ∈ Lim(X∗), но a ∈
Is(X). Тогда по определению h и по п. 1 h−1(a) — конечное открытое множество,
содержащее a. Следовательно, {a}⊂◦X∗, что противоречит a ∈ Lim(X∗).

Докажем (3). Согласно определению открытые подмножества X∗ являют-
ся объединениями семейств множеств вида U ∪ ⋃

a∈Is(X)∩U

Fa, U⊂◦X , и некоторого

множества изолированных точек из X. По п. 1 настоящей леммы образ этого
множества относительно h есть объединение соответствующих открытых под-
множеств в U и некоторого семейства изолированных точек X , тоже открытого.

Пп. (4)–(7) легко следуют из определения отображения h и из (1). �

Открыто-замкнутые множества A ⊆ X и B ⊆ X∗ будем называть эквива-

лентными, если выполнены следующие два условия:
(1) | Is(X) ∩A| = | Is(X∗) ∩B|;
(2) h(B)△A — конечное подмножество Is(X), т. е. h(B) отличается от A

только на конечном множестве изолированных точек.

Лемма 5.3. Пусть A ⊆ X и B ⊆ X∗ эквивалентны. Тогда

(1) для каждого открыто-замкнутого в X множества U ⊆ A существует

открыто-замкнутое в X
∗ множество U∗ ⊆ B такое, что A ∩ U и B ∩ U∗ эквива-

лентны и A \ U и B \ U∗ тоже эквивалентны.
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(2) для каждого открыто-замкнутого в X множества U∗ ⊆ B существует

открыто-замкнутое в X множество U ⊆ A такое, что A∩U и B∩U∗ эквивалентны

и A \ U и B \ U∗ тоже эквивалентны.

Доказательство леммы. Докажем (1). Пусть U — конечное открыто-
замкнутое подмножество в A. Поскольку наша топология обладает свойством
T2, оно состоит из изолированных точек из X∗. Выберем U∗ ⊆ Is(X∗) как
множество, состоящее из |U | изолированных точек из B. Очевидно, что это
множество открыто-замкнуто. Такой выбор возможен, ибо A и B эквивалентны
и, следовательно, содержат одинаковое число изолированных точек. По тем же
причинам количества изолированных точек в A \U и B \U∗ совпадают. Далее,
U и h(U∗) отличаются на конечном множестве изолированных точек, поскольку
сами являются конечными. МножестваA\U и h(B\U∗) отличаются на конечное
множество изолированных точек, так как

A \ U ≈ A ≈ h(B) ≈ h(B \ U∗).

Таким образом, множество U∗ подходящее.

Случай, когда A \ U конечно, рассматривается аналогично.

Пусть теперь U и A \ U бесконечны. Обозначим

U0 = h(B) ∩ U, U1 = h(B) \ U.

По п. (3) леммы 5.2 эти множества открыты. Рассмотрим следующие открытые
подмножества X∗:

U∗
0 = h−1(U0) ∪ h−1(h(B) \A), U∗

1 = h−1(U1).

Если множества изолированных точек в U и A \ U бесконечны, то по п. (4)
леммы 5.2 множества изолированных точек из h−1(U0) и h−1(U1) тоже беско-
нечны; в таком случае мы можем взять U∗ = U∗

0 . Если одно из этих множеств,
скажем множество изолированных точек из U , конечно, то множество изолиро-
ванных точек из h−1(U0) также конечно вместе с множеством изолированных
точек из U∗

0 , и оно отличается от него на конечное подмножество множества
h−1(h(B)\A). Ввиду того, что количество изолированных точек в A и в B одно
и то же, можно добавить или убрать конечное множество изолированных то-
чек из U∗

0 так, чтобы его мощность была равна числу изолированных точек из
U , получив в результате требуемое множество U∗. Непосредственная проверка
показывает, что так построенное множество U∗ удовлетворяет лемме.

Докажем (2). Фактически доказательство использует те же идеи, что и для
п. (1). Мы дадим его набросок. Пусть

U∗
0 = U∗, U∗

1 = B \ U∗, Ui = h(U∗
i ) ∩A, i = 0, 1.

По п. (3) леммы 5.2 множества Ui, i = 0, 1 открыты. По пп. 4, 5 леммы 5.2
множества изолированных точек из Ui бесконечны тогда и только тогда, когда
множество изолированных точек из в U∗

i бесконечно. Поскольку мощность мно-
жеств изолированных точек в A и B совпадают, можно добавить или убрать из
U0 конечное множество изолированных точек так, чтобы количества изолиро-
ванных точек в U0 и в U∗

1 а также в A \ U0 и U∗
1 попарно совпали, получив тем

самым новое открыто-замкнутое множество U ′
0. Положим U = U ′

0. Проверка
оставшейся части условия эквивалентности очевидна. �
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Теперь можно построить гомеоморфизм g из X на X∗ следующим образом.
Пусть (Ui)i<ω — счетная база из открыто-замкнутых множеств для простран-
ства X , и пусть (U∗

i )i<ω — счетная база из открыто-замкнутых множеств для
пространства X∗.

Определим семейства (Aε)ε∈2<ω и (Bε)ε∈2<ω , состоящие из открыто-замк-
нутых множеств, по шагам следующим образом.

Шаг 0. A∅ = X , B∅ = X∗. Заметим, что A∅ и B∅ эквивалентны, посколь-
ку оба содержат бесконечно много изолированных точек, и h(A∅) = B∅.

Шаг n > 0. Предположим, что Aε и Bε уже определены для всех ε таких,
что |ε| < n, и каждое Aε эквивалентно Bε для всех ε таких, что length(ε) < n.

Чтобы определить Aε0, Aε1, Bε0, Bε1, где length(ε) = n, рассмотрим два
случая.

Случай 1. n = 2t+1. Положим Aε0 = Aε∩Ut, Aε1 = Aε\Ut для всех ε ∈ 2n.
По лемме 5.3 находим открыто-замкнутое множество S ⊆ Bε в X∗ такое, что Aε0

эквивалентно S и Aε1 эквивалентно Bε \ S. Положим Bε0 = S и Bε1 = Bε \ S.

Случай 2. n = 2t + 2. Положим Bε0 = Bε ∩ U∗
t , Bε1 = Bε \ U∗

t для
всех ε ∈ 2n. По лемме 5.3 находим открыто-замкнутое множество S ⊆ Aε в X

такое, что Bε0 эквивалентно S и Bε1 эквивалентно Aε \ S. Положим Aε0 = S и
Aε1 = Aε \ S.

Заметим, что для каждого x ∈ Is(X) найдется Ui такое, что Ui = {x}, и
для каждого x ∈ Is(X∗) найдется U∗

i такое, что U∗
i = {x}. Следовательно, для

каждого x ∈ Is(X) существует Aε такое, что Aε = {x}, и для каждой точки x ∈
Is(X∗) существует Bε такое, что Bε = {x}. Более того, для каждого x ∈ Lim(X)

x ∈ Aε тогда и только тогда, когда x ∈ Bε для всех ε ∈ 2<ω.

Заметим, что каждое Aε, ε ∈ 2<ω, содержит только один элемент тогда и только
тогда, когда Bε содержит только один элемент.

Определим отображение g из X на X∗ следующим образом:

g(x) =

{

x, если x /∈ Is(X);

единственное y ∈ Bε, если Aε = {x}, в противном случае.

Очевидно, что это отображение взаимно-однозначно. Докажем, что g и g−1

непрерывны. Это следует из следующих свойств:
(1) для всех x ∈ X и всехA⊂◦X таких, что x ∈ A, существует элемент ε ∈ 2<ω

такой, что x ∈ Aε ⊆ A;
(2) для всех x ∈ X∗ и всех A⊂◦X∗ таких, что x ∈ A, существует ε ∈ 2<ω

такой, что x ∈ B∗
ε ⊆ A;

(3) g(Aε) = B∗
ε ;

Таким образом, g является гомеоморфизмом. Предложение доказано.

Теперь опишем представление в виде дерева эффективных топологиче-
ских T0-пространств с эффективными базами из открыто-замкнутых множеств.
Пусть X — такое пространство с основным множеством X , и пусть (Ui)i<ω —
его вычислимая база из открыто-замкнутых множеств.

Мы будем использовать следующую запись: U0 = U , U1 = X \ U .
По пространству X построим по шагам бинарное дерево T (X) ⊆ 2<ω и се-

мейство открыто-замкнутых множеств Vε, ε ∈ T (X), как описано ниже.
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Шаг 0. Положим T0 = {�}, V� = X , a� — наименьший элемент X .
Шаг n+1. Предположим, что Tn — конечное дерево, построенное к данно-

му моменту. Для каждой концевой вершины ε этого дерева проделываем следу-
ющее: если A0 = Vε∩U0

n 6= ∅ и A1 = Vε∩U1
n 6= ∅, то добавим к дереву элементы

ε0 и ε1, единственное из множеств A0, A1, которое содержит aε, объявим Vε0,
а оставшееся из этих множеств объявим Vε1. Положим aε0 = aε, а элемент aε1
определим как минимальный элемент из Vε1. Переходим к следующему шагу.

Положим T (X) =
⋃

n∈ω

Tn.

Заметим, что дерево T (X) перечисляется равномерно по индексам алгорит-
мов, задающих пространство X.

Заметим, что элементы aε, ε ∈ T (X), находятся в естественном взаимно-
однозначном соответствии с элементами дерева T (X), не оканчивающимися на
0. Кроме того, X = {aε | ε ∈ T (X)}.

Опишем теперь и обратную конструкцию, выдающую по бинарному дереву
T эффективное топологическое пространство с эффективной базой из открыто-
замкнутых множеств. Пусть задано некоторое перечисление бинарного дерева
T . По этому перечислению следующим естественным образом строится эф-
фективное топологическое пространство. Точками его являются элементы де-
рева, не оканчивающиеся на 0. Множество всех этих точек обозначим че-
рез X(T ). В ходе построения дерева возникает естественное эффективное пе-
речисление элементов дерева T : T = {αi | i ∈ ω} такое, что по данному
i эффективно выписывается αi. Теперь определим базовые окрестности как
Ui = {ε ∈ X(T ) | ∃m (αi ⊑ ε0m)}. Тем самым полностью определено эффектив-
ное топологическое пространство, которое мы обозначим через X(T ). Нетрудно
убедиться, что если T — перечислимое дерево, рассматриваемое со своим пе-
речислением, построенное, как выше, по топологическому пространству X, то
X(T ) ∼=s X.

Замечание 3. Если мы возьмем дерево T и последовательно подвесим

к некоторым (не обязательно концевым) вершинам из T поддеревья вида @@
q

q q

(это эквивалентно последовательному добавлению к дереву для некоторых вер-
шин α элементов α0 и α1) так, что под каждой концевой вершиной окажется
лишь конечное число новых элементов, то по предложению 5.1 так полученное
дерево T ∗ будет определять топологическое пространство, гомеоморфное X(T ),
X(T ) ∼= X(T ∗).

В дальнейшем мы применим это древесное представление и сделанное за-
мечание для получения дерева, для которого соответствующее топологическое
прстранство будет гомеоморфно но не сильно изоморфно исходному простран-
ству X.

Будем говорить, что класс K эффективных топологических пространств
является сильно эффективно бесконечным, если существует эффективный ме-
тод, который по любому алгоритму, задающему вычислимое семейство (Xi)i<ω

элементов из K, выдает индексы для некоторого пространства X ∈ K такого,
что X ≇s Xi, для каждого i < ω.

Теорема 5.4. Класс всех эффективных топологических пространств с эф-

фективными базами из открыто-замкнутых множеств и бесконечным числом

изолированных точек является эффективно бесконечным.

Доказательство. Поскольку дерево для таких пространств строится рав-
номерно по индексу пространства, будем считать, что у нас имеется вычислимая
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последовательность бинарных деревьев (Ti)i∈ω, Ti ⊆ 2<ω, такая, что для всех
i ∈ ω выполнено Xi

∼=s X(Ti).
Зафиксируем одновременное перечисление деревьев Ti:

T 0
i ⊆ T 1

i ⊆ · · · ⊆ T k
i ⊆ · · · ⊆

⋃

i∈ω

T t
i = Ti

такое, что по данным i и k эффективно вычисляется индекс конечного множе-
ства T k

i .
Для доказательства теоремы достаточно по шагам построить новое дерево

T∗ так, чтобы X(T∗) ∼= X(T0) и чтобы одновременно удовлетворялись следующие
требования.

Ri,n (i, n ∈ ω): функция κn не может играть роль функции h0 в определе-
нии сильного гомеоморфизма из пространства X(Ti) на X(T∗).

В конце каждого шага t мы будем иметь некоторое семейство элементов, пе-
речисленных к этому моменту, образующих конечное дерево T t

∗ ⊇ T t
0 . Назовем

t-рангом элемента ε ∈ T t
∗ максимальное натуральное m такое, что ε ↾ m ∈ T t

0 .
Очевидно, что функция t-ранга нестрого возрастает по t.

Определим ε ∈ 2<ω множества Vε = {γ | ∃m (ε ⊑ γ0m)}.
Опишем построение. Зафиксируем некоторое вычислимое отображение p :

ω → ω × ω, удовлетворяющее следующему свойству: для любых i, n ∈ ω суще-
ствует бесконечно много j таких, что p(j) = 〈i, n〉.

Шаг 0. Положим T 0
∗ = T 0

0 .

Шаг t > 0. На этом шаге мы будем пытаться удовлетворить требование
Ri,n, где p(t) = 〈i, n〉.

Сначала снимем все метки, стоящие на вершинах дерева T t−1
i , не являю-

щихся концевыми.
Если метка 〈i, n〉 в настоящий момент где-нибудь поставлена, то перейдем

к следующему шагу. В противном случае ищем концевую вершину α дерева T t
i

с наименьшим номером такую, что выполнены следующие условия:
(1) для всех ε, лексикографически не превосходящих α, значения κt

n(ε)
определены и W t

κn(ε) 6= ∅;

(2) существуют γ ∈W t
κt(α) и элемент β ⊒ γ такой, что t-ранг β больше, чем

c(i, n);
(3)

(
⋃

γ∈W t
κn(ε)

Vγ
)

∩
(

⋃

γ∈W t

κn(ε′)

Vγ
)

= ∅ для всех пар ε, ε′ ∈ T t
i элементов,

несравнимых относительно отношения ⊑.
Берем наименьшее такое β и в качестве T t

∗ наименьшее бинарное дерево,
содержащее T t

0 и элементы β0 и β1. Поставим на элемент α метку 〈i, n〉.
Описание построения закончено.

Докажем следующие свойства этого построения.

Лемма 5.5. Каждая метка ставится конечное число раз. Все требования

Ri,n удовлетворяются.

Доказательство леммы. Заметим, что каждая метка может быть по-
ставлена на некоторый элемент дерева Ti не более одного раза, и если однажды
эта метка ставится на концевую вершину дерева Ti, то она уже никогда не сни-
мается.

Зафиксируем натуральные числа i и n и покажем, что метка 〈i, n〉 ставится
лишь конечное число раз. Возможны следующие случаи.
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Случай 1. Для некоторого α ∈ Ti значение κn(α) не определено. То-
гда лемма следует из описания построения и замечания, сделанного в начале
доказательства.

Следующие два случая рассматриваются аналогично.

Случай 2. Для некоторого α ∈ Ti выполнено Wκn(α) = ∅.

Случай 3. Для некоторых ε, ε′ ∈ Ti, несравнимых по отношению ⊑, вы-
полнено

(
⋃

γ∈W t
κn(ε)

Vγ
)

∩
(

⋃

W t

κn(ε′)

Vγ
)

6= ∅.

Очевидно, что в любом из этих трех случаев требование Ri,n выполняется.

Случай 4. Не выполнен ни один из предыдущих случаев.

Нетрудно убедиться, что в этом случае метка 〈i, n〉 будет в итоге постав-
лена на некоторую концевую вершину α дерева Ti и поэтому никогда уже не
будет снята. Тогда множество Vα будет содержать один элемент, а множество

⋃

W t
κn(α)

Vγ — как минимум два элемента, т. е. требование Ri,n выполняется.

Лемма 5.6. X(T0) ∼= X(T∗).

Доказательство леммы. Сначала отметим, что при построении дерева
T∗ под каждую концевую вершину α дерева T0 будет добавлено лишь конечное
семейство новых элементов. Действительно, начиная с некоторого шага t, t-
ранг концевой вершины α уже не будет изменяться. Обозначим его через m.
Все элементы, добавленные под α, будут иметь ранг m. Новые элементы под α
будут добавляться только при постановке меток 〈i, n〉, для которых c(i, n) < m,
что произойдет лишь конечное число раз.

Лемма теперь следует из предложения 5.1 и замечания 3. �

Замечание 4. Требование существования вычислимого отображения ϕ в
определении сильного гомеоморфизма нигде не использовано в доказательстве.

Теорема 5.7. Любые два эффективные топологические T0-пространства

без изолированных точек, обладающие эффективными базами открыто-замкну-

тых множеств, сильно вычислимо гомеоморфны.

Доказательство следует из того, что каждое такое пространство име-
ет древесное представление, в котором это дерево является полным бинарным
деревом. �

Теорема 5.8. Пусть X — эффективное топологическое T0-пространство с

эффективной базой из открыто-замкнутых множеств. Тогда следующие усло-

вия эквивалентны:

(1) X допускает как минимум два не сильно вычислимо изоморфных вы-

числимых представления с эффективными базами из открыто-замкнутых мно-

жеств;

(2) X допускает бесконечно много попарно не сильно вычислимо изоморф-

ных вычислимых представлений с эффективными базами из открыто-замкну-

тых множеств;

(3) класс всех эффективных представлений X с эффективными базами из

открыто-замкнутых множеств эффективно бесконечен;

(4) X содержит бесконечно много изолированных точек.

Доказательство следует из вышеприведенных результатов.
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