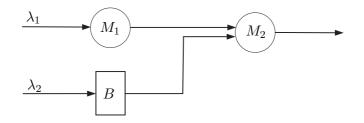

Student:

Exercise 1

Consider the stochastic state automaton in the figure, where a and b are events whose lifetimes follow generic probability distributions, and the initial state is $x_0 = 0$.

1. Given $P(X_2 = 1) = 5/8$ and $P(E_2 = a) = 1/3$, compute the probability p(1|0, a).

Exercise 2


A die is tossed repeatedly. The die is unfair: the probability to obtain any even number is 1/4, whereas the probability to obtain any odd number is 1/12. Suppose to sum the outcomes of the tosses.

- 1. Assuming to know that the outcome of the first toss is 3, compute the probability that the sum of the first five outcomes is divisible by 4.
- 2. Compute the steady-state probability that the sum of the outcomes is divisible by 4.
- 3. Compute the probability that the sum of the outcomes is never divisible by 4 through the first five tosses.

Suggestion. Use a Markovian model with four states.

Exercise 3

Consider the production system in the figure, composed by two machines M_1 and M_2 , and a unitary buffer B. Machine M_2 produces finished products by assembling parts of two types. Parts of type 1 and type 2 arrive as generated by Poisson processes with rates $\lambda_1 = 0.5$ and $\lambda_2 =$ 0.8 parts/minute, respectively. Before the assembly, the parts of type 1 are pre-processed in M_1 . This task has a random duration which follows an exponential distribution with expected value 4 minutes. Assembly in M_2 has also exponentially distributed random durations with expected value 2.5 minutes. Machine M_2 starts the assembly when parts of both types are available, i.e. when M_1 has terminated pre-processing of a part of type 1 and a part of type 2 is available in B. When M_1 terminates pre-processing of a part of type 1, M_1 holds the part (blocking state) if either M_2 is busy or M_2 is idle but no part of type 2 is available in B. Parts of type 1 arriving when M_1 is busy, are rejected. The same occurs to parts of type 2 arriving when B is full.

- 1. Provide an appropriate model of the system.
- 2. Verify the condition $\lambda_{eff} = \mu_{eff}$ for the system at steady-state.
- 3. Compute the average time which M_1 spends in the blocking state at steady state.
- 4. Compute the steady state probability that an arriving part is rejected.
- 5. Assume that M_1 is free, B is full, and M_2 is working. Compute the probability that M_2 starts assembling a new product as soon as it terminates the current task.