Exercise 1

Consider the queueing network in the figure.

Arriving parts require preprocessing in M_1 with probability p = 1/3, otherwise they are routed directly to M_2 . When a part arrives and the corresponding machine is unavailable, the part is rejected. There is a one-place buffer between M_1 and M_2 . When M_1 terminates preprocessing of a part and M_2 is busy, the part is moved to the buffer, if the buffer is empty. Otherwise, the part is kept by M_1 , that therefore remains unavailable for a new job until M_2 terminates the ongoing job. Parts arrive according to a Poisson process with expected interarrival time equal to 5 min, whereas service times in M_1 and M_2 follow exponential distributions with rates $\mu_1 = 0.5$ services/min and $\mu_2 = 0.8$ services/min, respectively.

- 1. Assume that the system is empty at time t = 0. Compute the probability that the system is full at time t = 1 h.
- 2. Compute the expected number of parts in the system at steady state.
- 3. Compute the expected time spent by a part in M_1 at steady state.
- 4. Verify the condition $\lambda_{eff} = \mu_{eff}$ for the whole system at steady state.
- 5. Compute the utilization of M_1 and M_2 at steady state.
- 6. Compute the blocking probability of the system at steady state for those parts requiring preprocessing in M_1 .