
Analysis of stochastic timed automata

We use an example to highlight the difficulties intrinsic to the analysis of stochastic timed

automata.

Example 1 Consider the stochastic timed automaton (E ,X ,Γ, p, pX0
, F ) in the figure, with

E = {a, b}, X = {1, 2}, p(1|1, a) = 1/4, pX0
(1) = 2/3, and F = {Fa, Fb}, where Fa and Fb are

uniform distributions over the intervals [0, 4] and [0, 2], respectively.
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aa, b

a

lifetime cdf pdf

Va Fa(t) =







0 if t < 0

t/4 if 0 ≤ t ≤ 4

1 otherwise

fa(t) =

{

1/4 if 0 ≤ t ≤ 4

0 otherwise

Vb Fb(t) =







0 if t < 0

t/2 if 0 ≤ t ≤ 2

1 otherwise

fb(t) =

{

1/2 if 0 ≤ t ≤ 2

0 otherwise

Problem

Compute pEk
(e) , P (Ek = e) and pXk

(x) , P (Xk = x) for all k = 1, 2, . . ., e ∈ E , and x ∈ X .

Solution

First, notice that P (X0 = 1) = 2/3, and P (X0 = 2) = 1− P (X0 = 1) = 1− 2/3 = 1/3.

We start from P (E1 = a). Computing this prior probability directly is not obvious. On the

other hand, computing the conditional probabilities P (E1 = a|X0 = 1) and P (E1 = a|X0 = 2)

can be tackled more easily. For the latter, we have P (E1 = a|X0 = 2) = 1, because a is the

only possible event in state 2. For P (E1 = a|X0 = 1), it corresponds to the situation illustrated

by the following sample path:

a :
Ya,0

b :
Yb,0

X0 = 1

E1 = a
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enabling us to write

P (E1 = a|X0 = 1) = P (Ya,0 < Yb,0|X0 = 1)

= P (Va,1 < Vb,1), (1)

where we used the fact that Ya,0 = Va,1 and Yb,0 = Vb,1 at initialization starting from state

X0 = 1. Since the probability distributions of Va,1 and Vb,1 are known, and lifetimes are assumed

independent, the right-hand side of (1) can be computed (see the subsequent Remark 1),

returning P (E1 = a|X0 = 1) = 1/4.

Now, the fact that P (E1 = a|X0 = 1) and P (E1 = a|X0 = 2) are known, as well as

P (X0 = 1) and P (X0 = 2), suggests to apply the total probability rule with the partition of the

sample space given by the possible values of the initial state. We thus have:

P (E1 = a) = P (E1 = a|X0 = 1) · P (X0 = 1) + P (E1 = a|X0 = 2) · P (X0 = 2)

=
1

4
·
2

3
+ 1 ·

1

3
=

1

2
= 0.5. (2)

Remark 1 Computing P (Va,1 < Vb,1) requires to evaluate the following double integral:

P (Va,1 < Vb,1) =

∫ ∫

A

fa(t)fb(s)dtds, (3)

where, being Va,1 and Vb,1 independent, their joint pdf is the product of the marginal pdfs, and

A = {(t, s) ∈ R
2 : t < s} (the half-plane above the line s = t in the figure).

s

t

s = t

4

2

Since the joint pdf of Va,1 and Vb,1 is zero outside the box [0, 4] × [0, 2], it turns out that the

integral in (3) is to be computed only over the grey region in the figure:

P (Va,1 < Vb,1) =

∫
2

0

∫ s

0

1

4
·
1

2
dsdt

=
1

8

∫
2

0

sds =
1

8

[
s2

2

]2

0

=
1

4
. (4)
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From (2), we straightforward obtain:

P (E1 = b) = 1− P (E1 = a) = 1−
1

2
=

1

2
= 0.5. (5)

As the next step, we compute P (X1 = 1). Applying again the total probability rule with

the partition of the sample space given by the possible values of the initial state, we have:

P (X1 = 1) = P (X1 = 1|X0 = 1) · P (X0 = 1) + P (X1 = 1|X0 = 2) · P (X0 = 2). (6)

In the right-hand side of (6), P (X0 = 1) and P (X0 = 2) are known. Moreover, P (X1 = 1|X0 =

2) = 1. Hence, we have only to compute P (X1 = 1|X0 = 1). To do this, we apply again the

total probability rule, but with the partition of the sample space now given by the possible

values of the first event. We have:

P (X1 = 1|X0 = 1) = P (X1 = 1|X0 = 1, E1 = a) · P (E1 = a|X0 = 1)

+ P (X1 = 1|X0 = 1, E1 = b) · P (E1 = b|X0 = 1). (7)

In the right-hand side of (7) all the quantities are known. Indeed, P (E1 = a|X0 = 1) = 1/4

from (1) and (4). Then, P (E1 = b|X0 = 1) = 1 − P (E1 = a|X0 = 1) = 3/4. Moreover,

P (X1 = 1|X0 = 1, E1 = a) = p(1|1, a) = 1/4, and P (X1 = 1|X0 = 1, E1 = b) = p(1|1, b) = 1.

By replacing all the probabilities in the right-hand side of (7) with their values, we get:

P (X1 = 1|X0 = 1) =
1

4
·
1

4
+ 1 ·

3

4
=

13

16
. (8)

Then, from (6) we obtain:

P (X1 = 1) =
13

16
·
2

3
+ 1 ·

1

3
=

7

8
= 0.875, (9)

and:

P (X1 = 2) = 1− P (X1 = 1) = 1−
7

8
=

1

8
= 0.125. (10)

The next step is to compute P (E2 = a). One would be tempted to mimic the same approach

used in (2):

P (E2 = a) = P (E2 = a|X1 = 1) · P (X1 = 1) + P (E2 = a|X1 = 2) · P (X1 = 2). (11)

Some quantities in (11) are known. In particular, P (X1 = 1) = 7/8 and P (X1 = 2) = 1/8.

Moreover, P (E2 = a|X1 = 2) = 1. Regarding P (E2 = a|X1 = 1), similarly to (1) we can write:

P (E2 = a|X1 = 1) = P (Ya,1 < Yb,1|X1 = 1), (12)

where Ya,1 and Yb,1 are the residual lifetimes of events a and b after the first event. However,

to compute this probability we would need the joint distribution of the two random variables,

which is actually unknown. This can be understood by considering that Ya,1 = Va,2 (that is,
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Ya,1 equals a total lifetime) if the first event was a, while Ya,1 = Va,1 − Vb,1 if the first event was

b. In other words, to compute P (E2 = a) we need more information about the past history

of the system. Indeed, in (11) we only used information about the state after the first event,

but no information about the first event and the initial state. This suggests to consider all the

history of the system starting from initialization, by partitioning the event {E2 = a} into all

the possible state-event sequences (x0, e1, x1, e2) with e2 = a:

(i) x0 = 1
e1=a
−→ x1 = 1

e2=a
−→

(ii) x0 = 1
e1=a
−→ x1 = 2

e2=a
−→

(iii) x0 = 1
e1=b
−→ x1 = 1

e2=a
−→

(iv) x0 = 2
e1=a
−→ x1 = 1

e2=a
−→

This enables us to write:

P (E2 = a) = P (E2 = a,X1 = 1, E1 = a,X0 = 1)

+ P (E2 = a,X1 = 2, E1 = a,X0 = 1)

+ P (E2 = a,X1 = 1, E1 = b,X0 = 1)

+ P (E2 = a,X1 = 1, E1 = a,X0 = 2)

= P (E2 = a,X1 = 1, E1 = a|X0 = 1) · P (X0 = 1)

+ P (E2 = a,X1 = 2, E1 = a|X0 = 1) · P (X0 = 1)

+ P (E2 = a,X1 = 1, E1 = b|X0 = 1) · P (X0 = 1)

+ P (E2 = a,X1 = 1, E1 = a|X0 = 2) · P (X0 = 2). (13)

In (13), P (X0 = 1) and P (X0 = 2) are known. To compute the conditional probabilities, we

follow the same approach based on sample paths used in (1).

• P (E2 = a,X1 = 1, E1 = a|X0 = 1). The sample path is as follows:

a :
Va,1

b :
Vb,1

X0 = 1

E1 = a

X1 = 1

E2 = a

a :

b :

Va,2

Vb,1 − Va,1

Hence,

P (E2 = a,X1 = 1, E1 = a|X0 = 1) = p(1|1, a) · P (Va,1 < Vb,1, Va,2 < Vb,1 − Va,1)

= p(1|1, a)
︸ ︷︷ ︸

1/4

·P (Va,1 + Va,2 < Vb,1)
︸ ︷︷ ︸

1/24

=
1

96
, (14)
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where we used the fact that, since lifetimes are nonnegative numbers, Va,1 + Va,2 < Vb,1

implies Va,1 < Vb,1.

• P (E2 = a,X1 = 2, E1 = a|X0 = 1). The sample path is as follows:

a :
Va,1

b :
Vb,1

X0 = 1

E1 = a

X1 = 2

E2 = a

a :
Va,2

Hence,

P (E2 = a,X1 = 2, E1 = a|X0 = 1) = p(2|1, a)
︸ ︷︷ ︸

3/4

·P (Va,1 < Vb,1)
︸ ︷︷ ︸

1/4

=
3

16
. (15)

• P (E2 = a,X1 = 1, E1 = b|X0 = 1). The sample path is as follows:

a :
Va,1

b :
Vb,1

X0 = 1

E1 = b

X1 = 1

E2 = a

a :

b :

Va,1 − Vb,1

Vb,2

Hence,

P (E2 = a,X1 = 1, E1 = b|X0 = 1) = p(1|1, b) · P (Vb,1 < Va,1, Va,1 − Vb,1 < Vb,2)

= p(1|1, b)
︸ ︷︷ ︸

1

·P (Vb,1 < Va,1 < Vb,1 + Vb,2)
︸ ︷︷ ︸

1/4

=
1

4
. (16)

• P (E2 = a,X1 = 1, E1 = a|X0 = 2). The sample path is as follows:

a :
Va,1

X0 = 2

E1 = a

X1 = 1

E2 = a

a :

b :

Va,2

Vb,1
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Hence,

P (E2 = a,X1 = 1, E1 = a|X0 = 2) = p(1|2, a)
︸ ︷︷ ︸

1

·P (Va,2 < Vb,1)
︸ ︷︷ ︸

1/4

=
1

4
. (17)

Notice that, to compute the probabilities in (14)-(17), one has to solve multiple integrals in

two or three dimensions. By replacing all the probabilities in the right-hand side of (13) with

their values, we get:

P (E2 = a) =
1

96
·
2

3
+

3

16
·
2

3
+

1

4
·
2

3
+

1

4
·
1

3
=

55

144
≃ 0.3819. (18)

From (18) we straightforward obtain:

P (E2 = b) = 1− P (E2 = a) =
89

144
≃ 0.6181. (19)

Then we should compute P (X2 = 1), P (X2 = 2), P (E3 = a), P (E3 = b), and so on.

Remark 2 Notice that the approach based on the total probability rule used in (2) can be

reinterpreted in view of what we did to obtain (13). By partitioning the event {E1 = a} into

all the possible state-event sequences (x0, e1) with e1 = a:

(i) x0 = 1
e1=a
→

(ii) x0 = 2
e1=a
→ ,

we can write

P (E1 = a) = P (E1 = a,X0 = 1) + P (E1 = a,X0 = 2)

= P (E1 = a|X0 = 1) · P (X0 = 1) + P (E1 = a|X0 = 2) · P (X0 = 2). (20)

Conclusion

It is easy to figure out from this example that the complexity of computing analytically the

probabilities P (Ek = e) and P (Xk = x) increases in general with the event index k, because we

need to consider more and more cases, and compute integrals in larger and larger dimensions.

The take-away message of this example is therefore that the analysis of a stochastic timed

automaton has to be tackled differently in practice. Possible approaches are:

• find special cases for which analytical computations are easy;

• use Monte Carlo methods.

We will see that the first approach is based on the use of exponential distributions for the

lifetimes of the events, while the second is based on simulated sample paths of the stochastic

timed automaton.
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