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e uno più lungo per aspettare

Io dico che c’era un tempo sognato

che bisognava sognare”

I. Fossati

A zio Nedo



ii Contents

Contents

Notation 1

1 Introduction 5

1.1 Piecewise affine and hybrid systems . . . . . . . . . . . . . . . . . 8

1.2 System identification . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Black-box model structures . . . . . . . . . . . . . . . . . 11

1.2.2 Prediction error methods . . . . . . . . . . . . . . . . . . . 13

1.3 Set-membership identification . . . . . . . . . . . . . . . . . . . . 15

1.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 A whiteness test . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 A cross-correlation test . . . . . . . . . . . . . . . . . . . . 22

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 PWA System Identification 27

2.1 Piecewise affine systems . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Systems in state space form . . . . . . . . . . . . . . . . . 28

2.1.2 Systems in regression form . . . . . . . . . . . . . . . . . . 29

2.1.3 Hinging Hyperplane ARX systems . . . . . . . . . . . . . . 31

2.1.4 Hammerstein and Wiener PWARX systems . . . . . . . . . 33

2.2 Identification of piecewise affine models . . . . . . . . . . . . . . . 34

2.3 Approaches to PWA system identification . . . . . . . . . . . . . . 37



iv Contents

3 PWA Identification using MIN PFS 45

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Initialization using MIN PFS . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 A greedy approach to MIN PFS . . . . . . . . . . . . . . . 51

3.2.2 A relaxation method for MAX FS . . . . . . . . . . . . . . 53

3.2.3 Comments on the initialization . . . . . . . . . . . . . . . . 57

3.2.4 On the choice of δ . . . . . . . . . . . . . . . . . . . . . . 61

3.3 A Refinement Procedure . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Dealing with undecidable data . . . . . . . . . . . . . . . . 63

3.3.2 Reducing the number of submodels . . . . . . . . . . . . . 67

3.4 Multi-output models . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Estimation of the regions 73

4.1 The linear separation problem . . . . . . . . . . . . . . . . . . . . 73

4.2 Two-class linear separation: the separable case . . . . . . . . . . . 76

4.2.1 Optimal separation using the �2-norm . . . . . . . . . . . . 81

4.2.2 Optimal separation using the �1-norm . . . . . . . . . . . . 83

4.2.3 Optimal separation using the �∞-norm . . . . . . . . . . . . 84

4.3 Two-class linear separation: the inseparable case . . . . . . . . . . 85

4.3.1 Minimizing the number of misclassifications . . . . . . . . 86

4.3.2 Minimizing the misclassification errors . . . . . . . . . . . 90

4.4 Multi-class linear separation . . . . . . . . . . . . . . . . . . . . . 94

4.5 Estimation of the regions in PWA identification . . . . . . . . . . . 99

5 Applications 105

5.1 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 A case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusions 119

Bibliography 122

Notation

The following lists of symbols, acronyms, etc. are intended to gather notations

that are used in this thesis. Occurrence of the same symbol for different purposes

will be always notified.

Symbols, Operators and Functions

∈ belongs to

� equal by definition

R the field of real numbers

x ∈ R real number x

v ∈ R
n n-dimensional real column vector v

vi the i-th element of vector v

A ∈ R
m×n real matrix A with m rows and n columns

Ai the i-th row of matrix A

Ai j the element in the i-th row and the j-th column of matrix A

0 column vector with all elements equal to zero

1 column vector with all elements equal to one

rank(A) rank of the matrix A

≺, �, �, � componentwise inequalities (for vectors)

max, min componentwise maximum or minimum (for vectors)

argmax, argmin maximizing or minimizing argument



2 Notation

A ⊆ R
n subset A of R

n

#A cardinality of the set A , if A is finite

|x| absolute value of x ∈ R

‖x‖p �p-norm of x ∈ R
n: ‖x‖p =

(
n

∑
i=1

|xi|p
) 1

p

‖x‖∞ �∞-norm of x ∈ R
n: ‖x‖∞ = max

i=1,...,n
|xi|( n

k

)
the binomial coefficient,

( n

k

)
=

n!
k!(n− k)!

P(A |B) probability of the event A given that the event B has occurred

N (m,σ2) normal distribution with mean m and variance σ2

E[X ] expected value of the random variable X

Acronyms

ARX Autoregressive Exogenous

ELC Extended Linear Complementarity

HH Hinging Hyperplane

HHARX Hinging Hyperplane Autoregressive Exogenous

H-PWARX Hammerstein Piecewise Affine Autoregressive Exogenous

JL Jump Linear

JML Jump-Markov Linear

LC Linear Complementarity

MAX FS Maximum Feasible Subsystem

MIN PFS Minimum Partition into Feasible Subsystems

MLD Mixed Logical Dynamical

MMPS Max-Min-Plus-Scaling

M-RLP Multicategory Robust Linear Programming

M-SVM Multicategory Support Vector Machine

OE Output Error

PWA Piecewise Affine

Notation 3

PWARX Piecewise Affine Autoregressive Exogenous

PWL Piecewise Linear

RLP Robust Linear Programming

SVM Support Vector Machine

UBB Unknown But Bounded

W-PWARX Wiener Piecewise Affine Autoregressive Exogenous
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1

Introduction

System identification deals with the problem of building mathematical models of

dynamical systems based on measured data. The most important choice in system

identification concerns the set of candidate models within which a model will be

fitted to the data. Most common models are linear difference equations descrip-

tions, such as ARX and ARMAX models, as well as linear state-space models. A

wide range of linear identification techniques are available; see, e.g., (Ljung, 1999)

and references therein. When linear models are not sufficient for describing accu-

rately the dynamics of a system, nonlinear identification must be employed. A large

number of nonlinear model structures have been considered and their properties in-

vestigated; see, e.g., the survey papers (Sjöberg et al., 1995; Juditsky et al., 1995)

and references therein. This thesis is dedicated to the problem of identifying piece-

wise affine (PWA) models of discrete-time nonlinear systems from input-output

data. Piecewise affine systems are obtained by partitioning the state+input set into a

finite number of polyhedral regions, and by considering linear/affine systems shar-

ing the same continuous state in each region (Sontag, 1981). Such systems are

sufficiently expressive to model a large number of physical processes, and can ap-

proximate nonlinear dynamics with arbitrary accuracy. In addition, given the equiv-

alence between PWA systems and several classes of hybrid systems (Bemporad et

al., 2000b; Heemels et al., 2001), PWA system identification techniques can be used
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to obtain hybrid models.

The identification of PWA models is a challenging problem. It involves the

estimation of both the parameters of the affine submodels, and the coefficients of

the hyperplanes defining the partition of the state+input set (or the regressor set, for

models in regression form). This issue clearly underlies a classification problem

such that each data point is associated with one submodel. Depending on how the

partitioning into regions is done, two alternative approaches can be distinguished:

either the partition is defined a priori, or it is estimated along with the submodels.

In the first case, data classification is very simple, and estimation of the submod-

els can be accomplished by resorting to standard linear identification techniques.

On the other hand, the number of regions needed to give enough flexibility in the

model structure might be very large. In the second approach, the regions are shaped

according to the data, thus allowing for fewer regions and parameters. The main dif-

ficulty in this case is that the three issues of data classification, parameter estimation

and region estimation, being closely related, should be carried out simultaneously.

The problem is even more complicated when also the number of submodels must

be estimated. A number of approaches resulting in PWA models of nonlinear dy-

namical systems can be found in different fields, e.g., neural networks, electrical

networks, time-series analysis, function approximation; see (Roll, 2003) for a nice

overview and classification of different approaches to PWA system identification.

Recently, novel contributions to this topic have been proposed in both the hybrid

systems and the nonlinear identification community. Roll et al. (2004) formulate

the identification problem for two subclasses of PWA models, namely Hinging Hy-

perplane ARX (HHARX) and Wiener PWARX (W-PWARX) models, that lead to

mixed-integer linear or quadratic programs. Ferrari-Trecate et al. (2003) consider

PieceWise affine ARX (PWARX) models and exploit the combined use of cluster-

ing, linear identification, and pattern recognition techniques in order to identify both

the affine submodels and the polyhedral partition of the regressor set. In (Vidal et

al., 2003b) an algebraic geometric solution to the identification of PieceWise Linear

(PWL) models is proposed. It establishes a connection between PWL system iden-

7

tification, polynomial factorization, and hyperplane clustering. Ragot et al. (2003)

describe an iterative algorithm, allowing for sequential estimation of the model pa-

rameters and data classification through the use of adapted weights.

In this thesis, a different approach, inspired by ideas from set-membership

identification, is proposed. The main feature of this approach is the selection of

a bound δ on the fitting error (i.e., the difference between the measured output of

the system and the predicted output of the model). This enables to address the

estimation of the number of submodels, the data classification and the parameter

estimation simultaneously, by partitioning a suitable set of linear complementary

inequalities derived from data into a minimum number of feasible subsystems (MIN

PFS problem). A refinement procedure is also applied in order to reduce misclas-

sifications, and to improve parameter estimates. Region estimation is lastly per-

formed via two-class (Bennett and Mangasarian, 1992; Cortes and Vapnik, 1995)

or multi-class (Bennett and Mangasarian, 1994; Bredensteiner and Bennett, 1999)

linear separation techniques. The bound δ can be used as a tuning knob to trade off

between quality of fit and model complexity. The identified PWA model associates

to each submodel a set of feasible parameters, thus allowing for evaluation of the re-

lated parametric uncertainty (Milanese and Vicino, 1991). In this thesis, the greedy

algorithm (Amaldi and Mattavelli, 2002) for solving the MIN PFS problem with

complementary inequalities is also modified in order to obtain improved solutions.

The performance of the identification procedure is tested on experimental data from

an electronic component placement process in a pick-and-place machine (Juloski et

al., 2003).

This chapter, where some general concepts and results are briefly introduced,

is structured as follows. The interest in piecewise affine models of dynamical sys-

tems will be motivated in Section 1.1, where the connections between piecewise

affine and hybrid systems will be also pointed out. In Section 1.2 the general sys-

tem identification problem is introduced, together with a commonly used family of

parametric identification methods, namely the prediction error methods. Some basic

ideas of set-membership identification (i.e., identification under the unknown-but-
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bounded error description) are recalled in Section 1.3, and techniques for model val-

idation are the subject of Section 1.4. The organization and the main contributions

of the thesis, as well as a list of the related publications, are found in Sections 1.5

and 1.6.

1.1 Piecewise affine and hybrid systems

Piecewise Affine (PWA) systems form a special class of nonlinear systems whose

state and output maps are both piecewise affine, i.e., affine or linear on each of the

components of a finite polyhedral partition of the state+input set. Static and dy-

namical systems described by piecewise affine maps have been considered in many

fields, e.g., neural networks (Batruni, 1991), electrical networks (Leenaerts and Van

Bokhoven, 1998), time-series analysis (Tong, 1983). PWA systems can be used to

describe nonlinear phenomena that are frequent in practical situations, e.g., where

there are changes of the dynamics due to physical limits (such as a tank that can

get full or empty, or a bouncing ball which alternates between free fall and elastic

contact), bounds on the signals, dead-zones, switches and thresholds. Since piece-

wise affine maps have universal approximation properties, which essentially means

that any (sufficiently smooth) nonlinear function can be arbitrarily well approxi-

mated by a piecewise affine function (Lin and Unbehauen, 1992; Breiman, 1993),

PWA systems can also be used to approximate nonlinear systems that do not them-

selves exhibit discontinuous or switching behavior. Besides modelling, PWA sys-

tems are suitable for analysis (Chua et al., 1982; Chua and Ying, 1983) and con-

trol (Sontag, 1981) of classes of nonlinear systems. However, despite the fact that

they are just a composition of linear time-invariant systems, their structural proper-

ties such as observability, controllability and stability are complex and articulated

(Sontag, 1996; Blondel and Tsitsiklis, 1999) as is typical for nonlinear systems.

Recently there has been a growing interest in PWA systems also because of

their connections with hybrid systems. PWA systems are indeed a class of hybrid

systems, for which the switching rule between different linear/affine dynamics is

1.1 Piecewise affine and hybrid systems 9

given by a polyhedral partition of the state+input set. Hybrid systems are dynam-

ical systems whose behavior is determined by interacting continuous and discrete

dynamics. Such systems are characterized by both variables or signals that take

values from continuous sets, and variables that take values from discrete, typically

finite, sets. These continuous or discrete-valued variables or signals may either

depend on independent variables such as time, which also may be continuous or

discrete, or be driven asynchronously by external or internal discrete events. In

the last decade, both the computer science and the control community have been

attracted by this class of systems (e.g., Antsaklis and Nerode, eds., 1998; Morse

et al., eds., 1999; Van der Schaft and Schumacher, 2000). The interest is mainly

motivated by the large variety of practical situations where physical processes in-

teract with digital components. The continuous dynamics of hybrid systems is in-

deed typically associated with physical systems, whereas the discrete dynamics may

come, for instance, from digital controllers, logic devices and rules, or discrete-

event systems with finite automaton representations. Several modelling formalisms

have been developed for hybrid systems (e.g., Branicky et al., 1998; Heemels et

al., 2001), and the issues of stability analysis (e.g., Branicky, 1998; Johansson

and Rantzer, 1998; Liberzon and Morse, 1999), observability and controllability

(e.g., Bemporad et al., 2000b; Sun et al., 2002; Vidal et al., 2003a), control (e.g.,

Branicky et al., 1998; Bemporad and Morari, 1999; Lygeros et al., 1999), veri-

fication (e.g., Bemporad et al., 2000a; Chutinan and Krogh, 2003), and fault de-

tection (e.g., Bemporad et al., 1999; Lunze, 2000) have been also addressed. The

related tools strongly depend on the adopted modelling framework. Equivalence

between PWA systems and several other classes of hybrid systems has been shown

in (Bemporad et al., 2000b; Heemels et al., 2001; Sontag, 1996). The importance

of these equivalence results is twofold. First, they allow for transferring theoretical

properties and tools from PWA systems (e.g., stability criteria were proposed for

PWA systems by Johansson and Rantzer) to the other classes, and vice versa. Sec-

ond, they enable the use of PWA system identification techniques to obtain general

hybrid models.
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The discussion in this section motivates the importance of PWA systems, and

of the related identification methods. Several different approaches that are applica-

ble, or at least related, to the PWA system identification problem, can be found in

the literature. An overview will be given in Section 2.3. A novel approach to PWA

system identification is the main contribution of this thesis, and will be described in

Chapter 3.

1.2 System identification

The system identification problem is the problem of constructing mathematical

models of dynamical systems based on observed data from the system. In most

settings, one is interested in finding the relation between the input and the output

signals of the system. The main ingredients for the system identification problem

are the following (Ljung, 1999):

1. An experiment, providing the data set to be used for estimation.

2. A set of candidate models (a model structure).

3. An identification method, for fitting the model structure to data.

4. Routines to validate and accept the identified model(s).

The experiment should be designed so as to obtain a data set that is as informative

as possible for constructing a good model. This issue is not covered in the thesis,

and the interested reader is referred to (Ljung, 1999). Section 1.2.1 deals with

model structures. The selection of a suitable model structure is a crucial point in the

system identification procedure, that could benefit of prior knowledge or physical

insight about the system, if available, as well as of past experience. In Section 1.2.2,

the problem of fitting a given model structure to measured data will be addressed

by introducing a common family of identification methods, namely the prediction

error methods. Model validation will be the subject of Section 1.4.

1.2 System identification 11

1.2.1 Black-box model structures

Consider a discrete-time dynamical system with input uk ∈ R
p and output yk ∈ R,

where k ∈ Z is the time index. Let

uk−1 = [ u′
k−1 u′

k−2 . . . ]′

yk−1 = [ yk−1 yk−2 . . . ]′

be, respectively, past inputs and outputs up to time k− 1. The considered system

identification problem consists in finding a relationship between past observations

[uk−1,yk−1 ] and future outputs yk:

yk = g(uk−1,yk−1)+ εk (1.1)

The additive term εk in (1.1) accounts for the fact that the next output yk will not be

an exact function of past data. When solving the problem, a goal must be that εk is

small, so that one can think of g(uk−1,yk−1) as a good prediction of yk given past

observed data. The search for a suitable function g is typically restricted within a

specified set of candidate models, the so-called model set. The choice of the model

set is crucial in the system identification process. It is here that prior knowledge

and engineering intuition should be combined with formal properties of the models.

When no physical insight about the system is available or used, black-box models

must be employed. The choice of the model set, in this case, is among families that

possess good flexibility, or have been “successful” in the past.

The model set is often parameterized by a finite-dimensional parameter vector

θ ∈ Θ ⊆ R
d . In this case, the function g in (1.1) is written as follows:

g(uk−1,yk−1,θ) (1.2)

in order to make the dependance on θ explicit. The parameterized mapping (1.2)

is called a model structure. Linear models (e.g., ARX, ARMAX and OE models)

are no doubt the most common class of parameterized models used in system iden-

tification. They are also known as ready-made models because, provided the model

order, standard techniques can be easily applied to fit a model to the data. However,
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linear models are not always expressive enough to describe accurately the dynamics

of a system. Hence, considerable interest has been devoted to nonlinear black-box

structures, i.e., model structures that are prepared to describe virtually any nonlin-

ear dynamics. Model structures based, e.g., on neural networks, wavelet networks,

radial basis networks, and hinging hyperplanes have been proposed; see the survey

papers (Sjöberg et al., 1995; Juditsky et al., 1995) and references therein. Piecewise

affine (PWA) models, that are considered in this thesis and will be formally intro-

duced in Section 2.1, are also nonlinear black-box structures, thanks to the universal

approximation properties of piecewise affine maps.

Although being general, the form (1.2) is not convenient in practice, since

uk−1 and yk−1 contain infinitely many elements. Hence, it is useful to define first a

mapping from past observations [uk−1,yk−1 ] to a fixed-length vector ϕk, and then

to concatenate it with the mapping to the output as follows:

g(uk−1,yk−1,θ) = g(ϕk,θ) (1.3)

The vector ϕk = ϕ(uk−1,yk−1) is called the regression vector, and its components

are referred to as regressors. The choice of the nonlinear mapping (1.2) is thus

decomposed into two partial problems: the choice of the regression vector ϕk from

past inputs and outputs, and the choice of the nonlinear (parameterized) mapping

g(ϕ,θ) from the regressor set to the output set.

From (1.1) and (1.2), the predictor is given by:

ŷk|θ = g(uk−1,yk−1,θ) (1.4)

If the error εk in (1.1) is assumed to be zero-mean and independent of [uk−1,yk−1 ],

then (1.4) is the best guess of the output, obtained by replacing εk with its expected

value. The notation ŷk|θ is used for the predicted output to emphasize that its calcu-

lation depends on the parameter vector θ that parameterizes the model structure.

Example 1.1 The common ARX models are defined by the following structure,

where uk ∈ R, yk ∈ R, and na and nb are fixed orders:

yk =
na

∑
i=1

aiyk−i +
nb

∑
j=1

b j uk− j + εk (1.5)

1.2 System identification 13

By letting:

θ = [ a1 . . . ana b1 . . . bnb ]′ (1.6)

ϕk = [ yk−1 . . . yk−na uk−1 . . . uk−nb ]′ (1.7)

the predictor corresponding to (1.5) can be written in compact form as follows:

ŷk|θ = ϕ ′
kθ (1.8)

Model structures like (1.8), that are linear in θ , are known as linear regressions.

Note that, in the linear regression (1.8), the regression vector ϕk is not necessarily

needed to be of the form (1.7) or to contain the raw measurements. Rather, it could

be any nonlinear function of past inputs and outputs, and contain filtered data. For

instance, in this thesis, a simple extension of the standard regression vector (1.7)

will be considered, with the last entry equal to 1:

ϕk = [ yk−1 . . . yk−na uk−1 . . . uk−nb 1 ]′

It allows for an additive constant term c in (1.5), so that θ in this case becomes:

θ = [ a1 . . . ana b1 . . . bnb c ]′

Model (1.5) with an additive constant term c is called an affine ARX model.

1.2.2 Prediction error methods

As shown in the previous section, a model parameterization leads to the predictor

(1.4), that depends on past data [uk−1,yk−1 ] and the unknown parameter vector θ .

A method to determine a suitable value of θ , based on the information contained in

the measured data set, is called an identification method.

Since the essence of a model is its prediction capability, it is natural to judge

its performance in this respect. Thus, let the sequence of the prediction errors be

given by:

εk|θ = yk − ŷk|θ , k = 1, . . . ,N (1.9)
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where N is the number of data. A model is said to be “good” if it produces “small”

prediction errors (1.9) when applied to the observed data. The question is how to

qualify what “small” should mean. A common approach is to define the following

criterion function:

VN(θ) =
1
N

N

∑
k=1

�(εk|θ ) (1.10)

where � is a scalar valued, nonnegative function that is used to measure the “size”

of the prediction error, e.g., �(ε) = ε2 or �(ε) = |ε|. For simpler notation, the

dependance of VN on the data set has been omitted. Then, a model is fitted to the

data by minimizing VN(θ), i.e., by taking the estimate θ̂ given by:

θ̂ = argmin
θ∈Θ

VN(θ) (1.11)

This procedure can be thought of as “curve fitting” between yk and ŷk|θ . The un-

derlying principle is independent of the particular model parameterization used,

although this will affect the actual minimization. Indeed, except very special cases

such as in Example 1.2, no analytic solution for (1.11) is possible, so that mini-

mization must be carried out by resorting to numerical algorithms. A fundamental

problem is that VN(θ) might have local (nonglobal) minima, where local search

algorithms could get caught.

The way of estimating θ given by (1.11) leads to many commonly used para-

metric identification methods, that are known under the general term of prediction

error methods. Particular methods, with specific names (e.g., the least squares and

the maximum likelihood methods), are obtained as special cases of (1.11), depend-

ing on the choice of the norm �, the choice of the model structure, and in some cases

the choice of the method by which the minimization is accomplished.

Example 1.2 When considering the linear regression (1.8), the prediction error be-

comes εk|θ = yk −ϕ ′
kθ , and the criterion function (1.10), with �(ε) = ε2, is:

VN(θ) =
1
N

N

∑
k=1

(yk −ϕ ′
kθ)2 (1.12)

This is the least-squares criterion for the linear regression (1.8). Since VN is a

quadratic function of θ , it can be minimized analytically. The minimization gives,

1.3 Set-membership identification 15

provided the indicated inverse exists:

θ̂ LS =

[
N

∑
k=1

ϕkϕ ′
k

]−1 N

∑
k=1

ϕkyk (1.13)

The estimate (1.13) is the very well-known least squares estimate.

1.3 Set-membership identification

Estimation theory deals with the problem of evaluating some unknown variables

based on given data. Available data are typically known with some uncertainty and

it is necessary to evaluate how this uncertainty affects the estimated variables. A

general framework for estimation problems is as follows:

Given an unknown element x ∈ X , find an estimate of the function

S(x) ∈ Z , based on a priori information K ⊆ X and on measure-

ments of the function F(x) ∈ Y corrupted by additive noise e.

Here, X is the problem element space, Y is the measurement space, and Z is the

solution space. Accordingly, x is called the problem element and z = S(x) is called

the problem solution. The information available for estimation is twofold:

a priori: x ∈ K ⊆ X

a posteriori (measurements): y = F(x)+ e, F : X → Y

An estimation algorithm (or estimator) Φ is a mapping from the measurement to the

solution space, i.e., Φ : Y → Z , which provides an estimate Φ(y) of the problem

solution S(x) based on the available information. A schematic representation of the

generic estimation problem is shown in Figure 1.1.

In an estimation problem, the goal must be that Φ(y) is as close to S(x) as

possible. Since observed data are affected by errors, it is important to evaluate

the effect of the uncertainties on the quality of the estimate. This depends on the

type of assumptions made on the uncertainty. In classical estimation theory, data are

commonly assumed to be corrupted by additive random noise with (partially) known
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X

Y

Z

x

y

z

e

S(·)

F(x)

F(·)
Φ(·)

Φ(y)

Figure 1.1 A schematic representation of the generic estimation problem

probability density function. However, in situations where the random nature of the

uncertainty is questionable, an alternative approach can be used, which does not rely

on any statistical assumption on the uncertainty. This approach, which is referred to

as set-membership or unknown but bounded (UBB) error description, characterizes

the uncertainty by means of additive noise that is known only to have given bounds,

i.e., the noise term e is assumed to satisfy:

‖e‖Y ≤ δ (1.14)

for some given bound δ > 0. In (1.14), ‖·‖Y denotes the norm used in the Y -space.

Under the UBB error description, the estimation problem has different characteris-

tics from the stochastic case. The stochastic approach provides confidence regions,

to which a given probability of containing the problem solution is associated. Vice

versa, in the set-membership approach, the interest is focused on the feasible so-

lution set, i.e., the set of all the estimates that are consistent with the available

information on the problem.

Widely used classes of (pointwise) estimators in set-membership estimation

are the central algorithms and the projection algorithms. Let the feasible solution
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set be defined as follows:

FSSy =
{

z = S(x)
∣∣ ‖y−F(x)‖Y ≤ δ , x ∈ K

}
(1.15)

The first class of algorithms is related to the idea of taking as an estimate the “cen-

ter” of FSSy, namely the element in Z that minimizes the maximum distance to

the elements in FSSy. By denoting the norm used in the Z -space as ‖·‖Z , a central

estimator is hence given by:

Φc(y) = arg inf
z∈Z

sup
z̃∈FSSy

‖z̃− z‖Z (1.16)

The second class of algorithms takes as an estimate the solution corresponding to the

problem element that minimizes the norm of the measurement error. A projection

estimator is hence given by:

Φp(y) = S(xp) , xp = arg min
x∈K

‖y−F(x)‖Y (1.17)

Note that the computation of (1.17) does not require the use of the bound δ . The

projection estimators enjoy interesting properties over the central estimators. They

are interpolatory algorithms, i.e., Φp(y) always belongs to FSSy. This property

might be not satisfied by (1.16). Moreover, since the following inequalities hold:

sup
z∈FSSy

‖z−Φc(y)‖Z ≤ sup
z∈FSSy

∥∥z−Φp(y)
∥∥

Z ≤ 2 sup
z∈FSSy

‖z−Φc(y)‖Z

they are “robust” with respect to inexact knowledge of the uncertainty bound δ , i.e.,

with respect to FSSy. Typically, it is rather difficult to know exactly the value of δ ,

whereas it is likely to estimate an upper bound.

In the following, the set-membership approach will be applied to the paramet-

ric identification of the linear regression:

yk = ϕ ′
kθ + εk (1.18)

already considered in Examples 1.1 and 1.2. Given N data points (yk,ϕk), k =

1, . . . ,N, the problem of estimating θ based on the available data can be cast in



18 Introduction

the general estimation framework defined in this section, by considering the prob-

lem element x = θ , the measurement vector y = [ y1 . . . yN ]′, the error vector

e = [ ε1 . . . εN ]′, and the information operator:

F(θ) =

⎡
⎢⎢⎢⎣

ϕ ′
1
...

ϕ ′
N

⎤
⎥⎥⎥⎦θ

Moreover, the solution operator S is the identity map, i.e., S(θ) = θ . The error

vector e is assumed to be bounded according to (1.14). The feasible solution set

(1.15) is, in this case, the set of all parameter vectors θ that are consistent with the

measurements and the error bound. Accordingly, it is called the Feasible Parameter

Set (FPS). Provided that the predictor for a linear regression is given by (1.8), the

FPS can be used to predict an interval of values [ ŷk, ŷk ] for the output by computing:

ŷk = sup
θ∈FPS

ϕ ′
kθ and ŷk = inf

θ∈FPS
ϕ ′

kθ (1.19)

In this thesis, the norm considered in the Y -space is the �∞-norm. This corre-

sponds to bound the error vector componentwise by a given δ > 0, i.e.:

|εk| ≤ δ , k = 1, . . . ,N (1.20)

By assuming (1.20), the FPS is a convex polytope, described by:

FPS =
{

θ ∈ R
d
∣∣ |yk −ϕ ′

kθ | ≤ δ , k = 1, . . . ,N
}

(1.21)

Hence, the computation of (1.19) amounts to solve two linear programs. Since the

complexity of the FPS grows with N, and its exact description may become com-

putationally demanding, a key issue in set-membership identification is the approx-

imation of (1.21) by means of simply shaped regions. In the literature, several set

approximation techniques have been proposed to get around this problem. They are

based on over- or underbounding the polytope by simpler regions such as ellipsoids

(Fogel and Huang, 1982), orthotopes (Pearson, 1988), limited complexity polytopes

(Broman and Shensa, 1990; Piet-Lahanier and Walter, 1993; Veres, 1994), or paral-

lelotopes (Vicino and Zappa, 1996; Chisci et al., 1998).
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The �p central estimator for (1.18), p ∈ [1,∞], is given by:

θ̂ c = argmin
θ

max
θ̃∈FPS

‖θ̃ −θ‖p (1.22)

If the �∞-norm is considered both in the Y -space and the Z -space, it has been

shown by Milanese and Tempo (1985) that θ̂ c can be computed as follows:

ϑ̂ c
i =

ϑi +ϑi

2
, i = 1, . . . ,d (1.23)

where:

ϑi = max
θ∈FPS

ϑi and ϑi = min
θ∈FPS

ϑi (1.24)

Since FPS is given by the polytope (1.21), the computation of θ̂ c by (1.23) and

(1.24) amounts to solve 2d linear programs. Note that, in this case, θ̂ c is the center

of the smallest axis aligned box which contains (1.21).

If the �∞-norm is chosen in the Y -space, the �∞ projection estimator for (1.18),

which will be widely used in this thesis, is given by:

θ̂ p = argmin
θ

‖y−F(θ)‖∞ = argmin
θ

max
k=1,...,N

∣∣yk −ϕ ′
kθ

∣∣ (1.25)

The estimate (1.25) can be computed by solving the following linear program:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
θ ,δ̂

δ̂

s.t. ϕ ′
kθ − δ̂ ≤ yk

ϕ ′
kθ + δ̂ ≥ yk k = 1, . . . ,N

(1.26)

Note that problem (1.26) corresponds to finding the minimum bound for which the

resulting FPS is nonempty. It is interesting to note that, if the �2-norm is used in

the Y -space, the �2 projection estimator for (1.18) is given by:

θ̂ p = argmin
θ

‖y−F(θ)‖2 = argmin
θ

√√√√ N

∑
k=1

(yk −ϕ ′
kθ)2

which coincides with the least squares estimate (1.13) obtained by minimizing the

criterion function (1.12).

The set-membership approach has been pioneered by the work of Witsen-

hausen (1968) and Schweppe (1968) on state estimation problems for dynamical
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systems. An overview of this approach up to the early 90’s is given in (Milanese

and Vicino, 1991). A short introduction, oriented to the system identification prob-

lem, can be found in (Ninness and Goodwin, 1995). See also the collection of

papers (Milanese et al., 1996).

1.4 Model validation

After having identified a model of the system, it remains to test the “goodness” of

the model itself. Model validation deals with this problem. It involves various tests

to assess how the model relates to observed data, to prior knowledge, and/or to its

intended use. Deficient model behavior in these respects will make one reject the

model, whereas good performance will develop a certain confidence in it. Indeed,

the aim is never to accept a model as being true or correct, rather to discard the

obviously incorrect ones. It is however important to stress the subjective ingredient

in model validation. Model validation tools should only be viewed as advisors to

the user. It is the user that finally makes the decision based on several tests.

In system identification, the most natural entity with which the model must

be compared, are the data themselves. The quality of the model in this respect

is checked by quantifying the agreement between the model and the measured data

from the system. The prime method is to investigate how well the model reproduces

the behavior of a new set of data (the validation data) that was not used to fit the

model. The model is simulated with a new input, and the simulated output is then

compared with the measured output corresponding to the same input. Numerical

measurements of fit or visual inspection can be used to decide whether the fit is

good enough. A suitable indicator, that will be used in this thesis, is the percentage

of Variation Accounted For (VAF). Let y = (y1, . . . ,yN) be the vector of system

outputs, y the average of y, and ŷ = (ŷ1, . . . , ŷN) the vector of simulated outputs.

The VAF indicator is defined as follows (Ljung, 2003):

VAF = 100 ·
(

1− ‖ŷ−y‖2

‖y−y‖2

)
(1.27)

It can be interpreted as the percentage of the output variation that is explained by
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the model. For given y, the smaller is the error ŷ−y, the closer is VAF to 100%.

The second basic method for model validation is to examine the residuals, i.e.,

what the model could not “explain”. These are the prediction errors (1.9), i.e.:

εk = yk − ŷk , k = 1, . . . ,N

Most classical model validation tests are based on residual analysis. A simple start-

ing point is to compute basic statistics for the residuals, e.g.:

• The maximum absolute value: S1 = max
k=1,...,N

|εk|

• The average quadratic error: S2
2 =

1
N

N

∑
k=1

ε2
k

Thresholds can be fixed to decide whether the above quantities are too large or not.

They are determined on the basis of prior knowledge, assumptions (e.g., the bound δ

on S1 considered in the set-membership approach; see Section 1.3), or some ad-hoc

procedure. However, only such an analysis is not sufficient, in general. It is always

good practice to check the residuals for dependencies. Ideally, the residual at time k

should be independent of information that was at hand at time k−1. For instance,

if the residuals εk and the inputs uk−τ are correlated, then there is a part of yk that

originates from uk−τ and that has been not properly accounted for by ŷk. One can

conclude that the model has not extracted all the relevant information about the

system from the data, and hence it could be improved. Two tests for checking

dependencies of the residuals will be described in the following sections.

1.4.1 A whiteness test

If correlation among the residuals shows up, then part of εk could have been pre-

dicted from past data. This means that yk could have been better predicted, which

in turn is a sign of deficiency of the model.

Information about the correlation among the residuals is carried by the auto-

correlation sequence, which is defined as follows:

R̂N
ε (τ) =

1
N

N

∑
k=1

εkεk−τ , τ = 0,1, . . . ,M (1.28)
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For easier notation, in (1.28) it is assumed that N + M residuals are available, in-

dexed from 1−M to N. Investigation of which requirements should be associated

with (1.28), can be performed in the context of statistical hypothesis testing. By

assuming {εk} to be a white noise sequence with zero mean and variance σ2
ε , it can

be shown that (Ljung, 1999):

√
N

σ2
ε

R̂N
ε (τ) ∼ N (0,1) asymptotically as N → ∞

Hence, a good whiteness test is to verify if:∣∣R̂N
ε (τ)

∣∣
R̂N

ε (0)
≤ xα√

N
, τ = 1, . . . ,M (1.29)

where xα > 0 corresponds to the α level of the N (0,1) distribution, i.e.:

∫ xα

−xα

1√
2π

e−
x2
2 dx = 1−α

For instance, xα = 2.58 for α = 0.01. Note that in (1.29) σ2
ε has been replaced with

its estimate R̂N
ε (0). Test (1.29) can be performed graphically by plotting R̂N

ε (τ) as a

function of τ , and the confidence limits as horizontal lines. A graphical test based

on (1.29) is shown in Example 1.3.

1.4.2 A cross-correlation test

It is of special importance that the residuals do not depend on the particular input

used in the data set. The quality of the model might otherwise change when different

inputs are considered. In order to check this kind of dependency, it is suitable to

study the cross-correlation sequence of εk and uk, which is defined as follows:

RN
εu(τ) =

1
N

N

∑
k=1

εkuk−τ , −M ≤ τ ≤ M (1.30)

Another reason for considering (1.30) is that, if there are traces of past inputs in

the residuals, then there is a part of yk that originates from the past inputs and that

has been not properly picked up by the model. In (1.30) it is assumed that N +2M

inputs are available, indexed from 1−M to N +M.
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Investigation of which requirements should be associated with (1.30), can be

again performed in the context of statistical hypothesis testing. By assuming {εk}
and {uk} to be independent sequences, it can be shown that (Ljung, 1999):

√
N

σP
R̂N

εu(τ) ∼ N (0,1) asymptotically as N → ∞

where:

σ2
P =

+∞

∑
k=−∞

Rε(k)Ru(k) , Rε(τ) = E[εkεk−τ ] , Ru(τ) = lim
N→∞

1
N

N

∑
k=1

ukuk−τ

Hence, a good cross-correlation test is to verify if:∣∣R̂N
εu(τ)

∣∣
σ̂P

≤ xα√
N

, −M ≤ τ ≤ M (1.31)

where xα > 0 corresponds to the α level of the N (0,1) distribution, as in Sec-

tion 1.4.1. Note that σ2
P has been replaced with its estimate:

σ̂2
P =

M

∑
k=−M

R̂N
ε (k)R̂N

u (k)

Test (1.31) can be performed graphically by plotting R̂N
εu(τ) as a function of τ , and

the confidence limits as horizontal lines. A graphical test based on (1.31) is shown

in Example 1.3. It must be required for a good model that R̂N
εu(τ) does not go

significantly outside the confidence region. A peak at lag τ > 0 shows that the effect

of uk−τ on yk is not properly described, e.g., because the time delay of the system

was overestimated. A peak at lag τ < 0 does not imply that the model structure is

deficient, rather that output feedback in the input is present.

Example 1.3 A graphical model validation test is illustrated in Figure 1.2. The

upper plot shows the whiteness test (1.29), and the lower plot shows the cross-

correlation test (1.31). Dashed lines denote the confidence intervals for α = 0.01.

The model and the true system are irrelevant for this discussion. Since both plots

are inside the bounds, there is no evidence of the residuals being non-white, nor

there is some significant cross-correlation between the residuals and the input. The

model is therefore not falsified by this model validation test.
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Figure 1.2 Results from a model validation test. The upper plot shows a whiteness test of
the residuals and the lower plot shows a cross-correlation test between the residuals and the
input

1.5 Thesis outline

The thesis is structured as follows. Chapter 2 gives an introduction to piecewise

affine (PWA) systems and to the identification of PWA models. It also contains

an overview of different approaches to PWA system identification. Chapter 3 de-

scribes the main contribution of the thesis, consisting in a procedure for data point

classification and parameter estimation of PWA models based on a MIN PFS formu-

lation. Chapter 4 gives an overview of several techniques for two-class and multi-

class linear separation. These techniques are then applied to the problem of region

estimation for the identified PWA model. In Chapter 5, the performance of the

proposed identification procedure is tested on both numerical examples and a case

study. Lastly, conclusions are drawn in Chapter 6, and guidelines for future research

are suggested.
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1.6 Contributions

The main contributions of this thesis are:

• A procedure for data point classification and parameter estimation of piece-

wise affine models based on a MIN PFS formulation. This is found in Chap-

ter 3. The proposed approach allows to trade off between the complexity and

the accuracy of the identified PWA model by selecting a bound on the fitting

error.

• Improvements of the greedy algorithm (Amaldi and Mattavelli, 2002) for the

MIN PFS problem with complementary inequalities. The proposed modifica-

tions, that are described in Sections 3.2.1 and 3.2.2, allow to obtain a number

of feasible subsystems which is closer to be minimal.

• A wide overview of several techniques for two-class and multi-class linear

separation. This is found in Chapter 4.

Some of the material in Chapter 3 has been previously published in:

A. Bemporad, A. Garulli, S. Paoletti and A. Vicino (2003). A greedy approach to

identification of piecewise affine models. In: Hybrid Systems: Computation

and Control (O. Maler and A. Pnueli, Eds.). pp. 97–112. Lecture Notes in

Computer Science. Springer Verlag.

A. Bemporad, A. Garulli, S. Paoletti and A. Vicino (2003). Set membership iden-

tification of piecewise affine models. In: Proc. 13th IFAC Symposium on

System Identification. Rotterdam, The Netherlands. pp. 1826–1831.

Other parts of Chapter 3 and the case study in Chapter 5 also appear in:

A. Bemporad, A. Garulli, S. Paoletti and A. Vicino (2004). Data classification

and parameter estimation for the identification of piecewise affine models.

Submitted to 43rd IEEE Conference on Decision and Control.
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2

PWA System Identification

This chapter gives an introduction to piecewise affine (PWA) systems, and to the

parametric identification of PWA models. Section 2.3 contains an overview and

a classification of different approaches to PWA system identification (Roll, 2003).

The identification procedure proposed in this thesis belongs to the category of al-

gorithms which tackle the problem in two steps. First, data are classified and the

parameters of the submodels are identified, and then the regions are estimated.

2.1 Piecewise affine systems

In this section, discrete time piecewise affine (PWA) systems both in state space

and in regression form are introduced1. PWA systems are defined as collections of

linear/affine systems with the same continuous state, connected by switches that are

determined by a polyhedral partition of the state+input set (Sontag, 1981). They

can be used to model a large number of physical processes, and are suitable to

approximate nonlinear dynamics, e.g., via multiple linearizations at different oper-

ating points. In addition, PWA systems are equivalent to several classes of hybrid

systems, and can therefore be used to describe systems exhibiting hybrid structure.

1For simplicity of notation, noiseless systems are considered here. The noise will be included

later as an additive term.
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2.1.1 Systems in state space form

A general discrete time piecewise affine system in state space form is described by

the following equations:

xk+1 = Aσ(k) xk +Bσ(k) uk +bσ(k)

yk = Cσ(k) xk +Dσ(k) uk +dσ(k)

(2.1)

where k ∈Z is time, xk ∈R
n is the (continuous) state, uk ∈R

p is the input, and yk ∈
R

q is the output. The discrete mode σ(k), describing in what affine subsystem the

system is at time k, is assumed to take only a finite number of values. Without loss

of generality, σ(k) ∈ {
1, . . . ,s

}
, where s is the number of affine subsystems. σ(k)

could be a function of k, xk, uk, or some other external input. Ai, Bi, bi, Ci, Di and di,

i = 1, . . . ,s, are real matrices and vectors with suitable dimensions that describe each

affine subsystem. Hence, system (2.1) can be seen as a collection of affine systems

with continuous state xk, connected by switches that are indexed by the discrete

mode σ(k). The evolution of the discrete mode can be described in a variety of

ways. In Jump Linear (JL) systems, σ(k) is an unknown, deterministic and finite-

valued input. In Jump-Markov Linear (JML) systems, the dynamics of σ(k) is

modelled as an irreducible Markov chain governed by the transition probabilities

π(i, j) � P
(
σ(k + 1) = j

∣∣σ(k) = i
)
. In PieceWise Affine (PWA) systems (Sontag,

1981; Bemporad et al., 2000b), σ(k) is given by:

σ(k) = i if (xk,uk) ∈ Ωi, i = 1, . . . ,s (2.2)

where {Ωi}s
i=1 is a complete partition2 of the state+input set Ω ⊆ R

n ×R
p where

(2.1) is valid, and each region Ωi is a convex polyhedron defined as follows:

Ωi =
{
(x,u) ∈ R

n ×R
p
∣∣ H̄i x+ J̄i u+gi � 0

}
(2.3)

with H̄i ∈ R
qi×n, J̄i ∈ R

qi×p, and gi ∈ R
qi , i = 1, . . . ,s. If the vectors bi and di are

zero for all i = 1, . . . ,s, system (2.1) is referred to as PieceWise Linear (PWL). From

2A collection of sets {Ai}s
i=1 is said to be a (complete) partition of A ⊆ R

m if
⋃s

i=1 Ai = A and

Ai
⋂

A j = /0, ∀ i �= j.
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a complexity point of view, PWL and PWA systems are equivalent (bi and di can

be thought of as generated by integrators with no input).

Remark 2.1 As introduced in Section 1.1, PWA systems (Sontag, 1981) form a

special class of hybrid systems. Other descriptions for hybrid systems include

Mixed Logical Dynamical (MLD) systems (Bemporad and Morari, 1999), Linear

Complementarity (LC) systems (Van der Schaft and Schumacher, 1998; Heemels et

al., 2000), Extended Linear Complementarity (ELC) systems (De Schutter, 2000),

and Max-Min-Plus-Scaling (MMPS) systems (De Schutter and Van den Boom,

2001). Equivalences among these five classes of systems are shown in (Bemporad

et al., 2000b; Heemels et al., 2001). Such results are very important for transferring

theoretical properties and tools (e.g., control and identification techniques) from

one class to another, as they imply that one can choose the most convenient hybrid

modelling framework for the study of a particular hybrid system. �

2.1.2 Systems in regression form

A switching system in regression form is described by the equation:

yk = ϕ ′
kθσ(k) (2.4)

where ϕk ∈ R
d is the regression vector, yk ∈ R is the output, σ(k) ∈ {

1, . . . ,s
}

is

the discrete mode, and s is the number of subsystems. θi ∈ R
d , i = 1, . . . ,s, are the

parameter vectors defining each subsystem.

The regression vector ϕk could, for instance, be any function of past inputs

and outputs. In the following, the focus will be on systems (2.4) where ϕk is formed

as follows:

ϕk = [ yk−1 . . . yk−na u′
k−1 . . . u′

k−nb
1 ]′ (2.5)

and uk ∈ R
p is the input to the system. Such systems represent a subclass of the

piecewise affine systems described by (2.1), and can be easily transformed into that

form by defining the state vector as:

xk = [ yk−1 . . . yk−na u′
k−1 . . . u′

k−nb
]′ (2.6)



30 PWA System Identification

The last entry of ϕk is set equal to 1 in order to allow for a constant term in equation

(2.4). If the constant 1 is omitted in (2.5), so that ϕk coincides with xk, the system is

piecewise linear. In the following, the vector xk will be referred to as the (standard)

regression vector, and ϕk will be called the extended regression vector, since it can

be written as ϕk = [ x′k 1 ]′. As for the systems in state space form, the evolution

of the discrete mode σ(k) can be described in a variety of ways. In PieceWise

affine AutoRegressive eXogenous (PWARX) systems, the switching mechanism is

determined by a polyhedral partition of the set X ⊆ R
n where (2.4) is valid3. This

means that for these systems the discrete mode σ(k) is given by:

σ(k) = i if xk ∈ Xi, i = 1, . . . ,s (2.7)

where {Xi}s
i=1 is a complete partition of the regressor set X , and each region Xi

is a convex polyhedron represented in the form:

Xi =
{

x ∈ R
n
∣∣ H̄i x+gi � 0

}
(2.8)

with H̄i ∈ R
qi×n and gi ∈ R

qi , i = 1, . . . ,s. By letting Hi = [ H̄i gi ], i = 1, . . . ,s, and

by introducing the piecewise affine map f : X → R:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ ′θ1 if H1ϕ � 0
...

...

ϕ ′θs if Hsϕ � 0

, ϕ = [ x′ 1 ]′ (2.9)

equation (2.4) can be alternatively rewritten as follows:

yk = f (xk) (2.10)

PWARX systems defined by (2.10), (2.9) and (2.6), can be seen as a collection of

ARX systems connected by switches that are determined by a polyhedral partition

of the regressor set.

Remark 2.2 The PWA map (2.9) could be discontinuous over the boundaries de-

fined by the polyhedra (2.8). Figure 2.1 shows a discontinuous PWA map of two

3In general, the shape of X will reflect physical constraints on the inputs and the output of the

system. For instance, typical constraints on the output may be |yk| ≤ ymax or |yk − yk−1| ≤ ∆ymax.
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Figure 2.1 Discontinuous PWA map of two variables with s = 3 regions

variables. Hence, definition (2.9) is not well posed in general, since the PWA map

could be multiply defined over common boundaries of the regions Xi. This issue

can be overcome by replacing some of the “≤” inequalities with “<” in defini-

tion (2.8), but for simplicity of notation it is not addressed here. A similar remark

holds also for system (2.1) and definition (2.3). �

The following sections introduce two subclasses of piecewise affine systems that

are used in many practical applications, namely Hinging Hyperplane ARX systems,

and Hammerstein/Wiener PWARX systems.

2.1.3 Hinging Hyperplane ARX systems

Piecewise affine functions defined by (2.9) may, in general, be discontinuous. A

special class of continuous piecewise affine functions used for regression, classi-

fication, and function approximation, is represented by Hinging Hyperplane (HH)

functions (Breiman, 1993). HH functions are defined as the sum of hinge functions:

f (x) =
M

∑
i=1

hi(x) (2.11)
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y

x1

x2

y = ϕ′θ−y = ϕ′θ+

ϕ′(θ+ −θ−) = 0

max{ϕ ′θ+,ϕ ′θ−}

Figure 2.2 Two hinging hyperplanes y = ϕ ′θ− and y = ϕ ′θ+, and the corresponding hinge
function y = max{ϕ ′θ+,ϕ ′θ−}, where ϕ = [ x1 x2 1 ]′

where each hinge function hi, i = 1, . . . ,M, geometrically consists of two half-

hyperplanes joined continuously at the hinge (see Figure 2.2):

hi(x) = ±max{ϕ ′θ+
i ,ϕ ′θ−

i } , ϕ = [ x′ 1 ]′ (2.12)

The ± sign here is needed to represent both convex and nonconvex functions. The

class of HH functions is equivalent to the class of PWA functions that can be ex-

pressed in the canonical representation introduced by Kang and Chua (1978). It has

been proved that a large class of (but not all) continuous piecewise affine functions

possesses a canonical representation (Chua and Deng, 1988). Although it is not a

universal representation of continuous PWA functions, the class of canonical PWA

functions is however a universal approximant of all continuous functions on a com-

pact subset of R
n (Lin and Unbehauen, 1992). This means that one can approximate

any continuous function on a compact set arbitrarily well by using sufficiently many

hinge functions (i.e., by letting M → ∞).

Using an alternative parameterization for the class of HH functions, Hinging

Hyperplane AutoRegressive eXogenous (HHARX) systems are usually described in

the following form:

yk = ϕ ′
kθ0 +

M+

∑
i=1

max{ϕ ′
kθi,0}−

M

∑
i=M++1

max{ϕ ′
kθi,0} (2.13)
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(a)

linear
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Figure 2.3 (a) Hammerstein and (b) Wiener systems with PWA static nonlinearity

where yk ∈ R is the output of the system, and the extended regression vector ϕk

is defined by (2.5). Since max{z,0} = z + max{−z,0}, ∀z ∈ R, the parameters of

(2.13) are not uniquely determined, i.e., the same system can be described by several

different sets of parameter values.

2.1.4 Hammerstein and Wiener PWARX systems

Hammerstein and Wiener systems form special classes of nonlinear systems with

many practical applications. They consist of a linear dynamical system preceded

(Hammerstein systems) or followed (Wiener systems) by a static nonlinearity (see

Figure 2.3). When the static nonlinearity is piecewise affine, it is easy to verify that

the overall system is also piecewise affine.

Hammerstein PWARX (H-PWARX) systems are given by the cascade con-

nection of a piecewise affine static nonlinearity followed by an ARX system; see

Figure 2.3(a). They are therefore described by the relations:⎧⎪⎪⎨
⎪⎪⎩

xk = g(uk)

yk = −
na

∑
i=1

aiyk−i +
nb

∑
j=1

b j xk− j
(2.14)

where yk ∈ R and uk ∈ R are the output and the input of the system, respectively;

xk ∈ R is an internal variable that is not measurable; ai ∈ R, i = 1, . . . ,na, and
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(a) (b) (c)

Figure 2.4 Examples of hard nonlinearities: (a) saturation, (b) dead-zone, (c) preload

b j ∈ R, j = 1, . . . ,nb, are the parameters of the ARX system, and g is a piecewise

affine function. The internal variable xk is the input to the ARX system.

Conversely, Wiener PWARX (W-PWARX) systems are given by the cascade

connection of an ARX system followed by a piecewise affine static nonlinearity;

see Figure 2.3(b). They are therefore described by the relations:⎧⎪⎪⎨
⎪⎪⎩

xk = −
na

∑
i=1

aixk−i +
nb

∑
j=1

b j uk− j

yk = g(xk)

(2.15)

In this case, the internal variable xk is the output of the ARX system.

PWA nonlinearities include saturations, dead-zones and preloads, that are com-

mon in engineering practice (see Figure 2.4).

2.2 Identification of piecewise affine models

PWA system identification concerns obtaining a piecewise affine model of a system

from experimental data. PWA models represent an attractive model structure for

identification purposes, since they are the “simplest” extension of linear models

but can nevertheless describe nonlinear processes with arbitrary accuracy. PWA

models are also capable of handling hybrid phenomena. Given the equivalence

between PWA systems and several classes of hybrid systems (see Remark 2.1),

PWA identification techniques can be used to obtain hybrid models.

PWARX models are suitable when dealing with input-output data, since they

provide an input-output description of PWA systems. Assume that a collection D
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of N data points from the real system is available, namely:

D =
{
(yk,xk), k = 1, . . . ,N

}
(2.16)

where yk ∈ R is the measured output of the system, and xk ∈ R
n is the regression

vector (2.6) for fixed orders na and nb. A PWARX model is defined as follows:

yk = f (xk)+ εk (2.17)

where εk ∈ R is an error term (see Section 1.2.1), and f is the PWA map (2.9).

The considered identification problem consists in finding the PWARX model that

best matches the given data according to a specified criterion of fit. It involves the

estimation of:

• The number of discrete modes s.

• The parameters θi, i = 1, . . . ,s, of the affine submodels.

• The coefficients Hi, i = 1, . . . ,s, of the hyperplanes defining the partition of

the regressor set.

This issue also underlies a classification problem such that each data point is asso-

ciated to one region, and to the corresponding submodel. The simultaneous optimal

estimation of all the quantities mentioned above is a very hard, computationally

intractable problem. To the knowledge of the author, no satisfactory formulation

in the form of a single optimization problem has been even provided for it. One

of the main difficulties is how to choose the number of discrete modes s. For in-

stance, perfect fit is attained by s = N, i.e., one submodel per data point, which is

clearly an inadequate solution. Constraints on s must be hence introduced, so as to

keep the number of submodels low, and to avoid overfit4. Heuristic and suboptimal

approaches that are applicable, or at least related, to the identification of PWARX

models, have been proposed in the literature. Most of these approaches either as-

sume a fixed s, or adjust s iteratively (e.g., by adding one submodel at a time) in

4The term overfit denotes the situation when a model adjusts itself to the particular noise realiza-

tion, if given too many degrees of freedom.
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order to improve the fit. The approach presented in this thesis, and described in

Chapter 3, proposes a formulation of the identification problem which allows for

the automatical estimation of a suitable s.

When the number of discrete modes s is fixed, the identification of a PWARX

model amounts to a PWA regression problem, namely the problem of reconstructing

the PWA map f from the finite data set D . In this case, the identification process

could be in principle carried out by minimizing with respect to θi and Hi, i = 1, . . . ,s,

the following criterion function (see Section 1.2.2):

VN(θi,Hi) =
1
N

N

∑
k=1

�
(
yk − f (xk)

)
(2.18)

where � is a given nonnegative function, e.g., �(ε) = ε2, or �(ε) = |ε|. The min-

imization of (2.18) for a fixed s is still a very hard, in general highly nonconvex

problem with several local minima. The main difficulty is that the estimation of the

regions Xi, i = 1, . . . ,s, which determine the classification of the data points and

are defined as follows:

Xi =
{

x ∈ R
n
∣∣Hi ϕ � 0

}
, ϕ = [ x′ 1 ]′ (2.19)

cannot be decoupled from the identification of each submodel. Moreover, in order

the PWA map f to be well defined, the collection
{
Xi

}s
i=1 is implicitly constrained

to form a complete partition of the regressor set X ⊆ R
n where model (2.17) is

valid. The problem becomes simple if the regions (2.19) are either known or fixed a

priori. In this case, each regression vector xk can be easily classified (i.e., assigned

to one region), and by introducing the quantities:

χki =

⎧⎨
⎩ 1 if xk ∈ Xi

0 otherwise
, k = 1, . . . ,N, i = 1, . . . ,s (2.20)

the minimization of (2.18) can be expressed as follows:

min
θi

1
N

N

∑
k=1

s

∑
i=1

�
(
yk −ϕ ′

kθi
)
χki (2.21)

where ϕk = [ x′k 1 ]′. If �(ε) = ε2, problem (2.21) is an ordinary least-squares prob-

lem in the unknowns θi. An overview of several approaches to PWA system iden-
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tification will be given in the next section. Most approaches look for good subop-

timal solutions of the identification problem, except the one by Roll et al. (2004),

where the global optimum can be attained for two subclasses of PWA models by

reformulations of the minimization of (2.18) into mixed integer linear or quadratic

programs.

Remark 2.3 In the field of data analysis, a well-known problem is that of fitting the

given data to s hyperplanes (or affine regressions). The number s can be either fixed

or not; see, e.g., (Bradley and Mangasarian, 2000; Amaldi and Mattavelli, 2002).

Different from the identification of PWARX models, where region estimation must

be also addressed, here the aim in only to classify the data points into clusters and to

estimate an affine submodel for each cluster. Assuming that N data points (yk,xk)

are given, with yk ∈R and xk ∈R
n, k = 1, . . . ,N, for a fixed s the considered problem

can be formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
θi,χki

1
N

N

∑
k=1

s

∑
i=1

�
(
yk −ϕ ′

kθi
)
χki

s.t.
s

∑
i=1

χki = 1 k = 1, . . . ,N

χki ∈ {0,1} k = 1, . . . ,N, i = 1, . . . ,s

(2.22)

where ϕk = [ x′k 1 ]′, and � is a given nonnegative function. Each binary variable

χki decides whether the data point (yk,xk) is assigned to the i-th submodel, under

the constraint that each data point must be assigned to only one submodel. Prob-

lem (2.22) is a mixed integer program that is computationally intractable, except for

small instances. Approaches to PWA system identification that first aim at classify-

ing the data and estimating the affine submodels, and then at estimating the regions,

can be in many cases easily adapted to deal with this problem. �

2.3 Approaches to PWA system identification

As discussed in the previous section, the identification of PWA models is a chal-

lenging problem. It involves the estimation of both the parameters of the affine
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submodels, and the coefficients of the hyperplanes defining the partition of the re-

gressor set. The problem is even more complicated when also the number of sub-

models must be estimated. Additional difficulties arise in the identification of state

space models from input-output data. The matrices of system (2.1) are not unique,

rather are defined up to a linear state transformation. This transformation must be

the same for all submodels. Hence, once the matrices for each affine submodel have

been estimated, all these must be suitably transferred to the same state basis.

In this section, an overview of different approaches to PWA system identi-

fication will be presented. The description is not intended to be exhaustive, and

the interested reader is referred to (Roll, 2003) for more details. Work on regres-

sion with PWA maps can be found in many fields, e.g., neural networks, electrical

networks, time-series analysis, function approximation. Different categories of ap-

proaches can be distinguished depending on how the partitioning into regions is

done. It follows from the discussion in Section 2.2 that there are mainly two alter-

native approaches: either the partition is defined a priori, or it is estimated along

with the different submodels.

The first approach requires to define a priori the gridding of the regressor

set (or the state+input set, for models in state space form). For instance, rectan-

gular regions with sides parallel to the coordinate axes are used by Billings and

Voon (1987), whereas simplices (i.e., polytopes with n + 1 corners, where n is the

dimension of the space) are considered in (Julián et al., 1999). This approach dras-

tically simplifies the estimation of the linear/affine submodels, since standard linear

identification techniques can be used to estimate the submodels, given enough data

points in each region. On the other hand, it has the drawback that the number

of regions, and hence the computational complexity and the need for experimen-

tal data, grow exponentially with n. This approach is therefore impracticable for

higher-dimensional systems.

The second approach consists in estimating the submodels and the partition of

the regressor set (or the state+input set) either simultaneously or iteratively. This

should allow for the use of fewer regions, i.e., for a reduced complexity of the
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identified model, since the regions are shaped according to the data. Depending

on how the partition is determined, Roll (2003) further distinguishes among four

different categories of approaches.

The first category relies on the direct formulation of a suitable criterion func-

tion to be minimized, like (2.18). The parameters of the affine submodels and the

coefficients of the hyperplanes defining the partition of the regressor set (or the

state+input set) are hence estimated simultaneously by minimizing the criterion

function through numerical methods (e.g., Gauss-Newton search). The algorithms

proposed in (Chan and Tong, 1986; Batruni, 1991; Julian et al., 1998; Pucar and

Sjöberg, 1998; Gad et al., 2000) fall into this category. This way of tackling the

identification problem is straightforward, but has the drawback that the optimiza-

tion algorithm might be trapped in a local minimum. Techniques for reducing the

risk of getting stuck in a local minimum can be used, at the cost of increased com-

putational complexity.

The second category of approaches is an extension of the first one, allow-

ing more flexibility with respect to the number of submodels. All parameters are

identified simultaneously for a model with a very simple partition. If the resulting

model is not satisfactory, new submodels/regions are added, in order to improve

the value of a criterion function. In other words, instead to be solved at once, the

overall identification problem is divided into several steps, each consisting in an

easier problem to solve. The algorithms proposed in (Breiman, 1993; Heredia and

Arce, 1996; Ernst, 1998; Hush and Horne, 1998) fall into this category. The first

one has been further analyzed in (Pucar and Sjöberg, 1998). Julian et al. (1998) also

describe an iterative method for introducing new partitions on the domain, when the

error obtained is not satisfactory. As for the first category of approaches, there is

still a risk to get stuck in a local minimum. When adding new submodels, one

should also take into consideration the risk of overfit.

The third category contains a variety of approaches, sharing the characteristic

that the parameters of the submodels and the partition of the regressor set (or the

state+input set) are identified iteratively or in different steps, each step consider-
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ing either the submodels or the regions. The algorithms proposed in (Bemporad

et al., 2003a; Ferrari-Trecate et al., 2003; Vidal et al., 2003b; Ragot et al., 2003)

start by classifying the data points and estimating the linear/affine submodels si-

multaneously. Then, region estimation is carried out by resorting to standard linear

separation techniques. An online algorithm is proposed in (Skeppstedt et al., 1992),

where a multiple-model recursive parameter estimation algorithm is used to identify

the current parameter values. In (Münz and Krebs, 2002), the position of rectangu-

lar regions is optimized one by one iteratively. Then, each rectangular region is di-

vided into simplices, in which affine submodels are finally identified. In (Medeiros

et al., 2002), a greedy randomized adaptive search procedure is used to iteratively

and heuristically find good partitions of the state space.

The last category of approaches estimates the partition using only information

concerning the distribution of the regression vectors, and not the corresponding

output values. The algorithms proposed in (Strömberg et al., 1991; Choi and Choi,

1994) fall into this category. The major drawback of this category of approaches is

that, without considering the output values, a set of data which really should belong

to the same submodel might be split arbitrarily.

It should be noted that most of the aforementioned approaches, e.g., (Batruni,

1991; Breiman, 1993; Choi and Choi, 1994; Heredia and Arce, 1996; Hush and

Horne, 1998; Ernst, 1998; Julian et al., 1998; Pucar and Sjöberg, 1998; Gad et

al., 2000) assume that the system dynamics is continuous, whereas, e.g., (Bemporad

et al., 2003a; Ferrari-Trecate et al., 2003; Vidal et al., 2003b; Ragot et al., 2003)

allow for discontinuities.

Remark 2.4 (PWA identification via mixed-integer programming)

The minimization of the criterion function (2.18) is in general a highly noncon-

vex problem with several local minima, hence difficult to solve for the global op-

timum. In (Roll et al., 2004) two subclasses of PWA models, namely HHARX

models (2.13) and W-PWARX models (2.15), are considered. For these subclasses

the global optimum can be attained by reformulations of the problem into mixed-

integer linear or quadratic programs. The drawback of this approach is that the
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worst-case complexity is high, although for W-PWARX models it is also shown

that the worst-case complexity is actually not exponential, rather polynomial. Nev-

ertheless, this approach may be interesting in cases where relatively few data are

available (e.g., when it is very costly to obtain data), and where it is important to

get a model which is as good as possible. �

Remark 2.5 (Identification of PWA Hammerstein and Wiener models)

Identification of Hammerstein and Wiener models with hard and discontinuous non-

linearities (e.g., saturations, dead-zones, and preloads) is of great practical impor-

tance. Such nonlinearities are common in engineering problems, and can severely

limit the performance of control systems. The knowledge of nonlinearity parame-

ters may instead enable to cancel or reduce such adverse effects. Although identifi-

cation of Hammerstein and Wiener models has been discussed quite extensively in

the literature, only few approaches have been proposed for the identification of mod-

els with hard and discontinuous nonlinearities; see, e.g., (Vörös, 1997; Bai, 2002)

for Hammerstein models, and (Vörös, 2001; Pupeikis et al., 2003; Pupeikis, 2003)

for Wiener models. These approaches aim at identifying separately both the param-

eters of the linear system and the parameters of the nonlinearity. However, since

Hammerstein and Wiener models with piecewise affine nonlinearities are them-

selves piecewise affine, another approach to the identification of such models might

be to estimate the overall PWA model by using the techniques in this section, and

then, if needed, to reconstruct the linear and the nonlinear parts; see, e.g., (Roll et

al., 2004). �

The remaining part of this section gives a short description of the three identifi-

cation procedures for PWARX models that have been recently proposed in (Ferrari-

Trecate et al., 2003), (Vidal et al., 2003b), and (Ragot et al., 2003). These proce-

dures share with the one proposed in this thesis the idea to tackle the identification

problem by first classifying the data and estimating the affine submodels, and then

estimating the partition of the regressor set. The description will highlight the dif-

ferent ways in which data classification and parameter estimation are carried out
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in each approach. Region estimation then corresponds to a problem of linear sep-

aration between clusters that can be addressed by resorting to standard techniques.

Chapter 4 is dedicated to this topic. In the following, the notation introduced in

Section 2.2 will be used.

The algorithm proposed in (Ferrari-Trecate et al., 2003) exploits the combined

use of clustering and linear identification techniques in order to classify the data and

estimate the affine submodels of PWARX models. The number s of submodels is

fixed a priori. For k = 1, . . . ,N, a local data set Ck is formed by collecting (yk,xk)

and the data points (y j,x j) ∈ D with the c− 1 nearest neighbors x j to xk. The

cardinality c of the local data sets is a parameter of the algorithm satisfying c >

n + 1. Local parameter vectors θ̃k are obtained for each local data set Ck by using

least squares. The centers:

mk =
1
c ∑

(y j,x j)∈Ck

x j

of the local data sets are also computed, and the feature vectors ξk = [ θ̃ ′
k m′

k ]′ are

formed. These are partitioned into s clusters by using a “K-means”-like algorithm

which exploits suitably defined confidence measures for the feature vectors. It is

indeed expected that most feature vectors form s dense clouds in the feature space.

The resulting clusters Ei of feature vectors, i = 1, . . . ,s, are used to form the clusters

Di of data points by assigning (yk,xk) to Di if ξk ∈ Ei. The data points in each cluster

Di are then used for estimating the parameter vectors θi of each submodel through

weighted least squares. By performing the clustering in a suitably defined feature

space, this algorithm is able to discriminate situations in which the same parameter

vector is valid on different regions. A drawback is that the quality of the identified

model, including the partition, could be spoiled by the presence of mixed local data

sets, i.e., local data sets collecting data points generated by different submodels. A

modification of this algorithm has been presented in (Ferrari-Trecate and Muselli,

2003), where the use of single-linkage clustering is proposed for dealing with the

estimation of the number of submodels.

The algorithm described by Vidal et al. (2003b) is a nice algebraic geometric

solution for the identification of (noiseless) PWA systems. It establishes a connec-
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tion between PWA system identification, polynomial factorization, and hyperplane

clustering. If it is assumed that the data are generated by the noiseless PWARX

system (2.4)-(2.5), then by introducing the following vectors:

bi = [ θ ′
i 1 ]′ ∈ R

K , i = 1, . . . ,s

zk = [ ϕ ′
k − yk ]′ ∈ R

K

where s is the number of submodels and K = na +nb +2, it follows that at each time

instant k = 1, . . . ,N there exists at least one i ∈ {1, . . . ,s} such that b′
i zk = 0. Hence,

the following constraint must be satisfied by the model parameters and the data:

s

∏
i=1

b′
i zk = 0 (2.23)

Equation (2.23) is called the hybrid decoupling constraint by the authors, since it

allows to estimate the model parameters independently of the filtering of the discrete

mode, i.e., of the classification of the data points, and regardless of the mechanism

generating the transitions. The polynomial ps(z) = ∏s
i=1 b′

i zk, which is of degree s

in K variables, can be rewritten as follows:

ps(z) = ∑hα1,...,αK zα1
1 . . .zαK

K � h′νs(z) (2.24)

where hα1,...,αK ∈ R is the coefficient of the monomial zα1
1 . . .zαK

K , with 0 ≤ α j ≤ s,

j = 1, . . . ,K, and ∑K
j=1 α j = s. Vectors h and νs(z) have dimension:

Ms =
( s+K −1

K −1

)

By considering (2.23) for all the available data, the following linear system of equal-

ities is obtained:

Lsh �

⎡
⎢⎢⎢⎣

νs(z1)′
...

νs(zN)′

⎤
⎥⎥⎥⎦h = 0 (2.25)

Vidal et al. showed that, under mild assumptions, the number s of submodels can

be determined as the minimum � such that rank(L�) = M� − 1. Then, the vector h

can be obtained by solving (2.25), and the parameters θi can be retrieved from the
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derivatives of (2.24). Lastly, data classification can be carried out by assigning each

data point to the submodel i∗ such that:

i∗ = arg min
i=1,...,s

(b′
i zk)2

The algorithm is designed for noiseless data, but the authors suggest how to adapt

it in order to deal with noisy data. However, robustness of the algorithm with noisy

data and outliers is an open issue.

The iterative algorithm proposed by Ragot et al. (2003) allows for data classi-

fication and sequential estimation of the parameters of a PWARX model through the

use of adapted weights. The algorithm is not concerned with the estimation of the

number of submodels and the regions, rather it attempts to solve the optimization

problem (2.22) with �(ε) = ε2 by relaxing the constraints on the weights χki. An

iterative procedure, alternating between parameter estimation given the weights,

and weight update given the model parameters, is proposed. The aim is to adapt

the weights in such a way that, for each k = 1, . . . ,N, only one χki approaches 1,

whereas the other χk j, j �= i, approach 0. These values are then converted into 0’s

and 1’s, which provide the classification of the data points. Also for this method,

performance in the case of noisy measurements needs further investigations.

3

PWA Identification using MIN PFS

In this chapter the main contribution of this thesis will be presented, consisting in

a procedure for data classification and parameter estimation of PWARX models.

Region estimation will be addressed in Chapter 4.

Inspired by ideas from set membership identification, the key approach here

is to characterize the identified model by a bound δ on the fitting error. This allows

to carry out data classification and parameter estimation, along with the estimation

of the number of submodels (which is not fixed a priori), by partitioning a suitable

set of linear inequalities derived from data into a minimum number of feasible sub-

systems (MIN PFS problem). A refinement procedure is also applied in order to

reduce misclassifications, and to improve parameter estimates. It will be shown that

the bound δ can be used as a tuning knob to trade off between quality of fit and

model complexity. In addition, the identified model associates to each submodel

a set of feasible parameters, thus allowing for evaluation of the related parametric

uncertainty.

3.1 Problem Statement

In this section, the PWA system identification problem will be formulated by requir-

ing the fitting error (i.e., the difference between the system output and the predicted
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output of the model) to be bounded by a given quantity δ . This idea arises from the

unknown but bounded (UBB) error description used in set membership identifica-

tion (see Section 1.3), where the uncertainty affecting the available data is described

by means of additive noise, which is only known to have given bounds.

Assume that a collection of input-output samples (uk,yk), with uk ∈ R
p and

yk ∈ R, generated by the discrete-time nonlinear dynamical system

yk = F(uk−1,yk−1)+ ek (3.1)

is given. F is a (possibly discontinuous) nonlinear function, k ∈ Z is time, uk−1 and

yk−1 are, respectively, past system inputs and outputs up to time k−1:

uk−1 = [ u′
k−1 u′

k−2 . . . ]′

yk−1 = [ yk−1 yk−2 . . . ]′

and ek is additive noise. The construction of a model from data involves first of all

the choice of a model structure within which a suitable model will be fitted. As

described in Section 2.1.2, PWARX models are suitable when dealing with input-

output data, since they provide an input-output description of PWA systems. It is

repeated here for convenience that a PWARX model is defined as follows:

yk = f (xk)+ εk (3.2)

where εk ∈ R is the error term, xk ∈ R
n is the regression vector with fixed structure

depending on past na outputs and nb inputs:

xk = [ yk−1 . . . yk−na u′
k−1 . . . u′

k−nb
]′ (3.3)

(hence, n = na + p ·nb), and f : X → R is the piecewise affine map:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ ′θ1 if H1ϕ � 0
...

...

ϕ ′θs if Hsϕ � 0

, ϕ = [ x′ 1]′ (3.4)

In (3.4), s is the number of submodels (or modes), and θi ∈ R
n+1, i = 1, . . . ,s, are

the parameter vectors of each affine ARX submodel. The convex polyhedra

Xi =
{

x ∈ R
n
∣∣Hi ϕ � 0

}
, ϕ = [ x′ 1]′ (3.5)
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with Hi ∈ R
qi×(n+1), i = 1, . . . ,s, form a complete partition1 of the regressor set

X ⊆R
n, i.e., the region of validity of the PWARX model. Note that, once the orders

na and nb in (3.3) are chosen, it is often possible to describe X by considering the

physical constraints on the inputs and the output of the system. In practice, these

constraints are commonly specified in terms of box-bounds on each input (or output)

sample, or on each input (or output) increment. For instance, typical constraints on

the output are:

|yk| ≤ ymax or |yk − yk−1| ≤ ∆ymax

For a more compact notation, hereafter the extended regression vector ϕk = [ x′k 1 ]′

will be considered, i.e.:

ϕk = [ yk−1 . . . yk−na u′
k−1 . . . u′

k−nb
1 ]′

It is also recalled that the PWA map (3.4) is not assumed to be continuous, and

hence definition (3.4) is not well posed in general, since the PWA map could be

multiply defined over common boundaries of the regions Xi. See Remark 2.2 for

how to avoid this problem.

The objective of the considered identification problem is to find a PWARX

model (3.2)-(3.4) of system (3.1) that matches as good as possible the given data

points (yk,xk), k = 1, . . . ,N, according to a suitably specified criterion of fit. The

approach proposed in this thesis characterizes the identified model by its maximum

fitting error, i.e., it is required that:

|yk − f (xk)| ≤ δ , k = 1, . . . ,N (3.6)

for a fixed δ > 0. The number of submodels s is not assumed to be known, or a

priori fixed, rather it is estimated along with the parameters of the model so as to

satisfy condition (3.6). In order to obtain a model which is as simple as possible

(where “simplicity” is intended in terms of the number of submodels), the mini-

mum s allowing to satisfy (3.6) is sought. Under condition (3.6), the considered

identification problem can be stated as follows.

1⋃s
i=1 Xi = X and Xi

⋂
X j = /0, ∀ i �= j
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Problem 3.1 Given the N data points (yk,xk), k = 1, . . . ,N, and δ > 0, estimate a

minimum positive integer s, parameter vectors {θi}s
i=1, and a polyhedral partition

{Xi}s
i=1 of the regressor set X , such that the corresponding PWARX model (3.2)-

(3.4) satisfies condition (3.6).

A solution of Problem 3.1 provides a suitable number of submodels s and, for this s,

a suboptimal solution for the minimization of the criterion function (2.18). It is

stressed that the bound δ is not necessarily given a priori, it is rather a tuning knob

of the identification procedure. In Section 3.2.4 it will be shown that δ can be used

in order to find the desired trade off between the complexity of the model in terms

of the number of submodels, and the quality of fit. Indeed, the smaller δ , the larger

the number of submodels needed to fit the data points to a PWA map (3.4). On the

other hand, the larger δ , the worse the fit, since large errors are allowed.

Remark 3.1 The problem of finding a PWA approximation of a given nonlinear

function can be easily cast into Problem 3.1. In this case, one has a nonlinear

function F : X �→ R, and wants to find a PWA function (3.4) that approximates N

given samples (yk,xk), k = 1, . . . ,N, with desired accuracy, where yk ∈ R represent

values of F obtained at certain points xk ∈ X ⊆ R
n:

yk = F(xk)+ ek (3.7)

Here ek ∈ R is an error term that can be either zero (e.g., when F can be computed

analytically), or nonzero (e.g., when F is evaluated numerically by iterative proce-

dures, as in the case of implicit functions or optimal value functions). By requiring

condition (3.6), the approximation problem consists in finding a minimum s and a

PWA function (3.4) such that the maximum approximation error is bounded by δ .

The bound δ hence represents the desired precision in approximating F . �

The procedure for solving Problem 3.1 proposed in this thesis, consists of the

following three steps:

• Initialization, in which data classification and parameter estimation are car-

ried out, along with the estimation of the number of submodels, by parti-
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tioning a suitable set of linear inequalities derived from data into a minimum

number of feasible subsystems (MIN PFS problem).

• Refinement, whose aim is to reduce misclassifications and to improve param-

eter estimates.

• Region estimation, performed by separating the clusters of regression vectors

via two-class or multi-class linear separation techniques.

The first two steps will be described in Sections 3.2 and 3.3. New ideas for effi-

ciently addressing the MIN PFS problem will be also discussed. Region estimation

will be considered in Chapter 4. Note that condition (3.6) naturally leads to a set

membership or bounded error approach to the identification problem. In the fol-

lowing, pointwise parameter estimates will be computed by using the �∞ projection

estimator, already introduced in Section 1.3. Given a set D of data points (yk,xk),

the projection estimate is computed as follows:

Φp(D) = argmin
θ

max
(yk,xk)∈D

∣∣yk −ϕ ′
kθ

∣∣ (3.8)

where ϕk = [ x′k 1 ]′. Computation of (3.8) can be carried out by solving a suitable

linear program like (1.26). The projection estimate is preferred because it has fa-

vorable properties for the refinement procedure. It could be however replaced by

any other pointwise estimate, e.g., the least squares estimate.

The following example will be used throughout this chapter for illustrating the

mechanism of the proposed identification procedure.

Example 3.1 Let the data (yk,xk) be generated by the PWARX system:

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−0.4yk−1 +uk−1 +1.5+ ek if 4yk−1 −uk−1 +10 < 0

0.5yk−1 −uk−1 −0.5+ ek if 4yk−1 −uk−1 +10 ≥ 0 and

5yk−1 +uk−1 −6 ≤ 0

−0.3yk−1 +0.5uk−1 −1.7+ ek if 5yk−1 +uk−1 −6 > 0

The number of submodels is s = 3. The input signal uk and the noise signal ek

are uniformly distributed on [−4,4] and [−0.2,0.2], respectively. N = 200 estima-

tion data points are used. The (unknown) partition of the regressor set, and the set
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Figure 3.1 The available regression vectors and the partition of the regressor set (which is
not assumed to be known during the identification process) for Example 3.1

of regression vectors xk = [ yk−1 uk−1 ]′ available for estimation are shown in Fig-

ure 3.1. From left to right, the three regions contain 54, 83 and 63 points.

3.2 Initialization using MIN PFS

In the first part of the proposed procedure for solving Problem 3.1, the estimation of

the hyperplanes defining the polyhedral partition of the regressor set is temporarily

not addressed. The focus is rather on determining a suitable number of submodels,

classifying the data points and estimating the affine submodels. By relaxing the

estimation of the regions, Problem 3.1 reduces to the following:

Problem 3.2 Given δ > 0 and the system of N linear complementary inequalities:

∣∣yk −ϕ ′
kθ

∣∣≤ δ , k = 1, . . . ,N (3.9)

find a partition of (3.9) into a minimum number of feasible subsystems.

The above formulation enables to address simultaneously the fundamental issues

of data classification and parameter estimation, along with the estimation of the

number of submodels. Given any solution of Problem 3.2, the partition of the lin-

ear complementary inequalities (3.9) provides the classification of the data points,
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whereas according to the bounded error condition each feasible subsystem defines

the set of feasible parameter vectors for the corresponding affine submodel. Note

that each inequality (3.9) is termed a linear complementary inequality because it

corresponds to the pair of linear inequalities:⎧⎪⎨
⎪⎩

ϕ ′
kθ ≤ yk +δ

ϕ ′
kθ ≥ yk −δ

(3.10)

Problem 3.2 consists in finding a Partition of a system of linear inequalities into a

Minimum number of Feasible Subsystems (MIN PFS problem), with the additional

constraint that two paired linear inequalities (3.10) must be included in the same

subsystem (i.e., they must be simultaneously satisfied by the same parameter vec-

tor θ ). The MIN PFS problem is NP-hard. Hence, in (Bemporad et al., 2003a)

it was suggested to tackle Problem 3.2 by resorting to the greedy randomized al-

gorithm proposed by Amaldi and Mattavelli (2002). In the next sections, some

modifications to the original algorithm are proposed in order to obtain a number s

of subsystems which is closer to be minimal. The algorithm also provides s disjoint

sets of indices Ii, i = 1, . . . ,s, characterizing the s subsystems extracted from (3.9).

These induce the initial classification of the data points (yk,xk), k = 1, . . . ,N, into

the s clusters D
(0)
i =

{
(yk,xk)

∣∣k ∈ Ii
}

, i = 1, . . . ,s.

3.2.1 A greedy approach to MIN PFS

The greedy approach to the MIN PFS problem with complementary inequalities

proposed by Amaldi and Mattavelli (2002) divides the overall partition problem into

a sequence of subproblems, where each subproblem consists in finding a parameter

vector θ that satisfies the maximum number of linear complementary inequalities.

Starting from (3.9), feasible subsystems with maximum cardinality are iteratively

extracted (and the corresponding inequalities removed), until the remaining sub-

system is feasible. This strategy clearly yields a partition into feasible subsystems.

Since finding a Feasible Subsystem with MAXimum cardinality of a system of linear

inequalities (MAX FS problem) is also NP-hard, a randomized and thermal relax-
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Set Ī1 =
{

1, . . . ,N
}

and s = 0

REPEAT

Set s = s+1 and Σs =
{|yk −ϕ ′

kθ | ≤ δ
∣∣k ∈ Īs

}
Find a solution θs of the MAX FS problem for system Σs (see Table 3.2)

Set i = 1

WHILE i < s

Set Iis =
{

k ∈ Īi
∣∣ |yk −ϕ ′

kθs| ≤ δ
}

IF #Iis > #Ii THEN set θi = θs and s = i, BREAK

Set i = i+1

END WHILE

Set Is =
{

k ∈ Īs
∣∣ |yk −ϕ ′

kθs| ≤ δ
}

and Īs+1 = Īs\Is

UNTIL Īs+1 = /0

RETURN s and Ii, i = 1, . . . ,s

Table 3.1 Modified greedy algorithm for the MIN PFS problem with complementary in-
equalities. The BREAK command is used to terminate the WHILE loop

ation method, which provides (suboptimal) solutions with a low computational bur-

den, is also proposed in (Amaldi and Mattavelli, 2002). As it will be discussed in

Section 3.2.3, due to both the suboptimality of the greedy approach to the MIN PFS

problem, and the randomness of the method used to tackle each single MAX FS

problem, the resulting greedy randomized algorithm for Problem 3.2 is not guaran-

teed to yield minimum partitions, i.e., the number of extracted subsystems might be

not minimal. In particular, it was observed in extensive trials that both the variance

of the results can be quite large (i.e., the number of extracted subsystems may differ

considerably from trial to trial), and the average number of extracted subsystems

can be quite far from the minimum. Some modifications to the original algorithm

by Amaldi and Mattavelli are hence here proposed in order to obtain a number s of

subsystems which is closer to be minimal.

The modified greedy algorithm for the MIN PFS problem with complemen-
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tary inequalities is shown in Table 3.1. It differs from the original version for the

addition of the WHILE loop. Let Σs be the system consisting of the remaining in-

equalities after having extracted s−1 feasible subsystems from (3.9), and let θs be

a (suboptimal) solution of the MAX FS problem for system Σs provided by the al-

gorithm shown in Table 3.2. The solution θs is applied to the systems Σi with i < s

(WHILE loop). Note that Σs is a subsystem of Σi for all i < s, so that θs satisfies at

least as many complementary inequalities in Σi as in Σs. Let i∗ be the first index

i, if any, such that θs satisfies a larger number of complementary inequalities in Σi

than those satisfied by θi. Then, the best solution θi∗ found for system Σi∗ is set

equal to θs, and s is reset to i∗. Since the number of data points is finite, this algo-

rithm always terminates. Improvements obtained by the proposed modification to

the original algorithm are twofold. First, the cardinalities of successively extracted

subsystems form a decreasing sequence, as it would be expected if one could solve

each MAX FS problem exactly. Second, it allows to form subsystems with larger

cardinality, e.g., when two subsystems of complementary inequalities that could be

satisfied by one and the same parameter vector, are extracted at two different steps

(see Section 3.2.3). The second improvement is obtained also in combination with

modifications to the randomized and thermal relaxation algorithm used to tackle

each MAX FS problem, that will be described in the next section.

3.2.2 A relaxation method for MAX FS

Given a system of complementary inequalities like (3.9), the problem of determin-

ing a parameter vector θ that satisfies as many pairs of complementary inequalities

as possible, extends the combinatorial problem of finding a feasible subsystem with

maximum cardinality of an infeasible system of linear inequalities, which is known

as MAX FS problem. Based on the consideration that the MAX FS problem is

NP-hard, Amaldi and Mattavelli (2002) tackle its extension with complementary in-

equalities by resorting to a randomized and thermal variant of the classical Agmon-

Motzkin-Schoenberg relaxation method for solving systems of linear inequalities

(Agmon, 1954; Motzkin and Schoenberg, 1954), which provides (suboptimal) so-
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lutions with a low computational burden. In this section, some modifications to

the original algorithm by Amaldi and Mattavelli are proposed in order to obtain a

feasible subsystem with cardinality closer to be maximal.

The modified randomized and thermal relaxation algorithm for the MAX FS

problem with complementary inequalities is shown in Table 3.2. It differs from the

original version for the addition of the last IF statement. The algorithm requires to

define a maximum number of cycles C > 0, an initial temperature parameter T0 > 0,

an initial estimate θ (0) ∈ R
n+1 (e.g., randomly generated, or computed by least

squares), and a value ρ ∈ (0,1). It consists in a simple iterative procedure generating

a sequence θ ( j) of estimates, where j = 1, . . . ,CNs is the iteration counter, and

Ns is the number of complementary inequalities in the subsystem Σs of (3.9) at

hand (see Table 3.1). During each of the C outer cycles, all the Ns complementary

inequalities in Σs are selected in the order defined by a prescribed rule (e.g., cyclicly,

or uniformly at random without replacement). Assume that the complementary

inequality
∣∣yk −ϕ ′

kθ
∣∣≤ δ is considered at the j-th iteration, while all the others are

relaxed. Then the current estimate is updated as follows:

θ ( j) = θ ( j−1)− sign(vk
j)λ j ϕk (3.11)

where the violation vk
j of the k-th complementary inequality is computed as:

vk
j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ ′
kθ ( j−1)− yk −δ if ϕ ′

kθ ( j−1) > yk +δ

ϕ ′
kθ ( j−1)− yk +δ if ϕ ′

kθ ( j−1) < yk −δ

0 otherwise

(3.12)

and the size of the step λ j decreases exponentially with
∣∣vk

j

∣∣:

λ j =
T
T0

exp
−

∣∣vk
j

∣∣
T (3.13)

Geometrically, the complementary inequality
∣∣yk −ϕ ′

kθ
∣∣≤ δ defines a hyperstrip in

the parameter space (see Figure 3.2). If the current estimate θ ( j−1) belongs to the

hyperstrip (i.e., θ ( j−1) satisfies the k-th complementary inequality), then θ ( j) is set

equal to θ ( j−1). Otherwise, θ ( j) is obtained by making a step toward the hyperstrip

3.2 Initialization using MIN PFS 55

GIVEN: C, T0, θ (0), ρ

Set j = 0, θ̄ = θ (0) and Ī =
{

k ∈ Īs
∣∣ |yk −ϕ ′

kθ̄ | ≤ δ
}

FOR c = 0 TO C−1 DO

Compute (3.14) and set I = Īs

REPEAT

Set j = j +1

Pick an index k from I according to the prescribed rule

Compute (3.12), (3.13) and (3.11)

Set I ( j) =
{

k ∈ Īs
∣∣ |yk −ϕ ′

kθ ( j)| ≤ δ
}

IF #I ( j) > #Ī THEN set θ̄ = θ ( j) and Ī = I ( j)

Set I = I \{k
}

UNTIL I = /0

IF c > ρC THEN

Set D̄ =
{
(yk,xk)

∣∣k ∈ Ī
}

Compute θ̄ = Φp(D̄) and set θ ( j) = θ̄

Set Ī =
{

k ∈ Īs
∣∣ |yk −ϕ ′

kθ̄ | ≤ δ
}

END IF

END FOR

RETURN θ̄

Table 3.2 Modified randomized and thermal relaxation algorithm for the MAX FS problem
with complementary inequalities

along the line orthogonal to the hyperstrip and passing through θ ( j−1). The basic

idea of the algorithm is to favor updates of the current estimate which aim at correct-

ing unsatisfied inequalities with a relatively small violation. Decreasing attention to

unsatisfied inequalities with large violations (whose correction is likely to corrupt

other inequalities that the current estimate satisfies) is obtained by introducing a

decreasing temperature parameter T , to which the violations are compared, e.g.:

T =
(

1− c
C

)
T0 (3.14)
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θ ( j−1)

θ ( j) = θ ( j−1) −λ jϕk

ϕ ′
kθ = yk −δ ϕ ′

kθ = yk +δ
ϑ1

ϑ2

Figure 3.2 Geometric interpretation in the parameter space of a single iteration of the
relaxation method for the MAX FS problem with complementary inequalities (case θ ∈R

2)

where c = 0,1, . . . ,C − 1 is the outer cycle counter. If c is greater than ρC (last

IF statement), the current best solution θ̄ (i.e., the one that has satisfied so far the

larger number of complementary inequalities), as well as the current estimate θ ( j),

are replaced by the projection estimate (3.8). Namely, by denoting as D̄ the set of

data points (yk,xk) such that the corresponding inequalities |yk −ϕ ′
kθ | ≤ δ are in Σs

and are satisfied by the current θ̄ (θ̄old in the following), θ̄ is updated as follows:

θ̄ = argmin
θ

max
(yk,xk)∈D̄

∣∣yk −ϕ ′
kθ

∣∣ (3.15)

The new θ̄ satisfies at least as many complementary inequalities in Σs as θ̄old, since

max
(yk,xk)∈D̄

∣∣yk −ϕ ′
kθ̄

∣∣≤ max
(yk,xk)∈D̄

∣∣yk −ϕ ′
kθ̄old

∣∣≤ δ ,

and possibly might satisfy more complementary inequalities than θ̄old, thus provid-

ing a better solution of the MAX FS problem for system Σs. It was found experi-

mentally that suitable values for ρ lie between 0.7 and 0.8. Indeed, in the original

version of the algorithm, the current estimate θ ( j) (and hence the number of satisfied

complementary inequalities) does not change significantly anymore as c approaches

C, because the temperature parameter (3.14) to which the violations are compared,

becomes smaller and smaller. By resetting θ ( j) to the current best estimate (3.15) at
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the exit of a cycle when c approaches C, focuses the future search in a neighborhood

of θ̄ , where it is more likely to satisfy an even larger number of complementary in-

equalities. The solution θ̄ returned by the algorithm is the one that, during the

overall process, has satisfied the largest number of complementary inequalities. It

is however not guaranteed to be optimal, due to the randomness of the search.

For the choice of T0, as well as for practical questions concerning the imple-

mentation of the algorithm, the reader is referred to (Amaldi and Mattavelli, 2002).

In general, the larger the value of C, the better the solution, at the price of a longer

computation time. The proposed modifications allow however to obtain better solu-

tions than the original algorithm also for considerably smaller values of C, as shown

in Example 3.1 at page 60.

3.2.3 Comments on the initialization

When the greedy randomized algorithm described in Sections 3.2.1 and 3.2.2 is

applied for initializing the identification procedure, the estimate of the number of

affine submodels and the classification of the data points thus obtained, may suffer

two drawbacks. The major drawback is that the algorithm is not guaranteed to yield

minimum partitions. Due to the suboptimality of the greedy approach, the number s

of feasible subsystems extracted from (3.9) might be not minimal, even if feasible

subsystems with maximum cardinality were available at each step, as shown by the

following simple example.

Example 3.2 Consider the infeasible system of equalities:

ϑ1 −ϑ2 = 0 (3.16)

ϑ1 +ϑ2 = 0 (3.17)

ϑ1 +2ϑ2 = 3 (3.18)

0.5ϑ1 +ϑ2 = 0.5 (3.19)

which can be seen as a particular case of (3.9) for δ = 0. A partition of this system

into a minimum number of feasible subsystems consists of only two subsystems,
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e.g., the one composed by (3.16) and (3.18), and the one composed by (3.17) and

(3.19). However note that, if the greedy algorithm starts by extracting, among the

feasible subsystems with maximum cardinality, the one composed by (3.16) and

(3.17), then the two remaining equalities are infeasible, and the resulting partition

consists of three subsystems. Note also that the optimal solution of the MIN PFS

problem for the system of equalities (3.16)-(3.19) is not unique. Another minimum

partition consists of the two subsystems composed by (3.16) and (3.19), and by

(3.17) and (3.18), respectively.

In fact, feasible subsystems with maximum cardinality might be not even available

at each step, due to the randomness of the algorithm used to tackle each single MAX

FS problem. For instance, two subsystems of complementary inequalities that could

be satisfied by one and the same parameter vector, might be extracted at different

steps, because the search process was not able to find at once a parameter vector θ

satisfying all the inequalities in both subsystems. Moreover, after extracting a cer-

tain number of subsystems with larger cardinalities, the algorithm typically starts to

extract relatively small “mixed” subsystems. These contain leftover complementary

inequalities corresponding to outliers, or that should have been assigned to previ-

ously extracted subsystems, if the search process was able to find suitable parameter

vectors. Both circumstances determine an overestimation of the minimum number

of feasible subsystems of (3.9). Based on these considerations, some modifications

to the original greedy randomized algorithm by Amaldi and Mattavelli (2002) for

Problem 3.2 were proposed in Sections 3.2.1 and 3.2.2 in order to obtain a num-

ber of feasible subsystems which is closer to be minimal. Note also that one could

decide to stop the algorithm when the cardinalities of the extracted feasible sub-

systems become too small. This might be useful in order to penalize (most likely,

“mixed”) subsystems that account for just a few complementary inequalities.

The second drawback is related to a kind of ambiguity that is inherent to the

data. Some data points may be consistent with more than one affine submodel, i.e.,

they may satisfy |yk −ϕ ′
kθi| ≤ δ for more than one i = 1, . . . ,s. These data points

will be termed undecidable in Section 3.3. Due to the undecidable data points, the
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Figure 3.3 Initial classification of the regression vectors for Example 3.1 by using the orig-
inal greedy randomized algorithm for Problem 3.2. Each mark corresponds to a different
cluster, for a total of six clusters. The clusters in Figures 3.3(a) and 3.3(b) consist of 62 and
44 points, respectively. The two clusters in Figure 3.3(c) consist of 41 and 40 points. Last,
the two clusters in Figure 3.3(d) consist of 9 and 4 points. The dashed lines represent the
true partition of the regressor set, which is assumed to be unknown

cardinality and the composition of the feasible subsystems of (3.9) could depend on

the order in which the feasible subsystems are extracted by the greedy algorithm.

In order to cope with these drawbacks, a refinement procedure will be de-

scribed in Section 3.3. Its aim is to iteratively improve both data classification and

quality of fit by properly reassigning the data points, and updating the parameter es-

timates. It also allows to reduce the number of submodels by exploiting parameter

similarities and cluster cardinalities.
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Figure 3.4 Initial classification of the regression vectors for Example 3.1 by using the mod-
ified greedy randomized algorithm for Problem 3.2. Each mark corresponds to a different
cluster, for a total of three clusters. The cluster in Figure 3.4(a) consists of 87 points. The
left and right clusters in Figure 3.4(b) consist of 51 and 62 points, respectively. The dashed
lines represent the true partition of the regressor set, which is assumed to be unknown

Example 3.1 (cont’d) The original and the modified version of the greedy ran-

domized algorithm for Problem 3.2 described in Sections 3.2.1 and 3.2.2 were ap-

plied to the data set of Example 3.1. Since the noise was uniformly distributed on

[−0.2,0.2], the bound δ was chosen equal to 0.2 accordingly.

By running the original algorithm by Amaldi and Mattavelli (2002) with pa-

rameters C = 200 and T0 = 100, and cyclic selection of the complementary inequal-

ities, a partition of (3.9) into s = 6 feasible subsystems was found, consisting of 62,

44, 41, 40, 9 and 4 complementary inequalities, respectively. It is stressed that this

was the best solution obtained after several trials (i.e., all the other trials provided

a larger number of subsystems). The true number of submodels is overestimated.

The corresponding six clusters of regression vectors xk are shown in Figure 3.3. Fig-

ure 3.3(c) illustrates a situation in which two subsystems of complementary inequal-

ities corresponding to data points generated by the same submodel were extracted

at different steps, although a single parameter vector could satisfy both subsystems.

Figure 3.3(d) shows two “mixed” subsystems with small cardinality that were last

extracted when few complementary inequalities formed the remaining system after

having removed from (3.9) four subsystems with larger cardinalities.
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By running the modified algorithm proposed in Sections 3.2.1 and 3.2.2 with

parameters C = 10 and T0 = 100, and cyclic selection of the complementary in-

equalities, a partition of (3.9) into s = 3 feasible subsystems was found, consisting

of 87, 62 and 51 complementary inequalities, respectively. The estimated number

of submodels equals the true one. This correct result was obtained with just one

trial and a smaller number of cycles (C = 10) than that (C = 200) used in the runs

of the original algorithm. The corresponding three clusters of regression vectors are

shown in Figure 3.4. In Figure 3.4(a) some data points clearly look as misclassified.

They are undecidable data points (i.e., consistent with more than one submodel) that

were associated by the greedy strategy to the compatible submodel corresponding

to the largest feasible subsystem extracted from (3.9).

3.2.4 On the choice of δ

The bound δ is a tuning knob of the algorithm allowing to trade off between model

complexity and quality of fit. For too large values of δ , very large subsystems of

(3.9) are feasible, and beyond a certain value of δ the whole system (3.9) becomes

feasible. The identified PWARX model is simple because it contains very few affine

submodels, but the submodels do not fit well the corresponding data points, as large

errors are allowed. Conversely, too small values of δ lead to a very large number of

subsystems. There is a risk of overfit, i.e., the model starts to adjust to the particular

noise realization.

When a priori information on the system structure and the noise characteristics

is not available, an appropriate value of δ can be selected solving Problem 3.2 for a

range of values of δ . Given the low computational burden of the greedy randomized

algorithm for Problem 3.2, the curves expressing the number of feasible subsystems

of (3.9) and the average quadratic error

S2
2 =

1
N

s

∑
i=1

∑
k∈Ii

∣∣yk −ϕ ′
kθi

∣∣2 (3.20)

as a function of δ , can be easily plotted. Typically, when δ increases starting from a

very small value, the number of feasible subsystems first sharply decreases and then
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Figure 3.5 (a) Number of submodels and (b) average quadratic error versus the maximum
fitting error δ for Example 3.3

remains almost constant on a range of values. Conversely, the average quadratic

error increases with δ . An appropriate value of δ should be chosen close to the

knee of the first curve, trying to keep the average quadratic error small.

Example 3.3 N = 500 data points generated by a PWARX system composed by

s = 4 subsystems with na = 1 and nb = 1, were considered. The additive noise

was normally distributed with zero mean and variance σ2 = 0.1, and the signal-

to-noise ratio was about 10. The number of feasible subsystems of (3.9), and the

corresponding average quadratic error are plotted as a function of δ in Figure 3.5.

For values of δ below 0.9 (� 2.8σ ), the average quadratic error is small, but the

large number of submodels clearly indicates overfit of the data. For values of δ

between 0.9 and 1.9 (� 6σ ), the number of submodels remains constant and equal

to the true number s, whereas the average quadratic error grows moderately with δ .

For values beyond δ = 6, system (3.9) becomes feasible, and only one submodel is

sufficient. It is evident in Figure 3.5 that the best trade-off between model accuracy

and model complexity is achieved in this example for δ ranging from 0.9 to 1.
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3.3 A Refinement Procedure

The initialization procedure described in Section 3.2 provides a number s of sub-

models, and s clusters D
(0)
i formed by the data points (yk,xk) corresponding to the

i-th feasible subsystem extracted from (3.9), i = 1, . . . ,s. In order to cope with the

drawbacks of the initialization that were discussed in Section 3.2.3, a procedure for

the refinement of the estimates is presented in Table 3.3. It consists in a basic proce-

dure (steps 2, 4, 5 and 6) whose aim is to iteratively improve both data classification

and quality of fit by properly reassigning the data points, and updating the parame-

ter estimates. The additional steps 1 and 3 allow to reduce the number of submodels

by exploiting parameter similarities and cluster cardinalities. The refinement pro-

cedure returns the final number s of submodels, the parameter vectors θi, and the

classification of the (feasible) data points into the clusters Di, i = 1, . . . ,s.

3.3.1 Dealing with undecidable data

As it was discussed in Section 3.2.3, there may exist data points (yk,xk) that are

consistent with more than one submodel, i.e., satisfying
∣∣yk −ϕ ′

kθi
∣∣ ≤ δ for more

than one i = 1, . . . ,s. These data points are termed undecidable. Undecidable data

points could be classified correctly only by exploiting the partition of the regres-

sor set, which is however not available at this stage of the identification process.

When solving Problem 3.2 via the greedy approach described in Section 3.2.1, un-

decidable data points are classified depending on the order in which the feasible

subsystems are extracted from (3.9). As an alternative, each undecidable data point

(yk,xk) could be associated a posteriori to the submodel i∗ such that the error is

minimized, i.e.:

i∗ = arg min
i=1,...,s

∣∣yk −ϕ ′
kθi

∣∣ (3.21)

Both criteria may lead to misclassifications when the partition of the regressor set

is estimated (see Figure 3.6). Thus, in (Bemporad et al., 2003a), undecidable data

points were discarded during the classification procedure. This approach works well
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GIVEN: α , β , γ , c

Set t = 1 and θ (1)
i = Φp(D

(0)
i ), i = 1, . . . ,s

1. Merge submodels

Compute (i∗, j∗) = argmin1≤i< j≤s µ(θ (t)
i ,θ (t)

j )

IF αi∗, j∗ ≤ α THEN merge submodels i∗ and j∗, and set s = s−1

2. Data point reassignment

For each data point (yk,xk), k = 1, . . . ,N:

• IF
∣∣yk −ϕ ′

kθ (t)
i

∣∣≤ δ for only one i = 1, . . . ,s THEN

assign (yk,xk) to D
(t)
i and mark it as feasible

• IF
∣∣yk −ϕ ′

kθ (t)
i

∣∣≤ δ for more than one i = 1, . . . ,s THEN

mark (yk,xk) as undecidable

• OTHERWISE mark (yk,xk) as infeasible

3. Discard submodels

Compute i∗ = argmini=1,...,s #D
(t)
i /N

IF βi∗ ≤ β THEN discard submodel i∗, set s = s−1 and go to step 2

4. Assignment of undecidable data points

For each undecidable data point (yk,xk):

Compute Ci(xk), i = 1, . . . ,s, and i∗ = argmaxi=1,...,s #Ci(xk)

IF
∣∣yk −ϕ ′

kθ (t)
i∗

∣∣≤ δ THEN assign (yk,xk) to D
(t)
i∗ and mark it as feasible

5. Parameter estimation

Compute θ (t+1)
i = Φp(D

(t)
i ), i = 1, . . . ,s

6. Termination

IF
∥∥θ (t+1)

i −θ (t)
i

∥∥≤ γ
∥∥θ (t)

i

∥∥ for all i = 1, . . . ,s

THEN RETURN s, θi = θ (t+1)
i and Di = D

(t)
i , i = 1, . . . ,s

ELSE set t = t +1 and go to step 1

Table 3.3 Algorithm for the refinement of the estimates
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x

y

τ

y = ϕ ′θ1

y = ϕ ′θ2

Figure 3.6 PWA model with two discrete modes, x ∈ R. The gray set represents the region
of all possible undecidable data points for a fixed δ . By applying both the greedy approach
to Problem 3.2, and (3.21), the only undecidable data point in the data set (the black circle)
is associated to the first submodel. This yields two non-linearly separable clusters of points.
If the switching point τ , defining the partition of the x-axis, was known, the undecidable
data point could be correctly associated to the second submodel.

in many cases. However, when a large number of undecidable data points shows

up, a lot of information useful for identification and contained in the discarded data,

is actually not used. Hence, a modification to the classification procedure is here

proposed in order to associate undecidable data points to submodels by exploiting

spatial localization. This improves both the data classification (in regard to the

estimation of the regions) and the parameter estimates.

The basic procedure for the refinement of the estimates consists of four steps

(steps 2, 4, 5 and 6 in Table 3.3) to be iterated. Initial parameter estimates for each

submodel are computed as θ (1)
i = Φp(D

(0)
i ), i = 1, . . . ,s, where Φp(·) denotes the

projection estimator (3.8). At each iteration indexed by t = 1,2, . . . , in step 2 all data

points are processed, and classified as feasible, infeasible or undecidable according

to the current estimated parameter vectors θ (t)
i , i = 1, . . . ,s. A feasible data point

(yk,xk) satisfies the complementary inequality

∣∣yk −ϕ ′
kθ (t)

i

∣∣≤ δ (3.22)

for only one i = 1, . . . ,s, say i∗. Hence, it can be uniquely associated to the i∗-th

submodel, and assigned to the corresponding cluster D
(t)
i∗ . The classification of the
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feasible data points induces also a classification of the (feasible) regression vectors

xk into the clusters:

F
(t)
i =

{
xk

∣∣(yk,xk) ∈ D
(t)
i

}
, i = 1, . . . ,s

Infeasible data points do not satisfy (3.22) for any i = 1, . . . ,s. Undecidable data

points satisfy (3.22) for more than one i = 1, . . . ,s, i.e., they are consistent with more

than one submodel. Step 4 tries to solve this ambiguity by exploiting spatial local-

ization in the regressor set. For each undecidable data point (yk,xk), the set C (xk)

of the c feasible regression vectors that are closest to xk, is computed. Here, c is a

fixed positive integer, and the Euclidean distance is used. The feasible points around

xk are indeed expected to provide useful information for correctly classifying the

undecidable data point (yk,xk). A set C (xk) may in principle collect regression

vectors from different clusters F
(t)
i . Hence, the clusters Ci(xk) = C (xk)

⋂
F

(t)
i ,

i = 1, . . . ,s, are computed, and the index i∗ such to maximize the cardinality of

Ci(xk), i = 1, . . . ,s, is considered, i.e.:

i∗ = arg max
i=1,...,s

#Ci(xk)

If the undecidable data point (yk,xk) satisfies
∣∣yk −ϕ ′

kθ (t)
i∗

∣∣≤ δ , then it is associated

to the i∗-th submodel and assigned to D
(t)
i∗ , otherwise it is left undecidable.

New parameter estimates for each submodel are computed in step 5 by using

the projection estimator (3.8), i.e., θ (t+1)
i = Φp(D

(t)
i ), i = 1, . . . ,s. The use of the

projection estimate is favorable because it guarantees that no feasible data point at

refinement t becomes infeasible at refinement t +1, since:

max
(yk,xk)∈D

(t)
i

∣∣yk −ϕ ′
kθ (t+1)

i

∣∣≤ max
(yk,xk)∈D

(t)
i

∣∣yk −ϕ ′
kθ (t)

i

∣∣≤ δ , i = 1, . . . ,s

In step 6 the termination condition is checked. Given a tolerance γ > 0, if the

new and the current parameter vectors satisfy:∥∥θ (t+1)
i −θ (t)

i

∥∥∥∥θ (t)
i

∥∥ ≤ γ, ∀i = 1, . . . ,s

then the iterations are stopped. However, in order to avoid that the procedure does

not terminate, a maximum number tmax of refinements can be predefined.
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It is evident that the proposed refinement procedure relies on the distinction

among infeasible, undecidable, and feasible data points, and the alternation between

data point reassignment and parameter update. Infeasible data points are not consis-

tent with any submodel. If the corresponding violations are large, they are expected

to be outliers. Neglecting them in the parameter estimation helps to improve the

quality of fit. On the other hand, infeasible data points with a small violation may

be recovered to be feasible iteration by iteration as the parameter estimates are up-

dated, thus improving the quality of the classification. Also undecidable data points

may be recovered to be feasible in step 4. Here, good choices for the parameter

c depend on the density of the data set. In general, c should not be chosen too

small, in order to avoid that the sets C (xk) do not contain enough points for correct

classification. On the other hand, for large values of c, a set C (xk) might contain

points distant from xk. In this case, the data point (yk,xk) could be badly assigned

to a “far” cluster, or left undecidable. Indeed, if many data points are still classi-

fied as undecidable at the exit of the refinement procedure, it is likely that c was

chosen too large. Neglecting the undecidable data points will help to reduce the

number of misclassifications when estimating the partition of the regressor set (see

Section 4.5).

3.3.2 Reducing the number of submodels

The basic procedure for the refinement of the estimates described in Section 3.3.1,

does not change the number of submodels. Hence, additional steps are required to

cope with the case when the initialization provides an overestimation of the mini-

mum number of submodels needed to fit the data, as discussed in Section 3.2.3.

In order to reduce the number of submodels, one can exploit parameter simi-

larities and cluster cardinalities. Two submodels characterized by similar parameter

vectors can be merged in step 1. Here, the quantity

µ(θ1,θ2) � ‖θ1 −θ2‖
min{‖θ1‖,‖θ2‖}

is used as a measure of the similarity of two vectors θ1, θ2 ∈ R
n+1, and two close
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Figure 3.7 Classification of the regression vectors (triangles, circles, diamonds) for Ex-
ample 3.1 after the refinement. The dashed lines represent the true partition of the regressor
set, which is assumed to be unknown. All data points are correctly classified

submodels i∗ and j∗ are combined at iteration t by computing the joined parameter

vector as Φp(D
(t−1)
i∗

⋃
D

(t−1)
j∗ ). Note that, when two parameter vectors are very

similar, a large number of undecidable data points might show up in step 2. On

the other hand, if the cardinality of a cluster of feasible data points is too small,

the corresponding submodel (which accounts only for few data) can be discarded in

step 3. The positive thresholds α and β in steps 1 and 3 should be suitably chosen

in order to reduce the number of submodels still preserving a good fit of the data.

For too large values of α and β , a large number of infeasible data points typically

will show up as the number of submodels decreases and some significant submodel

is neglected. One could use this information in order to adjust α and β , and then

repeat the refinement.

Example 3.1 (cont’d) The classification results shown in Figure 3.7 were obtained

by applying the (basic) refinement procedure after the initialization using the mod-

ified version of the greedy randomized algorithm for Problem 3.2. All data points

were correctly classified after the refinement: compare Figures 3.4 and 3.7. In

particular, all undecidable data points were correctly associated to submodels by

exploiting spatial localization in the regressor set.

In order to better illustrate the main features of the refinement procedure, it is
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Figure 3.8 The number of undecidable data points versus the number of refinements for
Example 3.1. The dashed line represents the number of undecidable data points in step 2
of the refinement procedure, and the solid line represents the number of data points that are
left undecidable after step 4

here described more in detail its application after the initialization using the orig-

inal version of the greedy randomized algorithm for Problem 3.2. By choosing

α = 10%, β = 1.5%, γ = 0.001% and c = 5, the termination condition was reached

after 8 refinements, and the number s of submodels decreased from 6 to 3, which

equals the true one. Two submodels accounting for too few data points (situation

shown in Figure 3.3(d)) were immediately discarded at refinement 1, whereas two

submodels with similar parameter vectors (corresponding to a situation like in Fig-

ure 3.3(c)) were merged at refinement 4. The final three clusters of regression vec-

tors xk are again shown in Figure 3.7. From left to right, they consist of 54, 83

Table 3.4 True (θ̄i) and estimated (θi) parameter vectors for each submodel in Example 3.1

θ̄1 θ1 θ̄2 θ2 θ̄3 θ3

-0.4 -0.3961 0.5 0.5018 -0.3 -0.2989

1 0.9903 -1 -0.9980 0.5 0.5045

1.5 1.5472 -0.5 -0.4994 -1.7 -1.7072
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and 63 points, respectively. All data points were correctly classified, and no data

point was left undecidable or infeasible. The parameter vectors estimated for each

submodel are shown in Table 3.4, and provide very good estimates of the true ones.

Figure 3.8 shows a plot of the number of undecidable data points versus the number

of refinements (solid line). A significant decrease of the number of undecidable

data points occurred at refinement 4, when two submodels with similar parameter

vectors were merged. The dashed line in the same figure represents the number of

undecidable data points in step 2 of the refinement procedure, i.e., before they are

associated to submodels in step 4, if possible. Note that step 4 is really effective in

reducing the number of undecidable data points, which is initially about 50% of all

the available data points.

3.4 Multi-output models

In this section, the PWA system identification problem for single-output models

considered in Section 3.1 will be extended to multi-output models. It is here as-

sumed that a collection of N samples (yk,xk), k = 1, . . . ,N, is given, where yk ∈ R
q

represent values of a nonlinear map F : X → R
q obtained at certain points xk ∈

X ⊆ R
n:

yk = F(xk)+ ek , k = 1, . . . ,N

where ek ∈ R
q is either noise in system identification or an error term in function

approximation (see Remark 3.1). The objective is to find a PWA approximation f

of F that matches as good as possible the given data points (yk,xk), k = 1, . . . ,N,

according to a specified criterion of fit. The PWA map f is defined as:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Θ′
1ϕ if x ∈ X1
...

...

Θ′
sϕ if x ∈ Xs

, ϕ = [ x′ 1]′ (3.23)

where Θi ∈ R
(n+1)×q, i = 1, . . . ,s, are matrices of parameters, and

{
Xi

}s
i=1 is a

collection of polyhedral regions like (3.5), which form a complete partition of X .
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For instance, the problem of identifying a PWA model of the nonlinear system in

state-space form:

ζk+1 = F(ζk,uk)+ ek

where k ∈ Z is time, ζk is the state, uk is the input, and ek is additive noise, can

be easily cast into this framework, if the state vector is measurable, by defining

xk = [ ζ ′
k u′

k ]′ and yk = ζk+1.

When one looks for a PWA approximation (3.23) of F , there are two alterna-

tive approaches that can be taken. Letting F =
(
F1, . . . ,Fq

)
, the first approach con-

sists in estimating a PWA approximation f� for each scalar function F�, � = 1, . . . ,q.

The PWA map (3.23) is then defined as f =
(

f1, . . . , fq
)
. However, this simple ap-

proach leads in general to a larger number s of regions than necessary, since the

regions Xi, i = 1, . . . ,s, are constructed by intersecting the partitions of the func-

tions f�, � = 1, . . . ,q. The second approach requires to directly estimate a PWA

approximation (3.23) of F . To this aim, the idea proposed in Section 3.1 (i.e., to

characterize the model by its maximum fitting error) can be here extended by re-

quiring:

‖yk − f (xk)‖∞ ≤ δ , k = 1, . . . ,N

for a fixed δ > 0. Then, Problem 3.1 can be straightforward restated, and an esti-

mation procedure following the same steps as proposed in Sections 3.2 and 3.3 for

single-output models, can be adopted. By relaxing the estimation of the regions as

in Section 3.2, Problem 3.2 here becomes:

Problem 3.3 Given δ > 0 and the system of N multiple linear complementary in-

equalities: ∥∥yk −Θ′ϕk
∥∥

∞ ≤ δ , k = 1, . . . ,N (3.24)

find a partition of (3.24) into a minimum number of feasible subsystems.

The unknown in (3.24) is the matrix Θ ∈R
(n+1)×q. The solution of Problem 3.3 can

be tackled by suitably amending the greedy randomized algorithm for Problem 3.2

described in Sections 3.2.1 and 3.2.2. In particular, the greedy algorithm shown in

Table 3.1 should be modified by replacing θ with Θ, and the inequalities of the type



72 PWA Identification using MIN PFS

|yk −ϕ ′
kθ | ≤ δ with ‖yk −Θ′ϕk‖∞ ≤ δ . The same should be done for the algorithm

shown in Table 3.2. A more detailed explanation is only needed for what concerns

the update of the current solution Θ( j) at iteration j. By letting

Θ =
[

θ1 . . . θq
]

and yk =
[

yk,1 . . . yk,q
]′

with θ� ∈ R
n+1 and yk,� ∈ R, � = 1, . . . ,q, and noting that each inequality (3.24) is

equivalent to the set of complementary inequalities:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|yk,1 −ϕ ′
kθ1| ≤ δ

...

|yk,q −ϕ ′
kθq| ≤ δ

each column θ ( j)
� , � = 1, . . . ,q, forming the current estimate Θ( j) can be indepen-

dently updated as in Table 3.2 by considering only the violation of the correspond-

ing complementary inequality. In the final IF statement, the notation Θ̄ = Φp(D̄)

should intend that each column θ̄�, � = 1, . . . ,q, forming Θ̄ is computed by using

the projection estimator (3.8), i.e.:

θ̄� = argmin
θ

max
(yk,xk)∈D̄

∣∣yk,�−ϕ ′
kθ

∣∣ , � = 1, . . . ,q

Also the refinement procedure shown in Table 3.3 can be straightforward modified

as the algorithms before. The details, of ready implementation, are omitted. The

estimation of the regions can be finally carried out as it will be described in the next

chapter.

4

Estimation of the regions

In this chapter, the final step of the proposed PWA system identification procedure

will be addressed. This step consists in estimating the partition of the regressor set

for the identified PWARX model. After introducing the problem in Section 4.1, sev-

eral approaches to two-class and multi-class linear separation, both in the separable

and the inseparable case, will be reviewed. Lastly, in Section 4.5 these approaches

will be applied to region estimation in PWA system identification.

4.1 The linear separation problem

Given the classification of the (feasible) data points into the clusters Di, i = 1, . . . ,s,

that is returned by the refinement procedure described in Section 3.3, let

Fi =
{

xk|(yk,xk) ∈ Di
}

, i = 1, . . . ,s (4.1)

be the corresponding clusters of regression vectors. Region estimation for the iden-

tified PWARX model (3.2)–(3.4) consists in finding a complete partition
{
Xi

}s
i=1

of the regressor set X such that, if xk ∈ Fi, then xk ∈ Xi. The polyhedral regions

are defined by sets of linear inequalities as follows:

Xi =
{

x ∈ R
n
∣∣Hi ϕ � 0

}
, ϕ = [ x′ 1 ]′ (4.2)
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where Hi ∈ R
qi×(n+1), i = 1, . . . ,s. Hence, the above problem is equivalent to that

of separating s sets of points by means of linear classifiers (hyperplanes), which has

been extensively investigated in different fields (e.g., machine learning, operations

research).

The problem of linearly separating s sets A1, . . . ,As of points in R
n can be

tackled in two different ways:

a) Consider pairwise the sets Ai, and construct a linear classifier for each pair

(Ai,A j), with i �= j.

b) Consider all the sets Ai at the same time, and construct a piecewise linear

classifier which is able to discriminate among s classes.

The first approach consists in finding a hyperplane that separates the convex hull

of Ai from the convex hull of A j, for any i �= j. This amounts to solve s(s− 1)/2

two-class linear separation problems. Two-class linear separation will be addressed

in Sections 4.2 and 4.3. According to basic results in Statistical Learning Theory

(Vapnik, 1998), a convenient way to accomplish this task is to employ a Support

Vector Machine (SVM) (Cortes and Vapnik, 1995) with a linear kernel. SVMs

solve the problem of finding the optimal two-class linear discriminant, i.e., the one

which maximizes the separation margin. This problem can be posed as a quadratic

program with linear constraints. The resulting linear discriminant is known as sup-

port vector machine because it is a function of a subset of the data points known

as support vectors. In order to reduce the computational complexity, alternative

approaches, which are based on linear programming, can also be employed. The

resulting methods are sometimes referred to as Robust Linear Programming (RLP)

(Bennett and Mangasarian, 1992). Note that the assumption that there exists a hy-

perplane separating without errors the points in Ai from those in A j, might be not

satisfied in practice. For instance, two clusters of regression vectors Fi and F j

defined by (4.1) could have intersecting convex hulls due to errors in classifying the

data points. However, in such a case, both SVM and RLP look for a separating hy-

perplane that additionally minimizes a weighted sum of the misclassification errors.
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Alternatively, one could look for a separating hyperplane that minimizes the num-

ber of misclassified points. This problem amounts to find a feasible subsystem with

maximum cardinality of an infeasible system of linear inequalities. The Maximum

Feasible Subsystem (MAX FS) problem is well studied (Amaldi and Kann, 1995),

and has many interesting applications besides machine learning. In spite of its in-

herent computational complexity, several heuristics have been developed which per-

form well in practice. See, e.g., (Pfetsch, 2002) and references therein.

The former approach, based on the estimation of each separating hyperplane,

is computationally appealing. It does not involve all the data at the same time, and

amounts to solve either simple linear/quadratic programs, or MAX FS problems

for whose solution efficient heuristics exist. A major drawback is that the estimated

regions are not guaranteed to form a complete partition of the domain, i.e., the union

of the regions might not cover the whole domain (see Section 4.5). If the presence

of “holes” in the partition is not acceptable, the second approach can be employed.

It consists in solving a multi-class linear separation problem, in which a piecewise

linear classifier is constructed as the maximum of s linear classification functions.

Multi-class linear separation will be addressed in Section 4.4.

A first way to tackle the multi-class problem (Vapnik, 1995; Bredensteiner

and Bennett, 1999) is to compute the s linear classifiers by separating each set Ai

from the union of all the others. This requires the solution of s two-class linear

separation problems. Unless each set Ai is linearly separable from the union of

the remaining sets, this approach has the drawback that multiply classified points

or unclassified points may occur, when all s classifiers are applied to the original

data set. This ambiguity is avoided by assigning a point to the class corresponding

to the classification function that is maximal at that point. A second way to tackle

the multi-class problem is to directly construct s classification functions such that,

at each data point, the corresponding class function is maximal. Classical two-

class separation methods such as SVM and RLP have been extended to this multi-

class case (Bredensteiner and Bennett, 1999; Bennett and Mangasarian, 1994). The

resulting methods are called Multicategory SVM (M-SVM) or Multicategory RLP
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(M-RLP), to stress their ability of dealing with problems involving more than two

classes. Quite notably, a single linear or quadratic program (involving all available

data) is still used to construct the piecewise linear classifier.

4.2 Two-class linear separation: the separable case

Let A1 and A2 be two sets of points in R
n with cardinality m1 and m2, respectively.

The objective of linear separation is to find a pair (w,γ), with w ∈ R
n and γ ∈ R,

such that the following condition is satisfied:

w′x+ γ > 0 if x ∈ A1

w′x+ γ < 0 if x ∈ A2

(4.3)

Geometrically, the pair (w,γ) defines the hyperplane:

H =
{

x ∈ R
n
∣∣w′x+ γ = 0

}
(4.4)

i.e., an affine subspace with dimension n−1 which divides the n-dimensional space

into two half-spaces. Condition (4.3) requires that all points belonging to the same

set lie on the same side of the hyperplane, i.e., in the same half-space (see Fig-

ure 4.1). Note that the normal w and the bias γ defining the hyperplane (4.4) are not

unique. The pairs (w,γ) and (λw,λγ) define the same hyperplane for any λ �= 0.

For simplicity of notation, let A1 ∪A2 =
{

x1, . . . ,xm
}

, where m = m1 + m2, and

define the target values zk, k = 1, . . . ,m, as follows:

zk =

⎧⎨
⎩ 1 if xk ∈ A1

−1 if xk ∈ A2

(4.5)

Hence, condition (4.3) can be rewritten in the compact form:

zk[w′xk + γ] > 0 , k = 1, . . . ,m (4.6)

The two sets of points A1 and A2 are said to be linearly separable if there exist

w ∈ R
n and γ ∈ R such that condition (4.6) holds. In such a case, the hyperplane

defined by (4.4) is called a separating hyperplane.
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w′x+ γ = 0

Figure 4.1 Two linearly separable sets and a separating hyperplane

Remark 4.1 It is worth to note that the problem of linear separation can be seen as

a particular case of binary classification, in which a real-valued function f : R
n →R

is used to discriminate between two classes by assigning the input x to the positive

class if f (x) ≥ 0, and otherwise to the negative class. That is, the decision rule is

given by the sign of f (x). In two-class linear discrimination, f (x) is a linear func-

tion, i.e., f (x) = w′x+ γ , where (w,γ) ∈ R
n ×R are the parameters that control the

function. In Supervised Learning these parameters must be learned from available

input-output data. �

If the two sets A1 and A2 are linearly separable, there exist infinitely many

hyperplanes that separate them correctly. In principle any of these could be chosen,

but in practice a good choice is the separating hyperplane such that the distance of

the closest point in the data set to the hyperplane is maximized (see Remark 4.2).

For a given norm ‖·‖ on R
n, the distance d(x0;H ) of a point x0 ∈ R

n to the hyper-

plane (4.4) is defined as:

d(x0;H ) � min
x∈H

‖x−x0‖ (4.7)

which can be interpreted as the distance between x0 and its projection onto the

hyperplane. In (Mangasarian, 1999) it is shown that definition (4.7) can be rewritten

in terms of the dual norm ‖·‖# of ‖·‖:

d(x0;H ) =
|w′x0 + γ|
‖w‖# (4.8)
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where, for x∈R
n, ‖x‖# � max

‖y‖=1
x′y. Examples of distance of a point to a hyperplane

that will be considered in the following, are1:

• �1-norm distance

d1(x0;H ) = min
x∈H

‖x−x0‖1 =
|w′x0 + γ|
‖w‖∞

(4.9)

• �2-norm distance

d2(x0;H ) = min
x∈H

‖x−x0‖2 =
|w′x0 + γ|
‖w‖2

(4.10)

• �∞-norm distance

d∞(x0;H ) = min
x∈H

‖x−x0‖∞ =
|w′x0 + γ|
‖w‖1

(4.11)

Two sets A1 and A2 are said to be optimally separated by the hyperplane (4.4) if

they are separated without errors and the distance between the closest point in the

data set to the hyperplane is maximal. For a given distance (4.7), finding the optimal

separating hyperplane amounts to solve the following optimization problem:⎧⎪⎨
⎪⎩

max
w,γ

min
k=1,...,m

d(xk;H )

s.t. zk[w′xk + γ] > 0 k = 1, . . . ,m
(4.12)

Problem (4.12) has not a unique solution. In particular, if the pair (w∗,γ∗) is optimal

for problem (4.12), then the pair (λw∗,λγ∗) is also optimal for any λ > 0. Without

loss of generality, it is therefore appropriate to restrict the attention to hyperplanes

in Vapnik’s canonical form (Vapnik, 1995), for which the parameters w and γ are

constrained by:

min
k=1,...,m

∣∣w′xk + γ
∣∣ = 1 (4.13)

Constraint (4.13) is very incisive in simplifying the formulation of the Optimal Sep-

aration problem (4.12). For any arbitrary norm ‖·‖ on R
n, it implies that:

min
k=1,...,m

d(xk;H ) =
min

k=1,...,m

∣∣w′xk + γ
∣∣

‖w‖# =
1

‖w‖# (4.14)
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ρ

A1

A2

x′w∗ + γ∗ = 1x′w∗ + γ∗ = −1
x′w∗ + γ∗ = 0

Figure 4.2 Optimal separation of two sets of points A 1 and A 2: optimal separating hy-
perplane (solid line), supporting hyperplanes (dashed lines), and margin of separation ρ

Hence, a hyperplane in canonical form is such that the distance of the closest point

in the data set to the hyperplane is equal to the inverse of the dual norm of the

normal vector w. In view of (4.14), problem (4.12) can be easily rewritten as:

⎧⎨
⎩

min
w,γ

‖w‖#

s.t. zk[w′xk + γ] ≥ 1 k = 1, . . . ,m
(4.15)

Note that it was possible to relax the constraint (4.13) in the formulation of prob-

lem (4.15) since it can be shown that at optimality there always exist xi ∈ A1 and

xl ∈ A2 such that the corresponding constraints are active, i.e, w′xi + γ = 1 and

w′xl + γ = −1. This implies that constraint (4.13) is automatically satisfied at opti-

mality for problem (4.15), and the optimal separating hyperplane is equally distant

from the closest point of each set. By defining the margin of separation between

the sets A1 and A2 as:

ρ = min
k:xk∈A1

d(xk;H )+ min
k:xk∈A2

d(xk;H ) (4.16)

it turns out that the optimal separating hyperplane also maximizes the margin of

separation. If the pair (w∗,γ∗) is optimal for problem (4.15), i.e., it defines the

1For p,q ∈ [1,∞], 1
p + 1

q = 1, the �p-norm and the �q-norm are dual norms.
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ρ∗

2

Figure 4.3 Optimal separating hyperplane using the �2-norm

optimal separating hyperplane:

Ho =
{

x ∈ R
n
∣∣x′w∗ + γ∗ = 0

}
then the optimal margin of separation is ρ∗ = 2/‖w∗‖#. The parallel hyperplanes:

H+ =
{

x ∈ R
n
∣∣x′w∗ + γ∗ −1 = 0

}
H− =

{
x ∈ R

n
∣∣x′w∗ + γ∗ +1 = 0

}
are called supporting hyperplanes (see Figure 4.2), and all the points xk lying on

H+ or H− are called support vectors.

In the following sections, the Optimal Separation problem (4.12) will be fur-

ther specified for each distance (4.9), (4.10) and (4.11). It will be shown that the

�1-norm and the �∞-norm formulation lead to linear programs, whereas the �2-norm

formulation leads to a quadratic program.

Remark 4.2 Using either the �1-norm, the �2-norm or the �∞-norm formulation

determines, in general, different optimal hyperplanes, margins and support vec-

tors. However, research on learning machines found no empirical evidence that one

norm is preferable to the others in terms of generalization. In particular, the effects

on Statistical Learning Theory caused by changing norms are an open question.
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Statistical Learning Theory addresses mathematically the problem of how to best

construct functions that will generalize well on future points. According to struc-

tural risk minimization, maximizing the margin is essential for good generalization.

Larger margins should lead to better generalizations and prevent overfitting. �

4.2.1 Optimal separation using the �2-norm

From (4.10) and (4.15), the Optimal Separation problem using the �2-norm be-

comes: ⎧⎨
⎩

min
w,γ

‖w‖2

s.t. zk[w′xk + γ] ≥ 1 k = 1, . . . ,m
(4.17)

By taking into account that ‖w‖2
2 =

n

∑
i=1

w2
i , problem (4.17) can be equivalently

rewritten as the quadratic program:

⎧⎪⎨
⎪⎩

min
w,γ

1
2

n

∑
i=1

w2
i

s.t. zk[w′xk + γ] ≥ 1 k = 1, . . . ,m

(4.18)

Figure 4.3 shows an example of optimal separation using the �2-norm. The opti-

mal margin ρ∗ is twice the �2-norm distance of the support vectors to the optimal

separating hyperplane.

In order to better understand the role played by the support vectors in the

solution of problem (4.18), define the Lagrangian associated with problem (4.18)

as:

L(w,γ,λ ) =
1
2

n

∑
i=1

w2
i −

m

∑
k=1

λk
(
zk[w′xk + γ]−1

)
where λ =

(
λ1, . . . ,λm

)
are the Lagrange multipliers (or dual variables). Then,

define the dual function g(λ ) as the minimum value of the Lagrangian with respect

to (w,γ), i.e., g(λ ) = infw,γ L(w,γ,λ ). It is easy to verify that:

g(λ ) =

⎧⎪⎨
⎪⎩

−1
2

m

∑
i=1

m

∑
j=1

ziz jx′ix jλiλ j +
m

∑
k=1

λk if
m

∑
k=1

zkλk = 0

−∞ otherwise
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where the minimum of L(w,γ,λ ) with respect to (w,γ) when
m

∑
k=1

zkλk = 0, is at-

tained by:

w =
m

∑
k=1

zkλkxk (4.19)

The dual function g(λ ) has to be maximized (equivalently, −g(λ ) has to be mini-

mized) over λ � 0, thus leading to the following Lagrange dual problem associated

with problem (4.18): ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
λ

1
2

m

∑
i=1

m

∑
j=1

ziz jx′ix jλiλ j −
m

∑
k=1

λk

s.t.
m

∑
k=1

zkλk = 0

λk ≥ 0 k = 1, . . . ,m

(4.20)

Note that the dual of problem (4.18) is still a quadratic program. Let the pair

(w∗,γ∗) be optimal for the primal problem (4.18), and let λ ∗ be optimal for the

dual problem (4.20). Since strong duality holds in this case, the value of w∗ can be

retrieved from (4.19):

w∗ =
m

∑
k=1

zkλ ∗
k xk (4.21)

At optimality complementary slackness implies:

λ ∗
k

(
zk[x′kw

∗ + γ∗]−1
)

= 0 , k = 1, . . . ,m

and hence only points xk that are support vectors, i.e., satisfying zk[x′kw
∗ + γ∗] = 1,

will have non-zero Lagrange multipliers. This in turn implies that only support

vectors will contribute to equation (4.21). By defining the set of indices:

SV =
{

k = 1, . . . ,m
∣∣ xk is a support vector

}
the optimal parameters w∗ and γ∗ can be finally computed as:

w∗ = ∑
k∈SV

zkλ ∗
k xk (4.22)

γ∗ =
∑

k∈SV

zk −
(

∑
k∈SV

x′k
)

w∗

#SV
(4.23)
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ρ∗

2

Figure 4.4 Optimal separating hyperplane using the �1-norm

Equations (4.22) and (4.23) show that the optimal separating hyperplane is deter-

mined only by the support vectors, that in general form a small subset of the data

set (see again Figure 4.3). The other points could be removed from the data set, and

recalculating the optimal separating hyperplane would produce the same result. In

other words, the support vectors summarize all the information needed to optimally

separate two linearly separable sets.

4.2.2 Optimal separation using the �1-norm

From (4.9) and (4.15), the Optimal Separation problem using the �1-norm becomes:⎧⎨
⎩

min
w,γ

‖w‖∞

s.t. zk[w′xk + γ] ≥ 1 k = 1, . . . ,m
(4.24)

By recalling that ‖w‖∞ = max
i=1,...,n

|wi|, problem (4.24) can be easily rewritten as a

linear program by introducing the nonnegative auxiliary variable s:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
w,γ,s

s

s.t. zk[w′xk + γ] ≥ 1 k = 1, . . . ,m

−s ≤ wi ≤ s i = 1, . . . ,n

(4.25)

At optimality for problem (4.25), it holds s = ‖w‖∞. Figure 4.4 shows an example

of optimal separation using the �1-norm for the same data set as in Figure 4.3. The



84 Estimation of the regions

ρ∗

2

Figure 4.5 Optimal separating hyperplane using the �∞-norm

optimal margin ρ∗ is twice the �1-norm distance of the support vectors to the optimal

separating hyperplane. It is worth to note that, in this example, the same optimal

separating hyperplane was found as a solution of both problems (4.18) and (4.25),

although the margins using the �1-norm and the �2-norm are numerically different.

4.2.3 Optimal separation using the �∞-norm

From (4.11) and (4.15), the Optimal Separation problem using the �∞-norm be-

comes: ⎧⎨
⎩

min
w,γ

‖w‖1

s.t. zk[w′xk + γ] ≥ 1 k = 1, . . . ,m
(4.26)

By recalling that ‖w‖1 =
n

∑
i=1

|wi|, problem (4.26) can be easily rewritten as a linear

program by introducing the nonnegative auxiliary variables si, i = 1, . . . ,n:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
w,γ,si

n

∑
i=1

si

s.t. zk[w′xk + γ] ≥ 1 k = 1, . . . ,m

−si ≤ wi ≤ si i = 1, . . . ,n

(4.27)

At optimality for problem (4.27), it holds si = |wi|, i = 1, . . . ,n, so that
n

∑
i=1

si = ‖w‖1.

Figure 4.5 shows an example of optimal separation using the �∞-norm for the same
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data set as in Figures 4.3 and 4.4. The optimal margin ρ∗ is twice the �∞-norm

distance of the support vectors to the optimal separating hyperplane.

4.3 Two-class linear separation: the inseparable case

So far the discussion has been restricted to the case where the data set is linearly

separable. It is however not always possible for a single linear function to separate

without errors two given sets of points A1 and A2. This occurs when the sets A1 and

A2 have intersecting convex hulls. Thus, it is important to find the linear function

that discriminates best between the two sets according to some error minimization

criterion.

When the two sets A1 and A2 are not linearly separable, a first reasonable

approach is to look for a hyperplane that maximizes the number of well-separated

points (equivalently, that minimizes the number of misclassified points). Such a

hyperplane is called generalized separating hyperplane of the two sets. A Linear

Programming formulation with Equilibrium Constraints (LPEC) for the General-

ized Separating Hyperplane problem was proposed by Mangasarian (1994). An

alternative Maximum Feasible Subsystem (MAX FS) formulation derives from the

fact that computing a generalized separating hyperplane of two sets A1 and A2

amounts to find a pair (w,γ), with w ∈ R
n and γ ∈ R, such that the number of

satisfied inequalities in the following system:⎧⎨
⎩ w′xk + γ > 0 ∀xk ∈ A1

w′xk + γ < 0 ∀xk ∈ A2

(4.28)

is maximized. Although the MAX FS problem is known to be NP-hard (Amaldi

and Kann, 1995), and even difficult to approximate in polynomial time, several

heuristics have been developed which work well in practice, e.g, the randomized

and thermal relaxation algorithm proposed by Amaldi and Hauser (2001), and the

branch-and-cut algorithm proposed by Pfetsch (2002). In Section 4.3.1, the former

algorithm will be specified to the particular case (4.28), and a suitable initialization

of the algorithm will be also proposed. Given a solution (w,γ) of the MAX FS
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(a) (b)

Figure 4.6 Two different solutions of the Generalized Separating Hyperplane problem for
the same data set. One cross is misclassified in (a), whereas one circle is misclassifed in (b)

problem for system (4.28), the misclassified points, if any, are removed from A1

and/or A2. The remaining points hence form a linearly separable data set, which

can be optimally separated, e.g., by solving either problem (4.18), (4.25) or (4.27).

One drawback of the above approach is that the Generalized Separating Hy-

perplane problem might not have a unique solution (see Figure 4.6). An alternative

approach for linear separation in the inseparable case considers optimization prob-

lems in which an additional cost function associated with misclassifications is mini-

mized. In Section 4.3.2, problems (4.18), (4.25) and (4.27) will be extended so as to

minimize the sum of misclassification errors along with maximizing the separation

margin. The resulting linear and quadratic programming techniques are referred to

as Robust Linear Programming (RLP) and Support Vector Machines (SVM).

4.3.1 Minimizing the number of misclassifications

Given a system of linear inequalities, the problem of finding a feasible subsystem

with maximum cardinality is known as Maximum Feasible Subsystem (MAX FS)

problem. As anticipated in Section 4.3, finding a generalized separating hyperplane

of two sets A1 and A2 is equivalent to solve the MAX FS problem for system (4.28).

In this section, the randomized and thermal relaxation algorithm for the MAX FS
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xc1

xc2

xc

w′
1x+ γ1 = 0

Figure 4.7 Initialization of the relaxation algorithm for finding a generalized separating
hyperplane of two linearly inseparable sets

problem proposed in (Amaldi and Hauser, 2001) will be specified to the particular

case of system (4.28). A simple initialization of the algorithm will be also proposed,

which may help to obtain better final solutions.

In order to simplify the notation, by introducing the target values (4.5), sys-

tem (4.28) can be rewritten in the compact matrix form:

Ah � ε 1 (4.29)

where:

A =

⎡
⎢⎢⎢⎣

z1x′1 z1
...

...

zmx′m zm

⎤
⎥⎥⎥⎦ h =

⎡
⎣ w

γ

⎤
⎦

and ε > 0 is introduced for guaranteeing a margin of separation nonzero. The al-

gorithm is shown in Table 4.1. It is a randomized and thermal variant of the clas-

sical Agmon-Motzkin-Schoenberg relaxation method for solving systems of linear

inequalities (Agmon, 1954; Motzkin and Schoenberg, 1954). It provides (subop-

timal) solutions with a low computational burden, and is insensitive to numerical

instabilities. First, it requires to define a maximum number of cycles C > 0, an ini-

tial temperature parameter T0 > 0, and an initial solution h0 ∈ R
n+1. For the choice

of C and T0, as well as for practical questions concerning the implementation of

the algorithm, the reader is referred to (Amaldi and Hauser, 2001). As regards the
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GIVEN: C, T0, h0

Set j = 0 and h̄ = h0

FOR c = 0 TO C−1 DO

Compute (4.33) and set I =
{

1, . . . ,m
}

REPEAT

Set j = j +1

Pick an index k from I according to the prescribed rule

Compute (4.30)

IF vk
j > 0 THEN

Compute (4.32) and (4.31)

IF h j satisfies more inequalities in (4.29) than h̄ THEN set h̄ = h j

ELSE set h j = h j−1

Set I = I \{k}
UNTIL I = /0

END FOR

RETURN h̄

Table 4.1 The randomized and thermal relaxation algorithm used to solve the MAX FS
problem for system (4.29)

initial solution h0, a simple but effective choice in this particular case is to com-

pute the centers of the two sets, and then to consider the plane orthogonal to the

segment drawn between the two centers, and passing through the middle point of it

(see Figure 4.7). Defining the centers of the sets A1 and A2 as

xc1 =
∑

k:xk∈A1

xk

#A1
and xc2 =

∑
k:xk∈A2

xk

#A2
,

respectively, and the mean point of xc1 and xc2 as xc = (xc1 +xc2)/2, the considered

hyperplane is determined by the coefficient vector:

h0 �

⎡
⎣ w0

γ0

⎤
⎦ =

⎡
⎣ xc1 −xc2

(xc2 −xc1)′xc

⎤
⎦
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h1

h2

h j−1

h j

Akh > 0

Akh = 0

Akh < 0

Figure 4.8 Geometric interpretation in the coefficient space of a single iteration of the
relaxation method for the MAX FS problem (case h ∈ R

2)

The orientation of the normal vector w0 is chosen such that xc1 lies on the positive

side of the hyperplane, and xc2 lies on the negative side. This choice provides

in general better initial solutions (i.e., satisfying a larger number of inequalities)

than a random selection. Indeed, it is expected that many points of the two sets

lie nearby the corresponding centers, and are therefore correctly classified by the

proposed hyperplane. The algorithm then consists in a simple iterative procedure

that generates a sequence of solutions. During each of the C outer cycles, all the

rows of A are selected in the order defined by a prescribed rule (e.g., cyclicly, or

uniformly at random without replacement). Let the k-th row Ak of A be selected at

iteration j, with j = 1, . . . ,Cm, and h j−1 be the current solution. The corresponding

violation is computed as:

vk
j = max

{
0,ε −Ak h j−1

}
(4.30)

If vk
j is zero, the current solution satisfies the k-th inequality in (4.29), and h j is

set equal to h j−1. If vk
j is greater than zero, the current solution violates the k-th

inequality in (4.29). Then, it is updated as follows:

h j = h j−1 +λ j A′
k (4.31)

where λ j > 0. Geometrically, the inequality Ak h ≥ ε defines a half-space in the
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coefficient space (the gray region in Figure 4.8). If the current solution belongs to

the half-space, then it is left unchanged. Otherwise, h j is obtained by making a

step toward the half-space along the line orthogonal to the half-space and passing

through h j−1 (see again Figure 4.8). The step size λ j decreases exponentially with

the violation:

λ j =
T
T0

exp
−

vk
j

T (4.32)

The basic idea of the algorithm is to favor updates of the current solution which

aim at correcting unsatisfied inequalities with a relatively small violation. The cor-

rection of unsatisfied inequalities with large violations is likely to corrupt other

inequalities that the current solution satisfies. Decreasing attention to unsatisfied

inequalities with large violations is obtained by introducing a decreasing tempera-

ture parameter T , to which the violations are compared, e.g.:

T =
(

1− c
C

)
T0 (4.33)

where c is the outer cycle counter. The solution returned by the algorithm is the

coefficient vector h̄ that, during the process, has satisfied the largest number of

inequalities in (4.29). The solution h̄ is not guaranteed to be optimal due to the

randomness of the search, but extensive trials that are not presented in this thesis,

have shown that the algorithm provides very good solutions in practice.

4.3.2 Minimizing the misclassification errors

Another approach for the inseparable case, that is alternative to minimizing the

number of misclassifications, is the minimization of a suitable cost function associ-

ated with errors. In this section, the linear and quadratic programs formulated for

the separable case, are extended with an additional error criterion to be minimized.

In the simplest case, this idea leads to the following linear program:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
w,γ,vk

m

∑
k=1

ckvk

s.t. zk[w′xk + γ] ≥ 1− vk k = 1, . . . ,m

vk ≥ 0 k = 1, . . . ,m

(4.34)
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where ck > 0 are misclassification weights. If the data set is linearly separable, and

therefore there exist w ∈ R
n and γ ∈ R such that the constraints:

zk[w′xk + γ] ≥ 1 , k = 1, . . . ,m (4.35)

are satisfied, all the auxiliary variables vk can be taken to be zero, and the optimal

value for problem (4.34) is also zero. If the data set is not linearly separable, the

auxiliary variables vk allow the constraints (4.35) to be violated. Since, at optimality

for problem (4.34), vk = max
{

0,1−zk[w′xk +γ]
}

, k = 1, . . . ,m, each variable vk can

be interpreted as a misclassification error. In the inseparable case, problem (4.34)

hence looks for a hyperplane that minimizes a weighted sum of the misclassifica-

tion errors. The original Robust Linear Programming (RLP) method proposed by

Bennett and Mangasarian (1992) was a particular case of problem (4.34), where:

ck =

⎧⎪⎪⎨
⎪⎪⎩

1
m1

if xk ∈ A1

1
m2

if xk ∈ A2

(4.36)

Remark 4.3 Note that, at optimality for problem (4.34), only points xk with vk ≥ 1

are truly misclassified according to (4.6). These points can be removed from the

original data set. The remaining points then form a linearly separable data set, for

which the optimal separating hyperplane can be computed. �

Although the low computational burden makes the RLP method appealing (its so-

lution involves only a single linear program), problem (4.34) does not include any

notion of margin maximization. Maximizing the margin is instead essential for good

generalization (see Remark 4.2). In principle, as suggested in Remark 4.3, the mis-

classified points could be removed from the data set after solving problem (4.34),

and the optimal separating hyperplane could be computed for the remaining lin-

early separable data set by solving either problem (4.18), (4.25) or (4.27). This

approach requires however to solve two optimization problems. A single multi-

objective problem, which aims to minimize the absolute sum of the misclassifica-

tion errors as well as to maximize the separation margin, can be constructed by

combining problem (4.34) with either problem (4.18), (4.25) or (4.27).
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The Soft Margin Optimal Separation problem originally proposed by Cortes

and Vapnik (1995), derives directly from the optimal separation problem using the

�2-norm described in Section 4.2.1. It consists in solving the following quadratic

program: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
w,γ,vk

1
2

n

∑
i=1

w2
i +C

m

∑
k=1

vk

s.t. zk[w′xk + γ] ≥ 1− vk k = 1, . . . ,m

vk ≥ 0 k = 1, . . . ,m

(4.37)

where C > 0 is a given value. For sufficiently large C, the functional in (4.37) de-

scribes the problem of constructing a hyperplane which minimizes the sum of mis-

classification errors, and maximizes the margin for the correctly classified points. If

the data set can be separated without errors, the constructed hyperplane will coin-

cide with the optimal separating hyperplane using the �2-norm. It should be noted

that the weight C introduces additional control on the classifier. Indeed, as C tends to

infinity, the solution of problem (4.37) converges to one where the misclassification

minimization term dominates, whereas as C tends to zero, the solution converges

to one where the margin maximization term dominates. As it will be shown in Re-

mark 4.4, the weight C can be also interpreted as an upper bound on the Lagrange

multipliers for problem (4.37).

Remark 4.4 The dual problem associated with (4.37) is (Cortes and Vapnik, 1995):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
λ

1
2

m

∑
i=1

m

∑
j=1

ziz jx′ix jλiλ j −
m

∑
k=1

λk

s.t.
m

∑
k=1

zkλk = 0

0 ≤ λk ≤C k = 1, . . . ,m

(4.38)

where λ =
(
λ1, . . . ,λm

)
are the Lagrange multipliers associated with the constraints

zk[w′xk + γ] ≥ 1− vk. Note that the Lagrange multipliers µ =
(
µ1, . . . ,µm

)
associ-

ated with the constraints vk ≥ 0 do not appear in problem (4.38). However, they can

be easily retrieved as:

µk = C−λk , k = 1, . . . ,m (4.39)
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The dual problem (4.38) in the inseparable case is identical to the dual problem

(4.20) in the separable case, except for introducing an upper bound on the Lagrange

multipliers λk. Since, at optimality, complementary slackness implies that µkvk = 0,

k = 1, . . . ,m, it turns out that, if vk is greater than zero, then µk is equal to zero.

From (4.39), one can hence conclude that the misclassified points are those whose

corresponding Lagrange multiplier λk saturates the upper bound. Note that, if C is

chosen too small, then the Lagrange multipliers λk will all take on the value of C.

It is worth to note that the dual problem (4.38) is the basis for Support Vector

Machine (SVM) classification. See, e.g., (Vapnik, 1995; Vapnik, 1998; Cristianini

and Shawe-Taylor, 2000) for an introduction to this topic. �

Linear programming versions of the Soft Margin Optimal Separation problem (4.37)

can be defined by considering the minimization of either the �1-norm or the �∞-

norm of the normal vector w. The following linear program is derived from prob-

lem (4.25), where the �∞-norm of w is minimized:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
w,γ,s,vk

s+C
m

∑
k=1

vk

s.t. zk[w′xk + γ] ≥ 1− vk k = 1, . . . ,m

−s ≤ wi ≤ s i = 1, . . . ,n

vk ≥ 0 k = 1, . . . ,m

(4.40)

whereas the following linear program is derived from problem (4.27), where the

�1-norm of w is minimized:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
w,γ,si,vk

n

∑
i=1

si +C
m

∑
k=1

vk

s.t. zk[w′xk + γ] ≥ 1− vk k = 1, . . . ,m

−si ≤ wi ≤ si i = 1, . . . ,n

vk ≥ 0 k = 1, . . . ,m

(4.41)

Problems (4.40) and (4.41) are also referred to as Robust Linear Programming

(RLP) methods. The advantage of RLP formulations over the SVM formulation

is that the former can be solved by using linear programming instead of quadratic

programming. It is known that a quadratic program can be much more computa-

tionally demanding than a linear program for the same problem size. As regards the



94 Estimation of the regions

A1 A2 A3

w1x+ γ1

w2x+ γ2

w3x+ γ3

Figure 4.9 Piecewise linear separation of three sets A1, A2 and A3 in R by using the
piecewise linear function f (x) = max

i=1,2,3
wix+ γi

property of generalization, there are instead no results proving that one formulation

is preferable to the others (see Remark 4.2).

Note that the minimization of the sum of the misclassification errors is a sub-

stitute to the problem of minimizing the sum of the distances of the misclassified

points to the separating hyperplane. This problem is formulated in (Mangasarian,

1999) for arbitrary-norm distances of a point to a hyperplane. However, for the

�1-norm only the problem is easily solvable by taking the best solution of 2n linear

programs.

4.4 Multi-class linear separation

In multi-category classification, a piecewise linear function2 is used to discriminate

between s > 2 sets A1, . . . ,As of points in R
n. A piecewise linear classifier f is

constructed as the maximum of s linear classification functions fi(x) = w′
ix + γi,

where wi ∈ R
n and γi ∈ R are, respectively, a weight vector and a bias associated

with the i-th class, i = 1, . . . ,s. Hence:

f (x) = max
i=1,...,s

w′
ix+ γi (4.42)

2In order to be consistent with the terminology used in the literature of linear classification, in

this section the term linear (or piecewise linear) function will be generally used to indicate also

affine (respectively, piecewise-affine) functions.
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(4.42) is a continuous and convex function that is defined for all x ∈ R
n (see Fig-

ure 4.9). The corresponding decision rule is given by:

C (x) = arg max
i=1,...,s

w′
ix+ γi (4.43)

Remark 4.5 Definition (4.43) is not well-posed for those points x ∈ R
n such that

the optimizer of (4.43) is not unique. Such points lie on subspaces with zero mea-

sure, namely affine subspaces with dimension n−1 defined by equations of the type

w′
ix + γi = w′

jx + γ j for i �= j, and are therefore unlikely to occur in practice. This

issue is however not of practical interest in the problem at hand. �

According to (4.43), if a point x ∈ R
n is assigned to the i-th class, i.e., C (x) = i for

some i = 1, . . . ,s, then it satisfies:

w′
ix+ γi ≥ w′

jx+ γ j , j �= i (4.44)

By introducing the matrices Hi ∈ R
(s−1)×(n+1), i = 1, . . . ,s, defined as follows:

Hi =

⎡
⎣ w1 −wi . . . wi−1 −wi wi+1 −wi . . . ws −wi

γ1 − γi . . . γi−1 − γi γi+1 − γi . . . γs − γi

⎤
⎦
′

(4.45)

(4.44) can be rewritten in the compact form Hiϕ � 0, where ϕ = [ x′ 1 ]′. The

decision rule (4.43) hence corresponds to a partition of the n-dimensional space

into s polyhedral regions (4.2), that is the partition of the piecewise linear map

(4.42). A different class is associated to each region. As discussed in Remark 4.5,

multiple classification may occur only for those points lying on the boundaries of

the regions.

Let each set Ai with mi points be represented by the matrix Ai ∈ R
mi×n whose

rows are the points in Ai, i = 1, . . . ,s. In order to separate the sets A1, . . . ,As

correctly by using (4.43), according to (4.44) the following inequalities must be

satisfied:

Aiwi + γi 1 � Aiw j + γ j 1 , i, j = 1, . . . ,s, j �= i (4.46)

Hence, the sets A1, . . . ,As are said to be piecewise linearly separable if there exist

wi ∈ R
n and γi ∈ R, i = 1, . . . ,s, such that (4.46) holds (see Figure 4.10). It turns
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Figure 4.10 Three sets A1, A2 and A3 (triangles, squares and circles) that are piecewise
linearly separable, and the partition of the space corresponding to a piecewise linear function
(4.42) that obtains correct classification

out from this definition that, if the sets A1, . . . ,As are piecewise linearly separable,

then each pair (Ai,A j), with i �= j, is linearly separable. The converse is however

not true, as shown by the “whirlwind” counterexample (Bennett and Mangasarian,

1994) in Figure 4.11.

Two different approaches for computing the pairs (wi,γi), i = 1, . . . ,s, defining

the piecewise linear classifier (4.42), will be described in the following. The first

approach (Vapnik, 1995; Bredensteiner and Bennett, 1999) consists in computing

the pair (wi,γi) associated with the i-th class by separating the set Ai from the

union of the remaining s−1 sets, i = 1, . . . ,s. For each set Ai, this amounts to solve

a two-class linear separation problem, for whose solution the MAX FS, SVM and

RLP approaches described in Section 4.3, can be applied. When either SVM or

RLP is used to solve each single two-class linear separation problem, this approach

is sometimes referred to as s-SVM and s-RLP, respectively (where s is the number

of classes). If each set Ai is linearly separable from the union of the remaining s−1

sets, all the pairs (wi,γi), i = 1, . . . ,s, can be taken such that:⎧⎨
⎩ Aiwi + γi 1 � 0

A jwi + γi 1 ≺ 0 , j �= i

(i.e., each set Ai lies on the positive side of the hyperplane w′
ix+γi = 0). Each point

x ∈ Ai is then classified correctly by using (4.43), since it satisfies w′
ix+ γi > 0 and
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Figure 4.11 The whirlwind counterexample. Three sets (triangles, squares and circles)
that are pairwise linearly separable, but not piecewise linearly separable

w′
jx+ γ j < 0, j �= i, and hence C (x) = i. However, when at least one set Ai is not

linearly separable from the union of the remaining s−1 sets, this approach may fail

to classify correctly all the points, even if the data set is actually piecewise linearly

separable (see Figure 4.12).

The former approach requires to solve s two-class linear separation problems.

The second approach (Bennett and Mangasarian, 1994; Bredensteiner and Ben-

nett, 1999) looks for the pairs (wi,γi), i = 1, . . . ,s, if any, satisfying (4.46), or the

following equivalent normalized constraints:

Aiwi + γi 1 � Aiw j + γ j 1+1 , i, j = 1, . . . ,s, j �= i (4.47)

by solving a single (computationally more demanding) optimization problem. The

Multicategory RLP (M-RLP) method proposed by Bennett and Mangasarian (1994)

consists in a linear program that generates a piecewise linear separation between

the sets A1, . . . ,As, if one exists; otherwise, a weighted sum of the misclassification

errors is minimized. By introducing the auxiliary variables vi j ∈ R
mi , i, j = 1, . . . ,s,

j �= i, in (4.47), the M-RLP linear program looks as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
wi,γi,vi j

s

∑
i=1

s

∑
j=1
j �=i

1′vi j

mi

s.t. Ai(wi −w j)+(γi − γ j)1 � 1−vi j i, j = 1, . . . ,s, j �= i

vi j � 0 i, j = 1, . . . ,s, j �= i

(4.48)
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Figure 4.12 The s-SVM approach fails to separate correctly the same three piecewise lin-
early separable sets shown in Figure 4.10. It is pointed out that the partition of the space
is not defined by the lines w′

ix+ γi = 0 computed by trying to linearly separate each set Ai

from the union of the other two, i = 1,2,3, rather by the lines (wi −w j)′x +(γi − γ j) = 0,
i, j = 1,2,3, j �= i.

It is easy to show that the sets A1, . . . ,As are piecewise linearly separable if and

only if the optimum for problem (4.48) is zero, i.e., there exists a feasible solution

of (4.48) with all the auxiliary variables vi j equal to zero. Since, at optimality for

problem (4.48), it holds:

vi j = max
{

0,1−Ai(wi −w j)− (γi − γ j)1
}

, i, j = 1, . . . ,s, j �= i

the variables vi j can be interpreted as misclassification errors. The averaged sum

of the misclassification errors is hence minimized by solving problem (4.48) in

the piecewise linearly inseparable case. If s = 2, problem (4.48) is equivalent to

problem (4.34), with the weights ck chosen as in (4.36). M-RLP is therefore an

extension of two-class RLP to the multi-class case. Figure 4.10 shows an example

of three sets that were piecewise linearly separated by solving problem (4.48). Like

the original two-class RLP problem (4.34), the M-RLP problem (4.48) does not

include any term for maximizing the margins of separation between pairs of the

sets A1, . . . ,As. To this aim, in (Bredensteiner and Bennett, 1999) M-RLP and

SVM were combined so as to include margin maximization. The resulting method

is called Multicategory SVM (M-SVM). In the piecewise linearly separable case, a

quadratic program is constructed by starting from observing that, if the piecewise
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linear function (4.42) classifies correctly the sets A1, . . . ,As, then the hyperplane

defined by the equation (wi −w j)′x +(γi − γ j) = 0 is a separating hyperplane for

the pair (Ai,A j), with i �= j. As discussed in Section 4.2.1, maximizing the margin

between the sets Ai and A j using the �2-norm is equivalent to minimize
∥∥wi −w j

∥∥
2.

This leads to the following M-SVM quadratic program3 in the piecewise linearly

separable case:⎧⎪⎪⎨
⎪⎪⎩

min
wi,γi

1
2

s

∑
i=1

i−1

∑
j=1

∥∥wi −w j
∥∥2

2 +
1
2

s

∑
i=1

‖wi‖2
2

s.t. Ai(wi −w j)+(γi − γ j)1 ≥ 1 i, j = 1, . . . ,s, j �= i

(4.49)

where the additional term
1
2

s

∑
i=1

‖wi‖2
2 is also introduced in the objective. In the

piecewise linearly inseparable case, the general M-SVM method is easily obtained

by combining problems (4.48) and (4.49) as follows (Bredensteiner and Bennett,

1999):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
wi,γi,vi j

1
2

s

∑
i=1

i−1

∑
j=1

∥∥wi −w j
∥∥2

2 +
1
2

s

∑
i=1

‖wi‖2
2 +C

s

∑
i=1

s

∑
j=1
j �=i

1′vi j

s.t. Ai(wi −w j)+(γi − γ j)1 ≥ 1−vi j i, j = 1, . . . ,s, j �= i

vi j � 0 i, j = 1, . . . ,s, j �= i

(4.50)

where C > 0 is a given value. As for problem (4.37), the weight C introduces

additional control on the classifier. If C is large, the misclassification minimization

term dominates, whereas for small C the margin maximization term dominates.

4.5 Estimation of the regions in PWA identification

In this section, it is shown how both the two-class and the multi-class linear separa-

tion techniques described in this chapter, can be used to carry out the estimation of

the regions of a PWA model, once the data points have been classified and associated

to submodels. This is the last step of the PWA system identification procedure pro-

posed in this thesis and of other procedures (e.g., Ferrari-Trecate et al., 2003; Vidal

3The same reasoning can be repeated when considering margin maximization in terms of either

the �1-norm or the �∞-norm. The resulting linear programs are not presented here.
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et al., 2003b; Ragot et al., 2003) tackling the identification problem by first clas-

sifying the data points and estimating the parameters of the affine submodels, and

then reconstructing the regions of the identified PWA model.

The region estimation problem was introduced in Section 4.1. It consists in

finding a polyhedral partition
{
Xi

}s
i=1 of the regressor set X such that Fi ⊆Xi for

all i = 1, . . . ,s, where Fi are the clusters of regression vectors (4.1) and Xi are the

regions (4.2). Otherwise, the number of misclassified points should be minimized.

This is equivalent to linearly separating the s sets F1, . . . ,Fs, as it was discussed in

Sections 4.1– 4.4.

When two-class linear separation techniques are used, the clusters Fi are con-

sidered pairwise, and a separating hyperplane for each pair (Fi,F j), with i �= j, is

computed. The misclassified points, if any, are then removed from Fi and/or F j.

This procedure amounts to solve s(s− 1)/2 two-class linear separation problems

of the types described in Sections 4.2 and 4.3. The output are the pairs (wi j,γi j),

with wi j ∈ R
n and γi j ∈ R, i = 1, . . . ,s− 1, j = i + 1, . . . ,s, such that the discrimi-

nation between the i-th and the j-th class, with i < j, is performed according to the

following rule:

w′
i j x+ γi j > 0 ⇒ x is assigned to the i-th class

w′
i j x+ γi j < 0 ⇒ x is assigned to the j-th class

Each polyhedral region Xi, i = 1, . . . ,s, is hence defined by the inequalities:⎧⎨
⎩ w′

ji x+ γ ji ≤ 0 , j = 1, . . . , i−1

w′
i j x+ γi j ≥ 0 , j = i+1, . . . ,s

and characterized in the compact form (4.2) by introducing the matrix:

Hi =

⎡
⎣ w1i . . . wi−1, i −wi, i+1 . . . −wis

γ1i . . . γi−1, i −γi, i+1 . . . −γis

⎤
⎦
′

∈ R
(s−1)×(n+1)

The approach based on pairwise linear separation of the clusters F1, . . . ,Fs is com-

putationally advantageous, because it does not involve all the data at the same time,

and requires to solve either simple linear/quadratic programs (RLP/SVM), or MAX

FS problems for whose solution efficient heuristics exist. On the other hand, a
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Figure 4.13 The partition of the regressor set constructed by pairwise linearly separating
four clusters of regression vectors, is not complete (the gray area is not covered)

major drawback is that, when n > 1, the regions Xi are not guaranteed to form

a complete partition of the regressor set, i.e., there might exist x ∈ X such that

x /∈ Xi for any i = 1, . . . ,s. Figure 4.13 shows an example in which a “hole” in

the partition of the regressor set occurs. This drawback is quite important, since it

causes the model to be not completely defined over the whole regressor set. When

the PWARX model (3.2)–(3.4) is used in simulation, unclassified regression vectors

x can be reasonably assigned to the nearest region. This corresponds to apply the

following decision rule:

C (x) = arg min
i=1,...,s

min
z∈Xi

‖z−x‖ (4.51)

When the PWARX model (3.2)–(3.4) is used in optimal control, trajectories passing

through a “hole” are simply automatically discarded as infeasible, with the only

consequent drawback of inducing suboptimal solutions.

In order to avoid the “holes” in the partition of the regressor set, the multi-class

linear separation approach described in Section 4.4 can be used, since it classifies

new points by using the piecewise linear function (4.42), that is defined over the

whole n-dimensional space. Different methods for computing the parameters of the

piecewise linear classifier have been also described in Section 4.4. They return the

pairs (wi,γi), with wi ∈ R
n and γi ∈ R, i = 1, . . . ,s, defining the linear classification

functions associated with each class. In this case, the matrices Hi ∈ R
(s−1)×(n+1)
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Figure 4.14 Partition of the regressor set constructed by piecewise linearly separating the
same four clusters of regression vectors as in Figure 4.13. The separating hyperplane be-
tween the triangles and the diamonds is not drawn because it does not contribute to delim-
iting any region

characterizing the regions Xi, i = 1, . . . ,s, can be constructed as in (4.45). Fig-

ure 4.14 shows an example in which the same four clusters as in Figure 4.13 are

correctly piecewise linearly separated. Note the absence of the “hole” in the par-

tition, as compared to Figure 4.13. Multi-class linear separation problems involve

all the available data at the same time, and are therefore computationally more de-

manding than pairwise linear separation problems.

A drawback that is common to both the pairwise two-class and the multi-class

linear separation approach is that, if two clusters Fi and F j are not contiguous, the

corresponding separating hyperplane could be redundant, i.e., it could not contribute

to delimiting the region Xi and/or the region X j (see again Figure 4.14). This

drawback can be however easily overcome by eliminating redundant hyperplanes

through standard linear programming techniques.

Even if the true system is piecewise-affine, and the number of submodels is

correctly estimated, there might occur misclassifications while linearly separating

the clusters Fi, i = 1, . . . ,s. Misclassifications are due to errors in clustering the data

points during the refinement procedure. These errors are actually expected to be re-

duced by the distinction into infeasible, undecidable, and feasible data points (see

Section 3.3). The infeasible data points should mainly account for outliers, whereas
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Figure 4.15 Discontinuous PWA system defined by two subsystems (solid lines) and one
switching point ρ . It is assumed that the true subsystems are known, whereas ρ̂ denotes the
estimated switching point. y and ŷ are the measured and the predicted output corresponding
to a misclassified point x. The residual y− ŷ is large, due to the discontinuity of the system

the undecidable data points are those that most likely could determine misclassifi-

cations, since they are consistent with more than one submodel. Once the regions

Xi, i = 1, . . . ,s, have been estimated, all the data points can be finally classified by

exploiting both the partition and the bounded-error condition. For k = 1, . . . ,N, if

xk ∈ Xi for some i = 1, . . . ,s, and |yk −ϕ ′
kθi| ≤ δ , then (yk,xk) is assigned to the

cluster Di, otherwise it is marked as infeasible. A feasible parameter set:

FPSi =
{

θ ∈ R
n+1

∣∣ |yk −ϕ ′
kθ | ≤ δ ,∀(yk,xk) ∈ Di

}
can be also associated with the i-th submodel, i = 1, . . . ,s, thus allowing for evalua-

tion of the related parametric uncertainty (see Section 1.3). A second possibility is

to assign all the data points (yk,xk) such that xk ∈ Xi to the cluster Di, i = 1, . . . ,s,

and then to exploit standard linear identification techniques (e.g., Ljung, 1999) for

identifying a final model in each region.

The quality of different PWARX models obtained by partitioning the regressor

set using different linear separation techniques, should be compared by validating

the models as described in Section 1.4. Note that, if the true system is character-

ized by a continuous dynamics, small differences in hyperplane orientations are not

expected to alter considerably the quality of the model. On the other hand, even

small errors in shaping the surfaces along which the true system is discontinuous,
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Figure 4.16 Final classification of the regression vectors (triangles, circles, diamonds),
and true (dashed lines) and estimated (solid lines) partition of the regressor set

might determine large residuals, if a regression vector lying close to a discontinuity,

is associated to the wrong submodel. This situation is illustrated in Figure 4.15.

Hence, it would be desirable to have many regression vectors concentrated along

the discontinuities, in order to shape them as good as possible.

If the number of misclassified points when linearly separating two clusters Fi

and F j, is large, it likely means that at least one of the two clusters corresponds to

either a nonconvex region (which then needs to be split into convex polyhedra), or

nonconnected regions where the submodel is the same. Recall that the classification

procedure groups together all the data points that are fitted by the same affine sub-

model. Efficient techniques for detecting and splitting the clusters corresponding to

such situations, are currently under investigation.

Example 4.1 The final classification of the regression vectors and the estimated

partition of the regressor set for Example 3.1, are plotted in Figure 4.16. The par-

tition was estimated by using support vector machines. The line separating the tri-

angles and the diamonds is not drawn, since it is redundant, whereas the two solid

lines are defined by the coefficients (wi ∈ R
2, γi ∈ R, i = 1,2):

(w1,γ1) =
(
3.9591, −0.9665, 10.0196

)
, (w2,γ2) =

(
5.0513, 1.1876, −5.9223

)
that are very similar to the true ones.

5

Applications

In this chapter, the performance of the proposed PWA system identification pro-

cedure will be tested on some numerical examples. A case study will be also

presented, where the procedure was applied to the identification of a real process,

namely the electronic component placement process in a pick-and-place machine.

Effective use of the parameter δ of the procedure as a tuning knob to trade off

between model complexity and quality of fit, will be demonstrated.

5.1 Numerical examples

Numerical examples, in which the PWA system identification procedure was ap-

plied to piecewise affine regression problems of different type, are illustrated in this

section. Hints for the selection of the parameters of the procedure, and for improv-

ing the identified model in the validation phase, are also provided.

Example 5.1 The proposed estimation procedure was tested on the reconstruction

of the following PWA map (Ferrari-Trecate and Muselli, 2003):

f (x1,x2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4x1 +2x2 +3 if 0.5x1 +0.29x2 ≥ 0 and x2 ≥ 0

−6x1 +6x2 −5 if 0.5x1 +0.29x2 < 0 and 0.5x1 −0.29x2 < 0

4x1 −2x2 −2 if 0.5x1 −0.29x2 ≥ 0 and x2 < 0
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Figure 5.1 Example 5.1: The points (x1,x2) available for regression, and the true (dashed
lines) and the estimated (solid lines) partition of the domain X

over the domain X = [−1,1]× [−1,1]. The plot of the function f is shown in Fig-

ure 2.1. A data set containing N = 70 samples (y,x1,x2) was generated according

to the model y = f (x1,x2) + e, where the noise e was a normal random variable

with zero mean and variance σ2 = 0.01. The points (x1,x2) available for regression

are shown in Figure 5.1, together with the true partition of the domain X (dashed

lines). This benchmark problem was not challenging for data classification and pa-

rameter estimation, thanks to the very high Signal-to-Noise Ratio (SNR). However,

it will be useful to highlight some of the problems related to the reconstruction of

the regions from a finite number of data. The bound δ of the procedure was chosen

equal to 0.4. Hence, δ = 4σ . The initialization of the procedure provided a correct

estimate of the true number of submodels, i.e, s = 3. All the data points were cor-

Table 5.1 Example 5.1: True (θ̄i) and estimated (θi) parameter vectors for each submodel

θ̄1 θ1 θ̄2 θ2 θ̄3 θ3

4 4.0197 -6 -5.9545 4 4.0571

2 1.9836 6 5.9508 -2 -2.1706

3 3.0119 -5 -4.9937 -2 -2.1393
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Figure 5.2 Example 5.1: Plot of the approximation error using validation data points. The
horizontal lines bound the interval [−δ ,δ ]

rectly classified after the refinement, and the estimated parameter vectors are shown

in Table 5.1. They are very similar to the true ones. In order to avoid “holes” in

the partition, the regions were reconstructed by using Multicategory RLP. The esti-

mated coefficients of the guardlines are shown in Table 5.2, and the corresponding

partition of the domain X is drawn in Figure 5.1 (solid lines). Differences between

the true and the estimated partition are most evident around the intersection of the

three guardlines. Errors in the estimation of the guardlines from a finite data set

are in general inevitable. However, they might be detected a posteriori during val-

idation of the model. Figure 5.2 shows the plot of the approximation error for a

different data set from that used for estimation. Since the PWA map is discontinu-

ous, two misclassified data points (i.e., data points that are associated to the wrong

Table 5.2 Example 5.1: True (h̄i) and estimated (hi) coefficients of the guardlines

h̄1 h1 h̄2 h2 h̄3 h3

5 4.8539 5 4.8005 0 0.0259

2.9 3.1384 -2.9 -3.2196 1 0.9997

0 -0.1962 0 -0.2769 0 0.0118
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Figure 5.3 Example 5.2: Plot of the residuals using validation data. The horizontal lines
bound the interval [−δ ,δ ]. Spikes are due to regression vectors incorrectly classified, and
to discontinuity of the PWA map

submodel due to the errors in estimating the regions) determine distinct spikes in

the plot of the approximation error. These data points can be re-attributed, e.g., to

the nearest region with a compatible submodel. Then, the augmented data set is

used to re-estimate the regions.

Example 5.2 The PWA system identification procedure was successfully applied

to fit the data generated by a discontinuous PWARX system with orders na = 2 and

nb = 2, and s = 4 regions. The input signal was generated according to a uniform

distribution on [−5,5], and the noise signal was drawn from a normal distribution

with zero mean and variance σ2 = 0.2. The estimation data set contained N = 1000

data points, of which 292, 234, 361 and 113 were generated by each of the four

submodels, respectively. The SNR was about 17. The bound δ was chosen equal to

1.14, approximately 3.13σ . The initialization of the procedure provided the correct

number s = 4 of submodels, and clusters containing 363, 287, 229 and 121 data

points, respectively. The refinement procedure was run with c = 10, and terminated

after 5 iterations. The estimated parameter vectors after the refinement are shown

in Table 5.3. They are very good estimates of the true ones. At this stage, the

classification of the data points consisted of clusters with 293, 207, 365 and 101
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Figure 5.4 Example 5.2: Results from the residual analysis of the identified PWARX
model using validation data

data points, respectively. One data point was infeasible, and only 33 data points

out of ≈ 350 had been left undecidable. Then, the regions were computed by using

Multicategory RLP. The final reassignment of the data points provided clusters with

291, 235, 360 and 113 data points. Only one data point was left infeasible. The

99.7% of the data points were correctly classified.

The model was validated by computing the residuals using Nv = 500 vali-

dation data. The plot of the residuals is shown in Figure 5.3. They are mostly

contained in the interval [−δ ,δ ]. Recall that the noise follows a normal distribu-

Table 5.3 Example 5.2: True (θ̄i) and estimated (θi) parameter vectors for each submodel

θ̄1 θ1 θ̄2 θ2 θ̄3 θ3 θ̄4 θ4

-0.05 -0.0593 1.21 1.2208 1.49 1.4939 -1.20 -1.1838

0.76 0.7818 -0.49 -0.4957 -0.50 -0.4995 -0.72 -0.7275

1.00 1.0081 -0.30 -0.3007 0.20 0.2115 0.60 0.5716

0.50 0.5054 0.90 0.9035 -0.45 -0.4481 -0.70 -0.7013

-0.50 -0.4782 0 0.0242 1.70 1.7451 2.00 1.8076
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Figure 5.5 Example 5.3: Partition of the regressor set (solid lines) and classification (dia-
monds, circles and triangles) of some of the regression vectors used for estimation

tion, and that δ was taken ≈ 3σ . Spikes are due to discontinuity of the PWA map,

and to regression vectors incorrectly classified because of errors in estimating the

regions. For them, the wrong parameter vector was used to compute the prediction.

Nevertheless, the identified PWARX model was not falsified by the whiteness test

of the residuals or by the cross-correlation test between the residuals and the input,

as it can be seen in Figure 5.4. Note that this example was quite challenging, due

to the high number of parameters to be estimated with respect to the available data,

and the high number (≈ 35%) of undecidable data points.

Example 5.3 The PWA system identification procedure was applied to fit a PWARX

model with na = 1 and nb = 1 to the data generated by the following nonlinear sys-

tem (Bemporad et al., 2003b):

yk =
√
|yk−1|−uk−1 + ek (5.1)

The input signal uk was generated according to a uniform distribution on [−5,5],

and the noise signal ek was drawn from a normal distribution with zero-mean and

variance σ2 = 0.05. An estimation data set composed by N = 1000 data points

was considered. The SNR was about 12.7. The bound δ was chosen equal to 0.33,

approximately 1.47σ . The initialization of the procedure provided 6 submodels.
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Figure 5.6 Example 5.3: Results from the residual analysis of the identified PWARX
model using validation data

Then, the refinement procedure was run with α = 10%, β = 5%, and c = 10, and

terminated after 25 iterations. The number of submodels was reduced to 3. The

regions were finally computed by using SVM. The final classification of the re-

gression vectors, and the partition of the regressor set is shown in Figure 5.5. The

parameter vectors and the coefficients of the guardlines that were returned by the

identification procedure, are reported in Table 5.4. The reconstructed PWA map

reproduces almost correctly the symmetry of the nonlinear function in (5.1).

The model was validated by computing the residuals using Nv = 500 valida-

tion data. The average quadratic error S2
2 was equal to 0.057, which is very close

to the variance of the noise. Recall that the prediction error is influenced by both

Table 5.4 Example 5.3: Parameter vectors θi and coefficients hi of the guardlines

θ1 θ2 θ3 h1 h2

-0.3057 -0.6512 0.2833 0.9981 1.000

-0.9981 -1.0151 -1.0016 0.0621 0.0024

0.7889 0.3378 0.8117 1.0026 -0.2741
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the noise and the model error. Figure 5.6 shows the whiteness test of the residu-

als, and the cross-correlation test between the residuals and the input. Since both

plots are inside the bounds, the identified PWARX model is not falsified by this

model validation test. The fit between the measured and the simulated response

was also considered. The value of the percentage of variance-accounted-for (VAF)

was 91.04%.

5.2 A case study

The PWA system identification procedure described in this thesis, was successfully

applied to the identification of an electronic component placement process in a pick-

and-place machine1. Pick-and-place machines are used to automatically place elec-

tronic components on printed circuit boards. The process consists of a mounting

head carrying the electronic component. The component is pushed down until it

comes in contact with the circuit board, and then is released. Models of this process

are of great importance for control design, since the whole operation should be as

fast as possible (to achieve maximal throughput), while satisfying technological and

safety constraints (e.g., the exerted forces must not damage the component). Input-

output data were gathered from a real experimental setup consisting of a mounting

head and an impacting surface simulating the printed circuit board. A physical

model of the experimental setup is shown in Figure 5.7. The mounting head is rep-

resented by the mass M, whose movement is only enabled along the vertical axis.

The springs c1 and c2 simulate elasticity. The dampers d1 and d2 provide linear

friction, whereas the blocks f1 and f2 provide dry friction. The input and the output

of the system are the voltage applied to the motor driving the mounting head (repre-

sented by the exerted force F in Figure 5.7), and the position of the mounting head,

respectively. Four operating conditions of the system can be distinguished. In the

1The author would like to thank Aleksandar Juloski (Department of Electrical Engineer-

ing, Eindhoven University of Technology, Eindhoven, The Netherlands) for providing the data

used for identification in this section. Data are by courtesy of Assembleon, Eindhoven

(www.assembleon.com).
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Figure 5.7 Physical model of the mounting head

free mode, the mounting head moves unconstrained, i.e., without being in contact

with the impacting surface. In the impact mode, the mounting head moves in con-

tact with the impacting surface. The upper and lower saturation modes correspond

to situations in which the mounting head cannot move upwards or downwards, re-

spectively, due to physical constraints. The reader is referred to (Juloski et al., 2003)

for a more detailed description of the experimental setup.

The considered data set was such that only two operating conditions were

excited, namely the free mode and the impact mode. Input-output data used for

identification and validation are plotted in Figure 5.8. Nonlinear phenomena due to

Table 5.5 Identification of the mounting head: Fit between the measured and the simulated
response using the identified PWARX models with s = 2, s = 3 and s = 4 discrete modes

VAF

s = 2 81.33%

s = 3 90.18%

s = 4 93.48%
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Figure 5.8 Identification of the mounting head: Data sets used for estimation (upper plot)
and validation (lower plot). The solid line is the system output, and the dashed line is the
scaled input

dry friction damping are evident in both data sets, e.g., in the upper plot of Figure 5.8

on the interval (500,750). A PWARX model structure with orders na = 2 and nb = 2

was considered. By choosing δ = 0.06, δ = 0.05, and δ = 0.04, models with s = 2,

s = 3, and s = 4 discrete modes, respectively, were identified. N = 1000 estimation

data were used. For s = 3 and s = 4, M-RLP linear separation techniques (see

Section 4.4) were applied in the region estimation step so as to avoid “holes” in the

partition. Validation was then carried out by computing the fit between the measured

and the simulated response using Nv = 400 validation data. The values (1.27) of the

percentage of variance accounted for (VAF), are shown in Table 5.5 for the three

identified models. These values demonstrate that the fit improves as the number of

submodels increases, i.e, as smaller and smaller values of δ are chosen in the PWA

system identification procedure. In Figure 5.9, the plots of the simulated responses

are graphically compared to the measured response. Figure 5.9(a) clearly shows that

only two affine submodels are not sufficient for accurately reproducing the system

dynamics. Very good accordance between the measured and the simulated response

is instead obtained with s = 3 and s = 4 submodels. Difficulties of the identified

models in reproducing the nonlinear phenomena on the interval (210,240) are likely
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Figure 5.9 Identification of the mounting head: Simulation results of the identified
PWARX models with (a) s = 2, (b) s = 3, and (c) s = 4 submodels (solid line - simulated
output, dashed line - system output). The lower plot in each figure shows the evolution of
the discrete mode
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Figure 5.10 Identification of the mounting head: Results from the residual analysis of the
identified PWARX model with s = 4 discrete modes. Validation data are used

to be due to incomplete information provided by the estimation data. Indeed, in the

estimation data set (upper plot of Figure 5.8), all significant transitions of the output

from low to high values show an overshoot. Consequently, an overshoot shows

up in the simulated responses on the intervals (60,140) and (210,240), that are

both generated by the same sequence of affine submodels, and are caused by large

variations of the input signal. It is interesting to note that the identified model with

s = 4 discrete modes is able to reproduce very faithfully the peak in the interval

(60,140). The discrete mode evolution in the lower plot of Figure 5.9(a) clearly

shows that one of the two submodels is active in situations of high incoming velocity

of the mounting head (i.e., rapid transitions from low to high values of the mounting

head position). One submodel modelling the same situation is also present in the

identified models with s = 3 and s = 4 discrete modes.

Figure 5.10 shows a whiteness test of the residuals, and a cross-correlation

test between the residuals and the input, for the identified PWARX model with

s = 4 discrete modes. Values of the auto-correlation sequence at lags τ = 1 and

τ = 2 fall outside the confidence region. This can be explained by observing that

there are large intervals in Figure 5.11 where the prediction error is almost constant.
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Figure 5.11 Identification of the mounting head: Plot of the prediction error using the
identified PWARX model with s = 4 discrete modes. Validation data are used

Hence, auto-correlation at small lags is high. Comparison of Figures 5.8 and 5.11

shows that constant intervals of the prediction error are likely a consequence of the

input signal of piecewise constant type used to excite the system. No significant

cross-correlation between the residuals and the input is shown by the lower plot of

Figure 5.10.

In order to compare PWARX model structures with different orders, a PWARX

model with orders na = 2 and nb = 1, and s = 3 discrete modes was also identified

and validated using the same data sets of Figure 5.8. The plot of the simulated re-

sponse of this model is shown in Figure 5.12. The corresponding VAF was 88.20%,

which is 2% lower than that corresponding to the identified PWARX model with or-

ders na = 2 and nb = 2, and the same number s = 3 of discrete modes (see Table 5.5).

However, this difference is not significant enough to accord clear preference to the

latter model over the former.

This case study showed that suitable PWARX models, which are able to de-

scribe relevant aspects of the dynamics of a real process, can be obtained by the

use of the proposed PWA system identification procedure. It also demonstrated that

the bound δ of the procedure can effectively be used as a tuning knob to trade off

between model complexity and quality of fit.
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Figure 5.12 Identification of the mounting head: Simulation results of the identified
PWARX model with orders na = 2 and nb = 1, and s = 3 discrete modes (solid line - simu-
lated output, dashed line - system output). The lower plot shows the evolution of the discrete
mode

6

Conclusions

In recent years, PWA system identification has deserved increasing attention, moti-

vated by the development of always more advanced tools for the analysis, verifica-

tion and control of hybrid systems, and by the equivalence between PWA systems

and several classes of hybrid systems.

In this thesis, a novel procedure for the identification of PWARX models from

input-output data was presented and discussed. The proposed two-stage procedure,

described in Chapter 3, consists of a first step, where data classification and param-

eter estimation are performed simultaneously, and a second step, which deals with

the estimation of the regions. The key approach in the first step was the selection of

a bound δ on the fitting error. This made it possible to formulate the problem of data

classification and parameter estimation as an extension of the MIN PFS problem for

infeasible systems of linear inequalities. The major capability of this formulation is

that it also provides an estimate of the minimum number of submodels needed to fit

the data, which therefore is not fixed a priori. A refinement procedure for improving

both data classification and parameter estimation was also proposed. It alternates

between data point reassignment and parameter update. Outliers can be detected

and discarded in this phase. Moreover, the number of submodels is allowed to vary

from iteration to iteration by exploiting parameter similarities and cluster cardinal-

ities. The ambiguity related to the classification of the undecidable data points was
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pointed out, and it was suggested to assign them to submodels by exploiting spa-

tial localization. Region estimation was finally carried out by resorting to linear

separation techniques. Chapter 4 was dedicated to an overview of several of these

techniques, such as (Multicategory) Support Vector Machines and (Multicategory)

Robust Linear Programming. According to the bounded error description, the iden-

tified PWA model associates to each submodel a set of feasible parameters, thus

allowing for evaluation of the related parametric uncertainty.

The greedy algorithm (Amaldi and Mattavelli, 2002) used to solve the MIN

PFS problem with complementary inequalities was modified in this thesis in order

to obtain improved solutions. The choice of the bound δ on the fitting error was

also discussed. It was shown that a suitable choice of δ is typically close to the

knee of the curve expressing the number of submodels versus δ . Interesting results

were obtained by applying the identification procedure to experimental data from

an electronic component placement process. These results demonstrated that the

bound δ can effectively be used as a tuning knob to trade off between model com-

plexity and quality of fit. It is pointed out that considering a common error bound

was not restrictive, because the case of different bounds associated with each data

point can be handled by scaling the data so that δ = 1. The refinement procedure

proposed in thesis as a part of the overall PWA system identification procedure,

could be combined with other procedures available in the literature, so as to yield

new identification methods. For instance, the rank constraint on the data derived

by Vidal et al. (2003a) could be used to estimate the number of submodels, and

then the k-plane algorithm proposed in (Bradley and Mangasarian, 2000) could be

exploited to provide initial data classification and parameter estimation.

Future research will concern the possibility to include in the identification

procedure the knowledge available a priori on the system to be identified (e.g.,

saturations, thresholds, dead-zones), as well as to identify submodels of different

orders for each discrete mode. Techniques for efficiently detecting and handling

non-convex regions, or non-connected regions where the parameter vector is the

same, will be investigated. Effort will be addressed to deriving rules for automatic

121

selection and update of the thresholds α and β in the refinement step, in order to

completely automatize the identification procedure.

It would be interesting to define suitable criteria for evaluating the quality

of the identified PWA models. Classical criteria like residual analysis might be

misleading for this class of models. Since the partition of the PWA map cannot

be determined exactly from a given finite estimation data set, even small errors in

estimating the boundaries of the regions could determine large residuals, if the PWA

map is discontinuous. In this respect, it would be also useful to provide bounds on

the errors when reconstructing the regions. Experiment design and order selection

are open issues in system identification, that hold also for the class of PWA models.

In particular, the choice of the input signal for identification should be such that not

only all the affine dynamics are sufficiently excited, but also accurate shaping of

the boundaries of the regions will be possible. This is especially important when

the system dynamics is discontinuous. Other open questions related to PWA system

identification are the identification of state space models, and the development of

on-line algorithms.
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