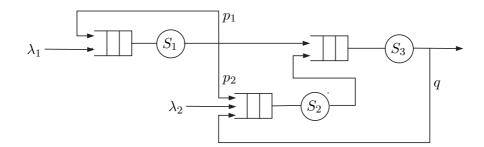
Esame di Sistemi ad Eventi Discreti - 26.11.2012


Esercizio 1

L'attività di una piccola società di consulenza è organizzata per progetti. Viste le sue ridotte dimensioni, la società può portare avanti un solo progetto alla volta, ma per sua fortuna i clienti non mancano, e quindi può cominciare a lavorare su un nuovo progetto non appena ne ha terminato un altro. Ciascun progetto è organizzato in quattro fasi F_1 , F_2 , F_3 e F_4 . La fase F_1 precede la fase F_2 . La fase F_3 viene svolta in parallelo alle fasi F_1 e F_2 . La fase F_4 può cominciare solo quando le tre fasi precedenti sono concluse. Le durate delle quattro fasi seguono distribuzioni esponenziali con valori attesi 5 giorni, 4 giorni, 7 giorni e 8 giorni, rispettivamente.

- 1. Modellizzare l'attività della società di consulenza sopra descritta mediante un automa a stati stocastico $(\mathcal{E}, \mathcal{X}, \Gamma, f, x_0, F)$, assumendo come stato l'iniziale l'inizio di un progetto.
- 2. Noto che le fasi F_1 e F_3 sono in simultaneo svolgimento, calcolare la probabilità che la fase F_3 termini prima della fase F_2 .
- 3. Calcolare la durata media di un progetto.
- 4. A regime, determinare lo stato di avanzamento di un progetto che rappresenta il collo di bottiglia per l'attività della società.

Esercizio 2

Si consideri la rete di code di servizio rappresentata in figura, in cui ogni nodo è costituito da una coda M/M/1, $\lambda_1 = 45$ arrivi/ora, $\lambda_2 = 3$ arrivi/ora, $p_1 = 0.2$, $p_2 = 0.4$ e q = 0.75. La frequenza media di servizio del servente S_1 in condizioni di massimo utilizzo è 81 servizi/ora.

1. Dimensionare i tempi medi di servizio dei serventi S_2 e S_3 in modo tale che, a regime, la lunghezza media delle code in ciascuno dei nodi della rete sia uguale.

Esercizio 3

Un generatore di numeri casuali che governa l'apertura di una cassaforte genera i numeri 0, 1 e 2 secondo le seguenti regole:

- i) se l'ultimo numero generato è stato 0, il successivo numero generato è ancora 0 con probabilità 1/2 o 1 con probabilità 1/2;
- ii) se l'ultimo numero generato è stato 1, il successivo numero generato è ancora 1 con probabilità 2/5 o 2 con probabilità 3/5;

iii) se l'ultimo numero generato è stato 2, il successivo numero generato è 0 con probabilità 7/10 o 1 con probabilità 3/10.

Inoltre, il primo numero generato è 0 con probabilità 3/10, 1 con probabilità 3/10, e 2 con probabilità 2/5. La cassaforte si apre quando è stata generata la sequenza 120.

- 1. Costruire una catena di Markov a tempo discreto per il meccanismo di apertura della cassaforte sopra descritto.
- 2. Calcolare la probabilità che la cassaforte si apra al quarto numero generato.
- 3. Illustrare un procedimento per determinare il numero medio di numeri che è necessario generare per aprire la cassaforte.