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2ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tbPurpose Solve initial value problems for ordinary differential equations (ODEs)

Syntax [t,Y] = solver(odefun,tspan,y0)
[t,Y] = solver(odefun,tspan,y0,options)
[t,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or 
ode23tb.

Arguments The following table describes the input arguments to the solvers.

odefun A function that evaluates the right side of the differential 
equations. All solvers solve systems of equations in the form 

 or problems that involve a mass matrix, 
. The ode23s solver can solve only equations 

with constant mass matrices. ode15s and ode23t can solve 
problems with a mass matrix that is singular, i.e., 
differential-algebraic equations (DAEs). 

tspan A vector specifying the interval of integration, [t0,tf]. The solver 
imposes the initial conditions at tspan(1), and integrates from 
tspan(1) to tspan(end). To obtain solutions at specific times (all 
increasing or all decreasing), use tspan = [t0,t1,...,tf].
For tspan vectors with two elements [t0 tf], the solver returns 
the solution evaluated at every integration step. For tspan vectors 
with more than two elements, the solver returns solutions 
evaluated at the given time points. The time values must be in 
order, either increasing or decreasing.

y ′ f t y,( )=
M t y,( )y ′ f t y,( )=
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The following table lists the output arguments for the solvers.

Description [t,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates the 
system of differential equations  from time t0 to tf with initial 
conditions y0. Function f = odefun(t,y), for a scalar t and a column vector y, 
must return a column vector f corresponding to . Each row in the solution 
array Y corresponds to a time returned in column vector T. To obtain solutions 
at the specific times t0, t1,...,tf (all increasing or all decreasing), use 
tspan = [t0,t1,...,tf]. 

Parameterizing Functions Called by Function Functions, in the online 
MATLAB documentation, explains how to provide addition parameters to the 
function odefun, if necessary.

Specifying tspan with more than two elements does not affect the 
internal time steps that the solver uses to traverse the interval 
from tspan(1) to tspan(end). All solvers in the ODE suite obtain 
output values by means of continuous extensions of the basic 
formulas. Although a solver does not necessarily step precisely to a 
time point specified in tspan, the solutions produced at the 
specified time points are of the same order of accuracy as the 
solutions computed at the internal time points. 

Specifying tspan with more than two elements has little effect on 
the efficiency of computation, but for large systems, affects 
memory management.

y0 A vector of initial conditions.

options  Structure of optional parameters that change the default 
integration properties.  This is the fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

 You can create options using the odeset function. See odeset for 
details.

t Column vector of time points 

Y Solution array. Each row in y corresponds to the solution at a time 
returned in the corresponding row of t.

y ′ f t y,( )=

f t y,( )
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[t, Y] = solver(odefun,tspan,y0,options) solves as above with default 
integration parameters replaced by property values specified in options, an 
argument created with the odeset function. Commonly used properties include 
a scalar relative error tolerance RelTol (1e-3 by default) and a vector of 
absolute error tolerances AbsTol (all components are 1e-6 by default).  See 
odeset for details.

[t,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves as above while 
also finding where functions of , called event functions, are zero.   For each 
event function, you specify whether the integration is to terminate at a zero 
and whether the direction of the zero crossing matters. Do this by setting the 
'Events' property to a function, e.g., events or @events, and creating a 
function [value,isterminal,direction] = events(t,y). For the ith event 
function in events: 

• value(i) is the value of the function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this  event 
function and 0 otherwise. 

• direction(i) = 0 if all zeros are to be computed (the default), +1 if only  the 
zeros where the event function increases, and -1 if only the zeros where the 
event function decreases. 

Corresponding entries in TE, YE, and IE return, respectively, the time at which 
an event occurs, the solution at the time of the event, and the index i of the 
event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you can use 
with deval to evaluate the solution at any point on the interval [t0,tf]. You 
must pass odefun as a function handle. The structure sol always includes 
these fields:

sol.x Steps chosen by the solver. 

sol.y Each column sol.y(:,i) contains the solution at sol.x(i).

sol.solver Solver name.

t y( , )
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If you specify the Events option and events are detected, sol also includes 
these fields:

If you specify an output function as the value of the OutputFcn property, the 
solver calls it with the computed solution after each time step.  Four output 
functions are provided: odeplot, odephas2, odephas3, odeprint. When you call 
the solver with no output arguments, it calls the default odeplot to plot the 
solution as it is computed. odephas2 and odephas3 produce two- and 
three-dimnesional phase plane plots, respectively. odeprint displays the 
solution components on the screen. By default, the ODE solver passes all 
components of the solution to the output function. You can pass only specific 
components by providing a vector of indices as the value of the OutputSel 
property. For example, if you call the solver with no output arguments and set 
the value of OutputSel to [1,3], the solver plots solution components 1 and 3 
as they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian matrix 
 is critical to reliability and efficiency. Use odeset to set Jacobian to 

@FJAC if FJAC(T,Y) returns the Jacobian  or to the matrix  if the 
Jacobian is constant. If the Jacobian property is not set (the default),  is 
approximated by finite differences. Set the Vectorized property 'on' if the ODE 
function is coded so that odefun(T,[Y1,Y2 ...]) returns 
[odefun(T,Y1),odefun(T,Y2) ...]. If  is a sparse matrix, set the JPattern 
property to the sparsity pattern of , i.e., a sparse matrix S with S(i,j) = 
1 if the ith component of  depends on the jth component of , and 0 
otherwise.

The solvers of the ODE suite can solve problems of the form 
, with time- and state-dependent mass matrix . (The 

ode23s solver can solve only equations with constant mass matrices.) If a 
problem has a mass matrix, create a function M = MASS(t,y) that returns the 

sol.xe Points at which events, if any, occurred. sol.xe(end) 
contains the exact point of a terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function specified in 
the Events option. The values indicate which event the solver 
detected.

∂f ∂y⁄
∂f ∂y⁄ ∂f ∂y⁄

∂f ∂y⁄

∂f ∂y⁄
∂f ∂y⁄

f t y,( ) y

M t y,( )y ′ f t y,( )= M
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value of the mass matrix, and use odeset to set the Mass property to @MASS. If 
the mass matrix is constant, the matrix should be used as the value of the Mass 
property. Problems with state-dependent mass matrices are more difficult: 

• If the mass matrix does not depend on the state variable  and the function 
MASS is to be called with one input argument, t, set the MStateDependence 
property to 'none'. 

• If the mass matrix depends weakly on , set MStateDependence to 'weak' (the 
default) and otherwise, to 'strong'. In either case, the function MASS is called 
with the two arguments (t,y). 

If there are many differential equations, it is important to exploit sparsity: 

• Return a sparse . 

• Supply the sparsity pattern of  using the JPattern property or a 
sparse  using the Jacobian property. 

• For strongly state-dependent , set MvPattern to a sparse matrix S 
with S(i,j) = 1 if for any k, the (i,k) component of  depends on 
component j of , and 0 otherwise. 

If the mass matrix  is singular, then  is a differential 
algebraic equation. DAEs have solutions only when  is consistent, that is, if 
there is a vector  such that . The ode15s and 
ode23t solvers can solve DAEs of index 1 provided that y0 is sufficiently close 
to being consistent. If there is a mass matrix, you can use odeset to set the 
MassSingular property to 'yes', 'no', or 'maybe'. The default value of 
'maybe' causes the solver to test whether the problem is a DAE. You can 
provide yp0 as the value of the InitialSlope property. The default is the zero 
vector. If a problem is a DAE, and y0 and yp0 are not consistent, the solver 
treats them as guesses, attempts to compute consistent values that are close to 
the guesses, and continues to solve the problem. When solving DAEs, it is very 
advantageous to formulate the problem so that  is a diagonal matrix (a 
semi-explicit DAE). 

y

y

M t y,( )
∂f ∂y⁄

∂f ∂y⁄
M t y,( )

M t y,( )
y

M M t y,( )y ′ f t y,( )=
y0

yp0 M t0 y0,( )yp0 f t0 y0,( )=

M
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The algorithms used in the ODE solvers vary according to order of accuracy [6] 
and the type of systems (stiff or nonstiff) they are designed to solve. See 
“Algorithms” on page 2-1556 for more details.

Options Different solvers accept different parameters in the options list. For more 
information, see odeset and “Changing ODE Integration Properties” in the 
MATLAB documentation.

Solver Problem 
Type

Order of 
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first solver you 
try.

ode23 Nonstiff Low For problems with crude error tolerances or for 
solving moderately stiff problems.

ode113 Nonstiff Low to high For problems with stringent error tolerances or for 
solving computationally intensive problems.

ode15s Stiff Low to 
medium

If ode45 is slow because the problem is stiff.

ode23s Stiff Low If using crude error tolerances to solve stiff systems 
and the mass matrix is constant.

ode23t Moderately  
Stiff

Low For moderately stiff problems if you need a solution 
without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff systems.

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol, 
NormControl

√ √ √ √ √ √ √

OutputFcn, 
OutputSel,  
Refine, Stats

√ √ √ √ √ √ √
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Examples Example 1. An example of a nonstiff system is the system of equations 
describing the motion of a rigid body without external forces.

 

To simulate this system, create a function rigid containing the equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset command and 
solve on a time interval [0 12] with an initial condition vector [0 1 1] at time 
0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[t,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Events √ √ √ √ √ √ √

MaxStep, 
InitialStep

√ √ √ √ √ √ √

Jacobian, 
JPattern, 
Vectorized

— — — √ √ √ √

Mass
MStateDependence 
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

y ′1 y2 y3=

y ′2 y1 y3–=

y ′3 0.51 y1 y2–=

y1 0( ) 0=
y2 0( ) 1=

y3 0( ) 1=
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Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

Example 2. An example of a stiff system is provided by the van der Pol 
equations in relaxation oscillation. The limit cycle has portions where the 
solution components change slowly and the problem is quite stiff, alternating 
with regions of very sharp change where it is not stiff.

To simulate this system, create a function vdp1000 containing the equations

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);
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For this problem, we will use the default relative and absolute tolerances (1e-3 
and 1e-6, respectively) and solve on a time interval of [0 3000] with initial 
condition vector [2 0] at time 0.

[t,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the solution

plot(T,Y(:,1),'-o')

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince 
pair. It is a one-step solver – in computing y(tn), it needs only the solution at 
the immediately preceding time point, y(tn-1). In general, ode45 is the best 
function to apply as a “first try” for most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki 
and Shampine. It may be more efficient than ode45 at crude tolerances and in 
the presence of moderate stiffness. Like ode45, ode23 is a one-step solver. [2] 

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be 
more efficient than ode45 at stringent tolerances and when the ODE file 
function is particularly expensive to evaluate. ode113 is a multistep solver – it 
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normally needs the solutions at several preceding time points to compute the 
current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they appear to 
be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation 
formulas (NDFs). Optionally, it uses the backward differentiation formulas 
(BDFs, also known as Gear’s method) that are usually less efficient. Like 
ode113, ode15s is a multistep solver. Try ode15s when ode45 fails, or is very 
inefficient, and you suspect that the problem is stiff, or when solving a 
differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because it is a 
one-step solver, it may be more efficient than ode15s at crude tolerances. It can 
solve some kinds of stiff problems for which ode15s is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free” interpolant. 
Use this solver if the problem is only moderately stiff and you need a solution 
without numerical damping. ode23t can solve DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula 
with a first stage that is a trapezoidal rule step and a second stage that is a 
backward differentiation formula of order two. By construction, the same 
iteration matrix is used in evaluating both stages. Like ode23s, this solver may 
be more efficient than ode15s at crude tolerances. [8], [1]

See Also deval, ode15i, odeget, odeset, @ (function handle)
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