

Discrete Event Systems Automata and Queueing Systems 2019/20

About the instructor

Dr. Simone Paoletti

Office: room 229 (2nd floor, building San Niccolò)

Email: paoletti@dii.unisi.it

Web page: http://www3.diism.unisi.it/~paoletti/

Research interests:

- Robust control
- System identification
- Smart grids

Teaching period:

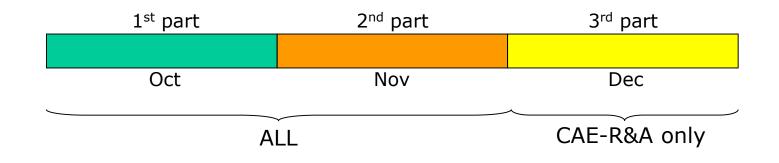
• From September 30th, 2019 to January 17th, 2020

Timetable:

- Tuesday from 9AM to 1PM (room F)
- Thursday from 2PM to 4PM (room F)

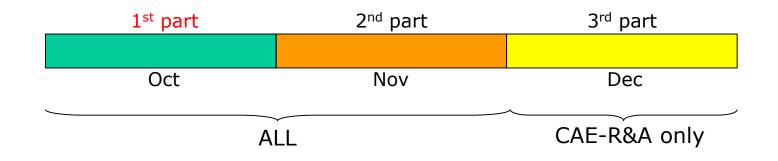
Timing:

• ~ 75% lectures and exercises, ~ 25% lab tutorials



Students

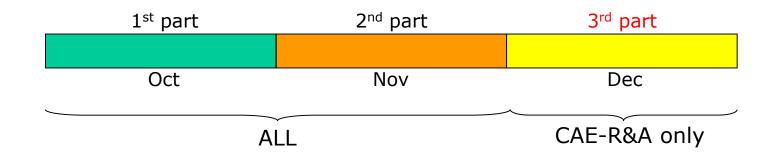
- Automata and Queueing Systems (6 CFU)
 - ✓ MSc Computer and Automation Engineering Curriculum Information Systems (CAE-IS) – 1st year
 - ✓ MSc Engineering Management (EM) 1st year
- Discrete Event Systems (9 CFU)
 - ✓ MSc Computer and Automation Engineering Curriculum Robotics and Automation (CAE-R&A) - 1st year


Timeline

- 1st part + 2nd part: Automata and Queueing Systems
- 1st part + 2nd part + 3rd part: Discrete Event Systems

Syllabus (1/3)

- Logical models of DES
- Timed models of DES
- Stochastic timed models of DES


Syllabus (2/3)

- Simulation of DES
- Continuous-time Markov chains
- Queueing theory

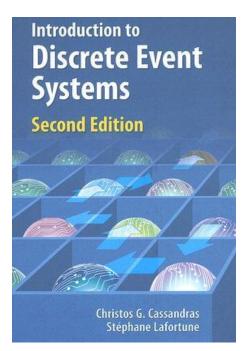
Syllabus (3/3)

- Discrete-time Markov chains
- Control applications of DES

Background and teaching material

Required background:

- Dynamical systems
- Probability

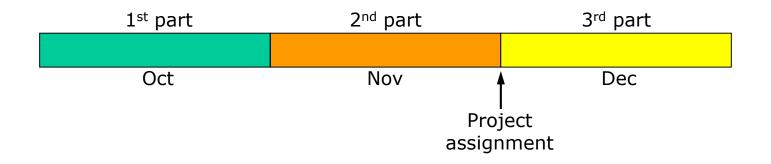

Textbook:

C.G. Cassandras, S. Lafortune,

"Introduction to discrete event systems", 2nd ed.

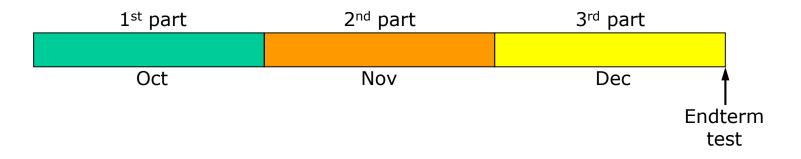
Springer, 2008

+ lecture notes available on-line


Final exam

- The final exam consists of both a written and an oral test
- The written test consists of exercises
 - ✓ Aid of Matlab is allowed (e.g. for matrix computations)
- The oral test is a broad-spectrum discussion on the topics of the course, including theory and exercises
 - ✓ Enabled <u>only if</u> the grade of the written test is \geq 18 out of 30
 - \checkmark To be given within the same session as the written test
 - \checkmark In case of failure, the student must repeat the written test
 - ✓ The language for the oral test can be either English or Italian
- The final grade is a weighted average of the grades of both tests

Endterm test and project (1/2)


- The written test of the final exam can be replaced with:
 - Matlab project + endterm test
- The Matlab project concerns the topics of the 2nd part
 - ✓ Group project (2÷4 members)
 - \checkmark To be returned by mid of February at the latest

Endterm test and project (2/2)

- Topics of the endterm test:
 - ✓ CAE-IS and EM: 1^{st} part
 - ✓ CAE-R&A: 1^{st} part + 3^{rd} part

- Oral test enabled <u>only if</u> the average grade of endterm test and project is ≥18 and both grades ≥15 (out of 30)
- One may repeat the endterm test on the first exam date in the winter session of exams

Web-page

General information, lecture notes, exercises, past exams, etc. are available on the course web page:

http://www3.diism.unisi.it/~paoletti/teaching/sed/1920/index.html

Master of Science in Engineering Università di Siena Automata and Queueing Systems Discrete Event Systems October 2019 - January 2020

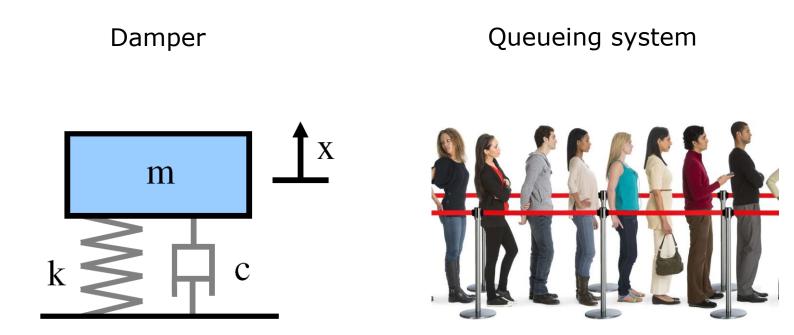
1 News
2 About the instructor
2.1 Instructor
2.2 Office hours
3 About the course
3.1 Training objectives
3.2 Required background
3.3 Organization
3.4 Syllabus
3.5 Didactic methods
3.6 Reference text
4 Exams
4.1 Learning assessment procedures
4.2 Tests
4.3 Results
5 Teaching material
5.1 Lecture notes
5.2 Exercises with solutions
6 About the lectures
6.1 Timetable
6.2 Lecture schedule

Survivor's guide

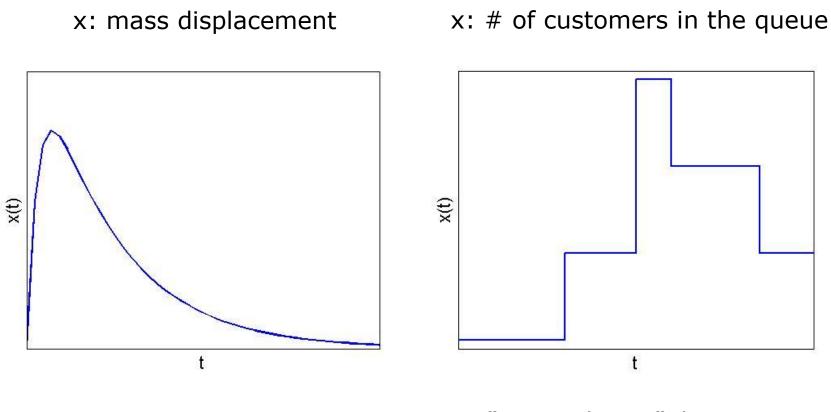
- Attend ALL the lectures
 - ✓ Integral part of the learning process (notes, questions, etc.)
 - ✓ Enhances student's performance
- Start well
 - \checkmark Study from the beginning
 - ✓ Don't expect the endterm test: it's too late...
- Take advantage of office hours
 - ✓ Ask questions, clarify your doubts
 - ✓ Feedback on exercises

Find the differences...

Damper


Queueing system

Find the differences...



x: mass displacement

x: # of customers in the queue

Find the differences...

"time-driven" dynamics

"event-driven" dynamics

Time-driven vs Event-driven

• **Time-driven** dynamics are typically described by differential equations, e.g.

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ x(t_0) = x_0 \end{cases}$$

- LTI state space equations -

• How can we model **event-driven** dynamics?

Objectives of the course

Modelling, simulation, analysis of **Discrete Event Systems (DES)**

Main contents:

- modelling
- probability
- programming (Matlab)

Which types of models will be considered?

- Logical and timed models (automata)
- Markov chains

Main application: queueing theory

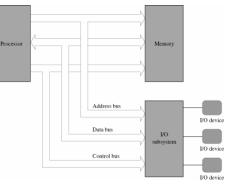
Examples of discrete event systems (1/3)

- a *manufacturing plant* with machines, workers, conveyor belts, buffers, etc.
- a *bank* with different types of customers and services (desks, ATMs, etc.)
- an *airport* with passengers in different states (check-in, security control, gate, boarding, etc.)
- a *computer system* with resources and processes needing access to resources
- a *road system* with cars, roads, crosses, traffic lights, etc.
- a *fast-food restaurant* with a staff and different types of customers

Examples of discrete event systems (2/3)

- a *switching control system* where it is possible to switch between different controllers
- an *electronic component* subject to deterioration and failures
- etc.

Examples of discrete event systems (3/3)


Summarizing, discrete event systems can be found in:

- control systems
- manufacturing systems
- computer systems
- information networks
- transportation networks
- communication networks
- etc.

