Test of Discrete Event Systems - 14.01.2015

Exercise 1

Consider the queueing network in the figure, where each node is represented by a M/M/1 queueing system, $\lambda_1 = 45$ arrivals/hour, $\lambda_2 = 3$ arrivals/hour, $p_1 = 0.2$, $p_2 = 0.4$ and q = 0.75. The service rate μ_1 of server S_1 is 81 services/hour.

1. Design the service rates μ_2 and μ_3 of servers S_2 and S_3 , respectively, such that at steady state the average queue length is the same in each node of the network.

Exercise 2

Consider the queueing network in the figure.

Arriving parts may require preprocessing in M_1 with probability p = 1/3, otherwise they go directly to M_2 . When a part arrives and the corresponding machine is not available, the part is rejected. There is a unitary buffer between M_1 and M_2 . When M_1 terminates preprocessing of a part and M_2 is busy, the part is moved to the buffer, if it is empty. Otherwise, the part is kept by M_1 , that therefore remains unavailable for a new job until M_2 terminates its job. Parts arrive according to a Poisson process with expected interarrival time equal to 5 min, whereas service times in M_1 and M_2 follow exponential distributions with rates $\mu_1 = 0.5$ services/min and $\mu_2 = 0.8$ services/min, respectively.

- 1. Compute the expected number of parts in the system at steady state.
- 2. Compute the expected time spent by a part in M_1 at steady state.
- 3. Verify the condition $\lambda_{eff} = \mu_{eff}$ for the whole system at steady state.
- 4. Compute the utilization of M_1 and M_2 at steady state.
- 5. Compute the blocking probability of the system at steady state for those parts requiring preprocessing in M_1 .

1. Consider the first node of the network at steady state:

Consider the second and third node of the network at steady state:

$$\lambda_{2} eff \longrightarrow \int S_{2} \qquad \mu_{2} eff \qquad \lambda_{3} eff \qquad \lambda_{3} eff \qquad \int S_{3} \qquad \mu_{3} eff \qquad \lambda_{3} eff \qquad \int S_{3} \qquad \mu_{3} eff \qquad \lambda_{3} eff \qquad \int S_{3} \qquad \mu_{3} eff \qquad \lambda_{3} eff \qquad \int S_{3} \qquad \mu_{3} eff \qquad \lambda_{3} eff \qquad \int S_{3} \qquad \mu_{3} eff \qquad \lambda_{3} eff \qquad \int S_{3} \qquad \mu_{3} eff \qquad \lambda_{3} eff \qquad \int S_{3} \qquad \mu_{3} eff \qquad \lambda_{3} eff \qquad \mu_{3} ef$$

For the <u>stochastic timed automaton</u> model of the system, see Exercise 1 in 'Exercises on stochastic timed automata with Poisson clock structure

Equivalent continuous-time homogeneous Markov chain (possible because the stachastic clock structure is exponential):

Section 5.1 Of the web site

The Markov chain is irreducible and finite; the stationary probabilities can be computed by solving:

$$\begin{cases} TIQ=0\\ ZTIA=1 \end{cases}$$

Using Matlab:

 $\begin{aligned} \overline{\Pi} \simeq \begin{bmatrix} 0.6364 & 0.0977 & 0.1741 & 0.0193 & 0.0115 & 0.0006 & 0.0004 \end{bmatrix} \\ \overline{\Pi}_0 & \overline{\Pi}_1 & \overline{\Pi}_2 & \overline{\Pi}_3 & \overline{\Pi}_4 & \overline{\Pi}_5 & \overline{\Pi}_6 \end{aligned}$

2

1. $E[X] = 0.T_0 + 1.(T_{11}+T_{12}) + 2.(T_{13}+T_{14}) + 3.(T_{15}+T_{16}) \approx 0.3363$ Number of parts in the system at skeady state $X \in \{0, 1, 2, 3\}$

2. Consider a closed curve surrounding Mn only:

3