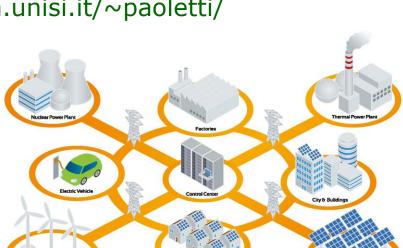


Discrete Event Systems Automata and Queueing Systems 2020/21

About the instructor

Dr. Simone Paoletti


Office: room 229 (2nd floor, building San Niccolò)

Email: paoletti@dii.unisi.it

Web page: https://www3.diism.unisi.it/~paoletti/

Research interests:

- Robust control
- System identification
- Smart grids

Find the differences...

Suspension system

Queueing system

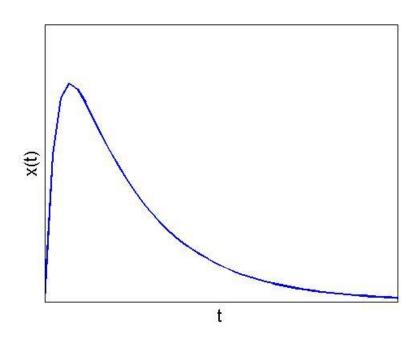


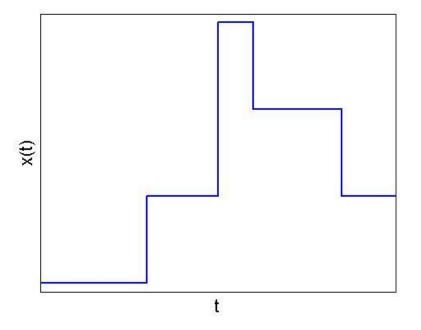
Find the differences...

Suspension system (model)

Queueing system

x: mass displacement


x: # of customers in the queue


Find the differences...

x: mass displacement

"time-driven" dynamics

"event-driven" dynamics

Time-driven vs Event-driven

• **Time-driven** dynamics are typically described by differential/difference equations, e.g.

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 (continuous time)
$$x(t+1) = Ax(t) + Bu(t)$$
 (discrete time) - LTI state space equations -

How can we model event-driven dynamics?

Objectives of the course

Modelling, analysis and simulation of **Discrete Event Systems (DES)**

Main contents:

- modelling
- probability
- programming (Matlab)

Which types of models will be considered?

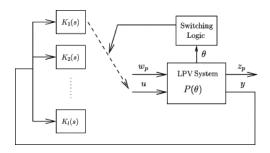
- Logical and timed models (automata)
- Markov chains

Main application: queueing theory

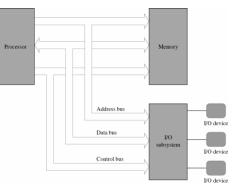
Examples of discrete event systems (1/3)

- a manufacturing plant with machines, workers, conveyor belts, buffers, etc.
- a bank with different types of customers and services (desks, ATMs, etc.)
- an *airport* with passengers in different states (check-in, security control, gate, boarding, etc.)
- a computer system with resources and processes needing access to resources
- a road system with cars, roads, crosses, traffic lights, etc.
- a fast-food restaurant with a staff and different types of customers

Examples of discrete event systems (2/3)


- a switching control system where it is possible to switch between different controllers
- an electronic component subject to deterioration and failures
- etc.

Examples of discrete event systems (3/3)


Summarizing, discrete event systems can be found in:

- control systems
- manufacturing systems
- computer systems
- information networks
- transportation networks
- communication networks
- etc.

About the course

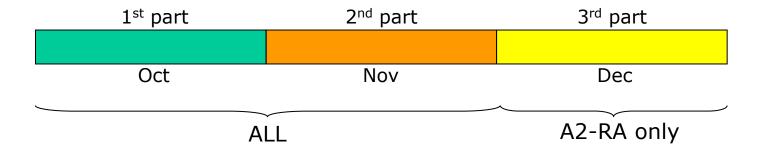
- Automata and Queueing Systems (6 CFU)
 - MSc Artificial Intelligence and Automation Engineering -Information Systems (A2-IS) – 1st year
 - MSc Engineering Management (EM) 1st year
- Discrete Event Systems (9 CFU)
 - MSc Artificial Intelligence and Automation Engineering -Robotics and Automation (A2-RA) - 1st year

Course schedule

Teaching period:

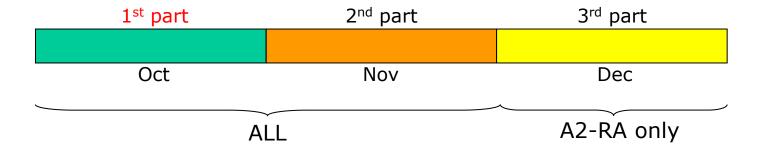
From October 1st, 2020 to January 14th, 2021

Timetable:


- Monday from 8:30AM to 12PM (room 145)
- Thursday from 12PM to 1:45PM (room 101)

Timing:

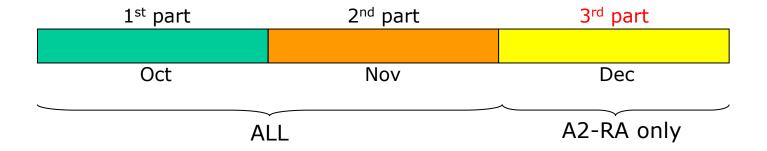
• \sim 60% lectures, \sim 40% tutorials


Timeline

- 1st part + 2nd part: Automata and Queueing Systems
- 1st part + 2nd part + 3rd part: Discrete Event Systems

Syllabus (1/3)

- Logical models of Discrete Event Systems (DES)
- Timed models of DES
- Stochastic timed models of DES


Syllabus (2/3)

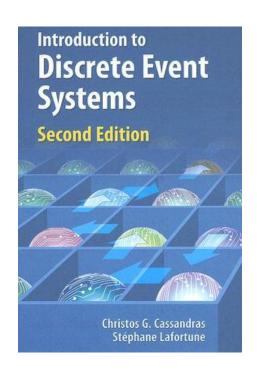
- Simulation of DES
- Continuous-time Markov chains
- Queueing theory

Syllabus (3/3)

- Discrete-time Markov chains
- Control applications of DES

Background

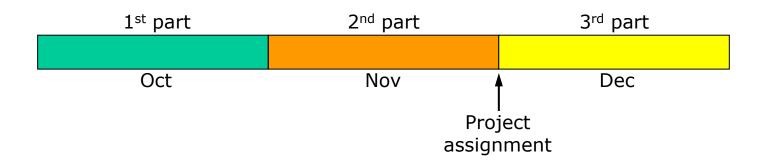
- Dynamical systems
 - Concept of state
 - Linear time-invariant (LTI) systems


$$x(t+1) = Ax(t) + Bu(t)$$

- Probability
 - o Basic concepts (independence, conditional probability, ecc.)
 - Random variables (univariate and multivariate)
- Statistics
 - Law of large numbers
 - o Random number generation

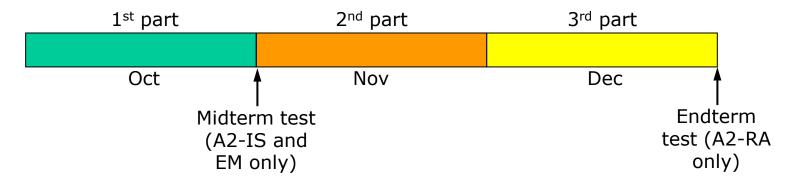
Teaching material

- Textbook:
 - C.G. Cassandras, S. Lafortune, "Introduction to discrete event systems", 2nd ed. Springer, 2008
- Available on the web page of the course:
 - lecture notes
 - past exams and exercises with solutions
- Available on Google Drive:
 - video recordings of the lectures


Final exam

- The final exam consists of both a written and an oral test
- The written test consists of exercises (typically two/three)
 - ✓ Past exams are available to see how a test looks like
- The oral test is a broad-spectrum discussion on the topics of the course, including theory and exercises
 - ✓ Enabled only if the grade of the written test is ≥18 out of 30.
 - ✓ To be given within the same session as the written test.
 - ✓ In case of failure, the student must repeat the written test
 - ✓ The language for the oral test can be either English or Italian.
- The final grade takes the performance in both tests into account

Midterm (endterm) test and project (1/2)


- The written test of the final exam can be replaced with:
 - ✓ Matlab project + midterm (endterm) test
- The Matlab project concerns the topics of the 2nd part
 - √ Group project (2÷4 members)
 - ✓ To be returned by mid of February at the latest

Midterm (endterm) test and project (2/2)

- Topics of the test:
 - ✓ A2-IS and EM: 1st part (midterm test)
 - ✓ A2-RA: 1st part + 3rd part (endterm test)

- Oral test enabled <u>only if</u> the average grade of endterm test and project is ≥18 and both grades ≥15 (out of 30)
- One may repeat the endterm test on the first exam date in the winter session of exams

Web page

https://www3.diism.unisi.it/~paoletti/teaching/sed/2021/index.html

← → C www3.diism.unisi.it/~paoletti/teaching/sed/2021/index.html

Master of Science in Engineering Università di Siena

Automata and Queueing Systems Discrete Event Systems

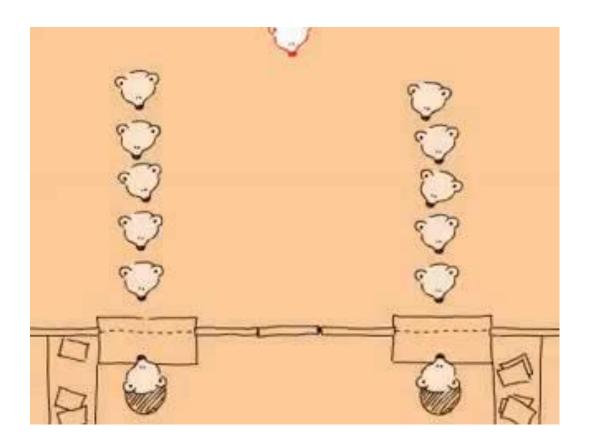
October 2020 - January 2021

- 1 News
- 2 About the instructor
 - 2.1 Instructor
- 2.2 Office hours
- 3 About the course
- 3.1 Training objectives
- 3.2 Required background
- 3.3 Organization
- 3.4 Syllabus
- 3.5 Didactic methods
- 3.6 Reference text
- 4 Exams
 - 4.1 Learning assessment procedures
 - 4.2 Tests
 - 4.3 Results
- 5 Teaching material
- 5.1 Lecture notes
- 5.2 Exercises with solutions
- 6 About the lectures
- 6.1 Timetable
- 6.2 How to attend online
- 6.3 Lecture schedule

Tips

- Registration for the course
 - Needed to share the video recordings and attend online
 - Link to the Google form available on the course web page.
- How to attend online
 - Lectures streamed live on the platform Cisco Webex
 - Link to the virtual meeting room available on the course web page
 - Only registered students admitted into the meeting
 - Access not guaranteed after the start of the lecture

Survivor's guide


- Attend ALL the lectures
 - Integral part of the learning process (notes, questions, etc.)
 - Enhances student's performance
- Start well
 - Study from the beginning
 - Don't start by the midterm (endterm) test: it's too late...
- Take advantage of office hours
 - Ask questions, clarify your doubts
 - Feedback on exercises

Questions?

Just for fun...

