

Discrete Event Systems 2022/23

About the instructor

Prof. Simone Paoletti

Office: room 229 (2nd floor, building San Niccolò)

Email: paoletti@dii.unisi.it

Web page: https://www3.diism.unisi.it/~paoletti/

Research interests:

- Robust control
- System identification
- Smart grids

Find the differences... (1/2)

Suspension system

Queueing system

Find the differences... (2/2)

Mathematical models (1/2)

Suspension system: modelled as a *mass-spring-damper system*

- x: mass displacement
 - *f*: applied force

$$m\ddot{x} + c\dot{x} + kx = f$$

linear time-invariant differential equation

Mathematical models (2/2)

- **Time-driven** dynamics are described by differential equations
- How can we model **event-driven** dynamics?

Objectives of the course

Modelling, analysis and simulation of **Discrete Event Systems (DES)**

Main contents:

- modelling
- probability
- programming (Matlab)

Which types of models will be considered?

- Logical and timed models (automata)
- Markov chains

Main application: queueing theory

Examples of discrete event systems (1/3)

- a *manufacturing plant* with machines, workers, conveyor belts, buffers, etc.
- a *bank* with different types of customers and services (desks, ATMs, etc.)
- an *airport* with passengers in different states (check-in, security control, gate, boarding, etc.)
- a *computer system* with resources and processes needing access to resources
- a *road system* with cars, roads, crosses, traffic lights, etc.
- a *fast-food restaurant* with a staff and different types of customers

Examples of discrete event systems (2/3)

- a *switching control system* where it is possible to switch between different controllers
- an *electronic component* subject to deterioration and failures
- etc.

Examples of discrete event systems (3/3)

Summarizing, discrete event systems can be found in:

- control systems
- manufacturing systems
- computer systems
- information networks
- transportation networks
- communication networks
- etc.

About the course

• Students

- $\circ~$ MSc Artificial Intelligence and Automation Engineering (A2) 1^{st} year
- \circ MSc Engineering Management (EM) 1st year
- Number of credits: 6
- Number of class hours: ~ 54
- Number of individual study hours (estimated): ~ 150

Teaching period:

• From March 6, 2023 to June 15, 2023

Timetable:

- Monday from 8:30 AM to 11:45 AM (room F)
- Thursday from 8:30 AM to 10:00 AM (room F)

Distribution:

• ~ 60% lectures, ~ 40% tutorials

- Logical models of Discrete Event Systems (DES)
- Timed models of DES
- Stochastic timed models of DES

Syllabus (2/2)

- Simulation of DES
- Continuous-time Markov chains
- Queueing theory

Teaching material

• Textbook:

C.G. Cassandras, S. Lafortune, "Introduction to discrete event systems", 2nd ed. Springer, 2008

- Available on the web page of the course (**free access**):
 - o lecture notes
 - \circ $\,$ past exams and exercises with solutions
- Available on Google Drive (only for registered students):
 - \circ ~ videos covering the contents of the course

Required (minimal) background

- Algebra
 - Matrices and vectors
- Probability
 - Basic concepts (independence, conditional probability, etc.)
 - Random variables (univariate and multivariate)
- > Among the topics covered by the *Introductory Course for MSc Degrees*

https://www3.diism.unisi.it/~zanvettor/Teaching/Introductory Course MSc Degrees/

> The contents of that course will be taken for granted

Final exam (1/3)

- The final exam can be taken in the available exam sessions
 - 2nd session: from Jun 19, 2023 to Jul 28, 2023
 - *Recovery session:* from Sep 1, 2023 to Sep 30, 2023
 - \circ 1st session: to be scheduled
- It consists of three phases:
 - Written test
 - Matlab project
 - Oral test

Final exam (2/3)

- The written test consists of exercises (typically two/three) on the 1st part of the course
 - Passed if the grade is ≥15 out of 30
 - Past exams are available to see how a test looks like
 - Two dates for the written test in each session
- The Matlab project is concerned with the topics of the 2nd part of the course
 - Assigned only to students who passed the written test
 - To be completed within one week from assignment
 - Groups can be formed

Final exam (3/3)

- The **oral test** is a broad-spectrum discussion on the topics of the course, including theory and exercises
 - Enabled <u>only if</u> the average grade of the written test and the project is ≥18 and both grades ≥15 (out of 30)
 - \circ To be given within the same session as the written test
 - In case of failure, the student must repeat the written test
 - The language for the oral test can be either English or Italian
- The final grade takes the performance in all the tests into account, with greater weight given to the oral test

Midterm test and project

 The written test of the final exam can be replaced with a midterm test which will be organized at the end of the 1st part of the course

• Matlab project assigned at the end of the 2nd part of the course

Web page

https://www3.diism.unisi.it/~paoletti/teaching/sed/2223/index.html

Master of Science in Engineering Università di Siena Discrete Event Systems March 2023 - June 2023

1 News 2 About the instructor 2.1 Instructor 2.2 Office hours 3 About the course 3.1 Training objectives 3.2 Required background 3.3 Organization 3.4 Syllabus 3.5 Didactic methods 3.6 Reference text 4 Exams 4.1 Learning assessment procedures 4.2 Tests 4.3 Results 5 Teaching material 5.1 Lecture notes 5.2 Exercises with solutions 6 About the lectures 6.1 Timetable 6.2 Lecture schedule

Tips

- Registration for the course (instructions on the course web page)
 - Needed to access course material (videos, etc.) reserved to registered students
- Attend ALL the lectures
 - Integral part of the learning process (notes, questions, etc.)
 - Enhances student's performance
- Start well
 - Study from the beginning... don't wait the midterm test!
- Take advantage of office hours
 - Ask questions and feedback on exercises, clarify your doubts

Questions?