
ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1548

2ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tbPurpose Solve initial value problems for ordinary differential equations (ODEs)

Syntax [t,Y] = solver(odefun,tspan,y0)
[t,Y] = solver(odefun,tspan,y0,options)
[t,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or
ode23tb.

Arguments The following table describes the input arguments to the solvers.

odefun A function that evaluates the right side of the differential
equations. All solvers solve systems of equations in the form

 or problems that involve a mass matrix,
. The ode23s solver can solve only equations

with constant mass matrices. ode15s and ode23t can solve
problems with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration, [t0,tf]. The solver
imposes the initial conditions at tspan(1), and integrates from
tspan(1) to tspan(end). To obtain solutions at specific times (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].
For tspan vectors with two elements [t0 tf], the solver returns
the solution evaluated at every integration step. For tspan vectors
with more than two elements, the solver returns solutions
evaluated at the given time points. The time values must be in
order, either increasing or decreasing.

y ′ f t y,()=
M t y,()y ′ f t y,()=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1549

The following table lists the output arguments for the solvers.

Description [t,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates the
system of differential equations from time t0 to tf with initial
conditions y0. Function f = odefun(t,y), for a scalar t and a column vector y,
must return a column vector f corresponding to . Each row in the solution
array Y corresponds to a time returned in column vector T. To obtain solutions
at the specific times t0, t1,...,tf (all increasing or all decreasing), use
tspan = [t0,t1,...,tf].

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function odefun, if necessary.

Specifying tspan with more than two elements does not affect the
internal time steps that the solver uses to traverse the interval
from tspan(1) to tspan(end). All solvers in the ODE suite obtain
output values by means of continuous extensions of the basic
formulas. Although a solver does not necessarily step precisely to a
time point specified in tspan, the solutions produced at the
specified time points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two elements has little effect on
the efficiency of computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change the default
integration properties. This is the fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

 You can create options using the odeset function. See odeset for
details.

t Column vector of time points

Y Solution array. Each row in y corresponds to the solution at a time
returned in the corresponding row of t.

y ′ f t y,()=

f t y,()

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1550

[t, Y] = solver(odefun,tspan,y0,options) solves as above with default
integration parameters replaced by property values specified in options, an
argument created with the odeset function. Commonly used properties include
a scalar relative error tolerance RelTol (1e-3 by default) and a vector of
absolute error tolerances AbsTol (all components are 1e-6 by default). See
odeset for details.

[t,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves as above while
also finding where functions of , called event functions, are zero. For each
event function, you specify whether the integration is to terminate at a zero
and whether the direction of the zero crossing matters. Do this by setting the
'Events' property to a function, e.g., events or @events, and creating a
function [value,isterminal,direction] = events(t,y). For the ith event
function in events:

• value(i) is the value of the function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this event
function and 0 otherwise.

• direction(i) = 0 if all zeros are to be computed (the default), +1 if only the
zeros where the event function increases, and -1 if only the zeros where the
event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time at which
an event occurs, the solution at the time of the event, and the index i of the
event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you can use
with deval to evaluate the solution at any point on the interval [t0,tf]. You
must pass odefun as a function handle. The structure sol always includes
these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution at sol.x(i).

sol.solver Solver name.

t y(,)

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1551

If you specify the Events option and events are detected, sol also includes
these fields:

If you specify an output function as the value of the OutputFcn property, the
solver calls it with the computed solution after each time step. Four output
functions are provided: odeplot, odephas2, odephas3, odeprint. When you call
the solver with no output arguments, it calls the default odeplot to plot the
solution as it is computed. odephas2 and odephas3 produce two- and
three-dimnesional phase plane plots, respectively. odeprint displays the
solution components on the screen. By default, the ODE solver passes all
components of the solution to the output function. You can pass only specific
components by providing a vector of indices as the value of the OutputSel
property. For example, if you call the solver with no output arguments and set
the value of OutputSel to [1,3], the solver plots solution components 1 and 3
as they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian matrix
 is critical to reliability and efficiency. Use odeset to set Jacobian to

@FJAC if FJAC(T,Y) returns the Jacobian or to the matrix if the
Jacobian is constant. If the Jacobian property is not set (the default), is
approximated by finite differences. Set the Vectorized property 'on' if the ODE
function is coded so that odefun(T,[Y1,Y2 ...]) returns
[odefun(T,Y1),odefun(T,Y2) ...]. If is a sparse matrix, set the JPattern
property to the sparsity pattern of , i.e., a sparse matrix S with S(i,j) =
1 if the ith component of depends on the jth component of , and 0
otherwise.

The solvers of the ODE suite can solve problems of the form
, with time- and state-dependent mass matrix . (The

ode23s solver can solve only equations with constant mass matrices.) If a
problem has a mass matrix, create a function M = MASS(t,y) that returns the

sol.xe Points at which events, if any, occurred. sol.xe(end)
contains the exact point of a terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function specified in
the Events option. The values indicate which event the solver
detected.

∂f ∂y⁄
∂f ∂y⁄ ∂f ∂y⁄

∂f ∂y⁄

∂f ∂y⁄
∂f ∂y⁄

f t y,() y

M t y,()y ′ f t y,()= M

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1552

value of the mass matrix, and use odeset to set the Mass property to @MASS. If
the mass matrix is constant, the matrix should be used as the value of the Mass
property. Problems with state-dependent mass matrices are more difficult:

• If the mass matrix does not depend on the state variable and the function
MASS is to be called with one input argument, t, set the MStateDependence
property to 'none'.

• If the mass matrix depends weakly on , set MStateDependence to 'weak' (the
default) and otherwise, to 'strong'. In either case, the function MASS is called
with the two arguments (t,y).

If there are many differential equations, it is important to exploit sparsity:

• Return a sparse .

• Supply the sparsity pattern of using the JPattern property or a
sparse using the Jacobian property.

• For strongly state-dependent , set MvPattern to a sparse matrix S
with S(i,j) = 1 if for any k, the (i,k) component of depends on
component j of , and 0 otherwise.

If the mass matrix is singular, then is a differential
algebraic equation. DAEs have solutions only when is consistent, that is, if
there is a vector such that . The ode15s and
ode23t solvers can solve DAEs of index 1 provided that y0 is sufficiently close
to being consistent. If there is a mass matrix, you can use odeset to set the
MassSingular property to 'yes', 'no', or 'maybe'. The default value of
'maybe' causes the solver to test whether the problem is a DAE. You can
provide yp0 as the value of the InitialSlope property. The default is the zero
vector. If a problem is a DAE, and y0 and yp0 are not consistent, the solver
treats them as guesses, attempts to compute consistent values that are close to
the guesses, and continues to solve the problem. When solving DAEs, it is very
advantageous to formulate the problem so that is a diagonal matrix (a
semi-explicit DAE).

y

y

M t y,()
∂f ∂y⁄

∂f ∂y⁄
M t y,()

M t y,()
y

M M t y,()y ′ f t y,()=
y0

yp0 M t0 y0,()yp0 f t0 y0,()=

M

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1553

The algorithms used in the ODE solvers vary according to order of accuracy [6]
and the type of systems (stiff or nonstiff) they are designed to solve. See
“Algorithms” on page 2-1556 for more details.

Options Different solvers accept different parameters in the options list. For more
information, see odeset and “Changing ODE Integration Properties” in the
MATLAB documentation.

Solver Problem
Type

Order of
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first solver you
try.

ode23 Nonstiff Low For problems with crude error tolerances or for
solving moderately stiff problems.

ode113 Nonstiff Low to high For problems with stringent error tolerances or for
solving computationally intensive problems.

ode15s Stiff Low to
medium

If ode45 is slow because the problem is stiff.

ode23s Stiff Low If using crude error tolerances to solve stiff systems
and the mass matrix is constant.

ode23t Moderately
Stiff

Low For moderately stiff problems if you need a solution
without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff systems.

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1554

Examples Example 1. An example of a nonstiff system is the system of equations
describing the motion of a rigid body without external forces.

To simulate this system, create a function rigid containing the equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset command and
solve on a time interval [0 12] with an initial condition vector [0 1 1] at time
0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[t,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

y ′1 y2 y3=

y ′2 y1 y3–=

y ′3 0.51 y1 y2–=

y1 0() 0=
y2 0() 1=

y3 0() 1=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1555

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

Example 2. An example of a stiff system is provided by the van der Pol
equations in relaxation oscillation. The limit cycle has portions where the
solution components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

To simulate this system, create a function vdp1000 containing the equations

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

y ′1 y2=

y ′2 1000 1 y1
2–()y2 y1–=

y1 0() 0=
y2 0() 1=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1556

For this problem, we will use the default relative and absolute tolerances (1e-3
and 1e-6, respectively) and solve on a time interval of [0 3000] with initial
condition vector [2 0] at time 0.

[t,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the solution

plot(T,Y(:,1),'-o')

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince
pair. It is a one-step solver – in computing y(tn), it needs only the solution at
the immediately preceding time point, y(tn-1). In general, ode45 is the best
function to apply as a “first try” for most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine. It may be more efficient than ode45 at crude tolerances and in
the presence of moderate stiffness. Like ode45, ode23 is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the ODE file
function is particularly expensive to evaluate. ode113 is a multistep solver – it

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1557

normally needs the solutions at several preceding time points to compute the
current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they appear to
be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation formulas
(BDFs, also known as Gear’s method) that are usually less efficient. Like
ode113, ode15s is a multistep solver. Try ode15s when ode45 fails, or is very
inefficient, and you suspect that the problem is stiff, or when solving a
differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude tolerances. It can
solve some kinds of stiff problems for which ode15s is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free” interpolant.
Use this solver if the problem is only moderately stiff and you need a solution
without numerical damping. ode23t can solve DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Like ode23s, this solver may
be more efficient than ode15s at crude tolerances. [8], [1]

See Also deval, ode15i, odeget, odeset, @ (function handle)

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and
R. Smith, “Transient Simulation of Silicon Devices and Circuits,” IEEE Trans.
CAD, 4 (1985), pp 436-451.

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,”
Appl. Math. Letters, Vol. 2, 1989, pp 1-9.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp 19-26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1558

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and Software,
Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM
Journal on Scientific Computing, Vol. 18, 1997, pp 1-22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving Index-1
DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41, 1999, pp 538-552.

