## Exercise 1

Consider the stochastic timed automaton represented in the figure,



where  $\mathcal{E} = \{a, d_1, d_2\}, \mathcal{X} = \{1, 2, 3, 4, 5, 6, 7\}, p = 3/5$ , and the initial state is  $x_0 = 1$ . Using Matlab, simulate the model and estimate (if they exist) the limit probabilities

- $\lim_{k \to \infty} \mathbf{P}(X_k = x)$
- $\lim_{k \to \infty} \mathbf{P}(E_k = e)$

for all states  $x \in \mathcal{X}$  and events  $e \in \mathcal{E}$ , under the following different assumptions on the stochastic clock structure.

- 1. The lifetimes of events a,  $d_1$  and  $d_2$  have exponential distributions with expected values 20, 18.5 and 21 min, respectively.
- 2. The lifetimes of events a and  $d_2$  have uniform distributions over the intervals [15, 25] and [18, 24] min, respectively, while  $d_1$  has deterministic lifetimes, all equal to 18.5 min.

Moreover, in order to check the correctness of the implementation, compare the probabilities estimated in point 1 with the true values that can be computed analytically.