Test of Discrete Event Systems - 28.11.2013

Exercise 1

A mobile robot randomly moves along a circular path divided into three sectors. At every sampling
instant the robot decides with probability p to move clockwise, and with probability 1 — p to move

counterclockwise. During a sampling interval the robot accomplishes the length of a sector.
1. Define a discrete time Markov chain for the random walk of the robot.
2. Study the stationary probability that the robot is localized in each sector for p € [0, 1].
Let p=1/3.

3. Choose an initial sector, and compute the average number of sampling intervals needed by

the robot to return to it.
4. Choose an initial sector, and compute the probability that the robot returns to it in at most
five sampling intervals.
Exercise 2

A virus can exist in NV different strains, numbered from 1 to N. At each generation the virus mutates

with probability « € (0,1) to another strain which is chosen at random with equal probability.
1. Compute the average number of generations to find the virus again in the same strain.
Let N =4 and a = 2/3.

2. Compute the probability that the strain in the sixth generation of the virus is the same as
that in the first.

3. Assuming that the virus is initially either in strain 1 or 4, compute the probability that the

virus never exists in strains 2 and 3 during the first six generations.

Exercise 3

Consider the discrete-time homogeneous Markov chain whose state transition diagram is represented

in the figure, and with transition probabilities po1 = 1/3, p12 = 1/8, p13 = 1/4 and py3 = 4/5.

1. Compute the average recurrence time for each recurrent state.

2. Compute the stationary probabilities of all states, assuming the probability vector of the
initial state 7(0)=[10000 |.
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