Test of Discrete Event Systems - 12.12.2013

Exercise 1

Consider the stochastic timed automaton (£, X', T", p, xg, F) in the figure, with £ = {a, b}, p(0|0,a) =
1/2, p(2[0,a) = 1/3, p(1|1,b) = 1/4, F, and F} exponential distributions with rates A\, = 1 and
Ap = 2, respectively, and P(Xj11 = 0| Xy = 3) = 8/9.

b

1. Define a continuous-time homogeneous Markov chain with the same stochastic behavior as

the given stochastic timed automaton

Exercise 2

An enzyme can be in one of three states: 0, when it is inhibited (it cannot act upon the substrate);
1, when it is not inhibited but does not act upon the substrate; 2, when it acts upon the substrate.
Denote by V(0), V(1) and V(2) the time spent by the enzyme in each of the three states. After time
V(0) spent in state 0, the enzyme enters state 1. After time V(1) spent in state 1, the enzyme starts
acting upon the substrate. After time V(2) spent in state 2, the enzyme can be with probability p

in state 0 (substrate inhibition), otherwise in state 1.

1. Discuss the conditions under which the enzyme dynamics can be modeled by a continuous-

time homogeneous Markov chain, and define the corresponding Markov chain.

Exercise 3

A low-cost hotel has a small fitness centre with only two identical equipments. An arriving guest
uses one of the equipments, if available, otherwise he/she comes back to his/her room. The fitness
centre opens at 10 AM and closes at 10 PM. The guest arrival process can be modeled by a Poisson
process with average frequency 4 guests/hour, whereas the use of an equipment has an exponentially

distributed duration with expected value 30 minutes for each guest.

1. Compute the probability that at 5 PM both equipments are available.
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