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Abstract

The paper is focused on the comparison between some classical ro-
bust stability conditions for continuous-time linear time-invariant sys-
tems. Such conditions are given as lemmas in the paper, since their
statements include some generalizations, needed in order to better com-
pare (and use) them. The analysis is carried out by comparing pairwise
the families of systems whose stabilization through a given compen-
sator is guaranteed by each of the considered robust stability condi-
tions. Some properties of the families are formally derived and stated,
and some very simple examples are exhibited in order to illustrate the
presented properties and comparisons. A theorem, representing an ex-
tension of one of the considered conditions, is proposed in order to
overcome some difficulties arising in the use of the classical result.
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1 Introduction

Stability robustness in spite of system uncertainties is one of the main pur-
poses in control system design. Since the actual system to be stabilized is not
exactly known, a common approach to the problem is to assume it belongs
to a set of systems defining the so-called uncertainty set (usually expressed
in terms of a nominal system and a description of the uncertainty around
it), and to design a compensator guaranteeing that stability is preserved for
all the systems in this set. To this aim, it can be helpful to resort to sev-
eral robust stability conditions that are available in the literature (see, e.g.,
[2]-[12] and the references therein), exploiting different representations of the
mismatch between the nominal and the actual system. Notice that, when
the covering of the possible systems through the uncertainty set is too large
(e.g. because it either neglects the structure of the uncertainty, or takes into
account perturbations in the system parameters that rarely or never occur),
this approach leads to a conservative design. In the last decades great ef-
fort has therefore been made towards less conservative analysis and synthesis
methods (µ-analysis and synthesis are a perfect example of this [9, 13]).

In this paper we will focus on the robust stability conditions derived by
Doyle and Stein [14] and Chen and Desoer [15], based on a generalized version
of the Nyquist criterion, and on some robust stability conditions based on the
small-gain theorem [9, 16]. In both these types of conditions (which will be
recalled in Section 2), uncertainty affecting the controlled system is repre-
sented in the form of matrix perturbations, either additive or multiplicative,
relating its actual transfer matrix P (s) to the nominal one, namely P0(s).
Recall that such common representations are quite general, within the hy-
pothesis of linear behaviour of the plant, since they allow to take into account
both any kind of inaccuracy that may occur in modelling or identifying the
system, and uncertainty in the system parameters.

The purpose of the paper is a comparison between the families of (possi-
bly multivariable) systems whose stabilization is guaranteed by pairs of the
mentioned robust stability conditions, for the same choice of the feedback
compensator stabilizing the nominal system. After introducing some nota-
tions and preliminaries in Section 2, a detailed comparison will be carried
out in Section 3 between the families of systems whose stabilization through
the given compensator is guaranteed by those of the mentioned conditions
referring to multiplicative perturbations of P0(s). First, a formal proof will
be given of the invariance - in locations and algebraic multiplicities - of the
unstable eigenvalues of the perturbed systems whose stabilization is guar-
anteed by the condition based on the small-gain theorem. This seems to
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be a stronger property than the one stated through informal arguments in
References [17, 18], where multiplicative (or additive) perturbations free of
unstable poles were considered. On the other hand, for the perturbed sys-
tems whose stabilization through the given compensator is guaranteed by the
stability condition in References [14, 15] (not requiring the stability of the
multiplicative perturbation), a formal proof will be given of the invariance -
in locations and algebraic multiplicities - of the only eigenvalues lying on the
imaginary axis. It will be also recalled, and shown through an example, that
the other unstable eigenvalues can instead move [14]. These formal properties
of the two families constitute the first contribution of the paper. They imply
in particular that the former family contains only perturbed systems having
just the same unstable eigenvalues - in locations and algebraic multiplicities
- as the nominal one. This, and other arguments arising from the discussion
in Section 3, will suggest that, if the nominal system has unstable eigenval-
ues or transmission zeros, the former family is less (and possibly much less)
significant than the latter. Such an analysis constitutes another contribution
of the paper.

For the sake of completeness, a similar comparison will be sketched in
Section 4 also for the case of additive perturbations, although some of the
related reasonings are straightforward in this case. In the same section, the
families of perturbed systems whose stabilization through the given compen-
sator is guaranteed by the two different robust stability conditions in Ref-
erences [14, 15] (the one referred to multiplicative perturbations, the other
to additive perturbations) will be compared in some significant cases. This
latter comparison, whose results depend on the properties of the (possibly
multivariable) nominal controlled system, is a further contribution of the pa-
per, and can be helpful in order to choose which type of perturbations (either
additive or multiplicative) is more advantageous to use in each particular sit-
uation.

The last contribution of the paper is represented by Theorem 1, which is
an extension of the classical robust stability condition recalled in Lemma 3.
It is proposed in Section 4 in order to allow also additive perturbations having
poles on the imaginary axis, which is a forbidden situation in the classical
statement.

The considered robust stability conditions are often referred to the mere
asymptotic stability of the closed-loop control system. However, in the fol-
lowing, after introducing proper notations, a possibly stronger requirement
will be considered, i.e. it will be required the eigenvalues of the closed-loop
control system to lie in the half-plane Re(s)<−α, for a given α≥0. As it will
be discussed in Section 3, a suitable choice of α>0 may be useful not only in
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order to obtain a faster convergence to zero of the free responses of the closed-
loop control system, but also in order to overcome some difficulties arising
in the classical use of the robust stability conditions in References [14, 15]
with α=0. Notice that the aforementioned comparisons (and the related
conclusions) still hold in the case α>0 by replacing the imaginary axis and
the right half-plane with the axis Re(s)=−α and the half-plane Re(s)>−α,
respectively. They will be carried out in the paper for the general case α≥0.

Very simple examples will be used to illustrate the presented results.

2 Notations and preliminaries

In this paper we consider finite dimensional continuous-time linear time-
invariant dynamical systems described by equations of the type

ẋ(t) = A x(t) + B u(t)

y(t) = C x(t) + D u(t)
(1)

where t∈R is time, x(t)∈R
n is the state, u(t)∈R

p is the input, y(t)∈R
q is the

output, and A, B, C and D are real constant matrices with suitable dimen-
sions. Let a system P be described by equations (1). For the sake of brevity,
the eigenvalues of the state matrix A of P will be also called eigenvalues of
P. Moreover, P (s) will denote the input/output transfer matrix of P, i.e.
P (s)=C(sI−A)−1B+D.

In the next sections we will focus on the closed-loop system Σ shown
in Figure 1, where P stands for the controlled system, and K is a given
compensator. The state space description of K is wholly similar to (1) by
means of matrices AK , BK , CK and DK , and its transfer matrix will be

P

K

Figure 1: The closed-loop system Σ.
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denoted by K(s). Denoting by AΣ the state matrix of Σ, it is recalled that,
if Σ is well-posed, i.e. det(I−DDK)6=0, then the following useful relation
holds [19]:

det(sI − AΣ) =
det(sI − A) det(sI − AK) det

(

I − P (s)K(s)
)

det(I − DDK)
(2)

Asymptotic stability is an obvious requirement for Σ, but possibly too
weak, if a prescribed rate of exponential decay of the closed-loop free re-
sponses is to be guaranteed. Therefore, for a fixed α≥0, define

Cg , {s ∈ C : Re(s) < −α}

If all the eigenvalues of Σ belong to Cg, Σ will be said to be Cg-stable. In
addition, system P will be said to be Cg-stabilizable (or Cg-detectable) if
there exists F∈R

p×n (or V ∈R
n×q) such that all the eigenvalues of A+BF

(or A+V C) belong to Cg. It is clear that, if α>0, Cg-stability is a stronger
requirement than the mere asymptotic stability (obtained for α=0), so it will
be referred to also as strengthened stability. Further reasons for using α>0
will be discussed in the subsequent Section 3.

Remark 1 We recall that the poles of P (s) are the eigenvalues of the reach-
able and observable part of system P, so that, in general, they are only a
subset of the eigenvalues of P.

If system P is Cg-stabilizable and Cg-detectable, then any eigenvalue λ of
P outside Cg is also a pole of P (s) - so that, under the mentioned hypotheses,
these two terms will be used equivalently - and the algebraic multiplicity of
λ (i.e. the multiplicity of λ in the characteristic polynomial of A) equals its
multiplicity as a pole of P (s), counted according to the McMillan degree of
P (s) (i.e. it equals the multiplicity of λ in the least common denominator of
all non zero minors of P (s) [20]). �

Since the values of n and of matrices A, B, C and D are uncertain for
the actual controlled system, its available description P0 of dimension n0,
characterized by matrices A0, B0, C0 and D0 in equations wholly similar to
(1), will be called the nominal system, whose transfer matrix will be denoted
by P0(s). Then, the nominal closed-loop system, obtained by replacing P
with P0 in Figure 1, will be called Σ0, and the state matrix of Σ0 will be
denoted by AΣ0

.
The topics of this paper are well-known sufficient conditions, to be checked

on the nominal closed-loop system Σ0, guaranteeing that the property of Cg-
stability, which is assumed for Σ0, is preserved by the closed-loop system
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Σ for all the perturbed systems P ranging in different uncertainty sets, but
primarily described in terms of matrix perturbations, either additive or mul-
tiplicative, relating the transfer matrix P (s) of P to the nominal one P0(s).
Recall that the representation of the uncertainties in the form of additive
perturbations [15, 21], i.e.

P (s) = P0(s) + δP (s) (3)

is always possible and, within the hypothesis that the actual system behaves
linearly, allows to take into account any error in identification and all inaccu-
racies associated with modelling (including parameter changes and neglected
dynamics, thus allowing the order n of P to be different and even much
larger than the order n0 of P0), whereas the representation of the uncertain-
ties in the form of output multiplicative perturbations [14, 15, 21] requires the
existence for P (s) of a q×q rational matrix δP (s) such that1

P (s) =
(

I + δP (s)
)

P0(s) (4)

or, equivalently, such that

δP (s) = δP (s)P0(s) (5)

In this latter case, denoting by T0(s),P0(s)K(s)
(

I−P0(s)K(s)
)−1

the so-
called output complementary sensitivity matrix of the nominal closed-loop
system Σ0 (under the assumption that Σ0 is well-posed), the following useful
identity

I − P (s)K(s) =
(

I − δP (s)T0(s)
)(

I − P0(s)K(s)
)

(6)

can be derived from

I − P (s)K(s) = I − P0(s)K(s) − δP (s)K(s)

= (I − δP (s)K(s)
(

I − P0(s)K(s))−1)(I − P0(s)K(s))

in view of the hypothesis (5) and the definition of T0(s). Notice that the
existence of δP (s) such that (4) holds, is guaranteed for all P (s) if P0(s) has
full column rank in the rational field.

Remark 2 It is stressed that equation (4) only relates algebraically P (s)
to P0(s), so that system P, whose transfer matrix is P (s) (and whose sta-
bilization through the given compensator K is possibly guaranteed by the

1It is stressed that the symbol δ
P (s) has a different meaning from δP (s).
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subsequent Lemma 1, or Lemma 2), may actually not be the series connec-
tion of P0 and a realization of I+δP (s), as (4) could instead suggest. This
implies that unstable cancellations between I+δP (s) and P0(s) are allowed
in (4), in principle, since they do not necessarily imply any loss of stabi-
lizability or detectability in P with respect to P0 (see, e.g., the subsequent
Example 1). �

Let σ̄ [·] and σ
¯

[·] denote the largest and the smallest singular value of the
argument matrix, respectively, and let R

+ denote the set of non-negative real
numbers. The following lemma gives conditions for the robust Cg-stability
of system Σ [14, 15], and can be proven by means of a suitable extension of
the Nyquist criterion, in which the role usually played by the imaginary axis
is taken by the boundary of Cg (for this reason, in the following, we will call
Nyquist contour the boundary of Cg).

Lemma 1 If, for a fixed α≥0 characterizing Cg,

(i) Σ0 is well-posed and Cg-stable;

(ii) σ̄ [T0(−α+jω)]≤
1

lm(ω)
, ∀ω∈R

+,

where lm(ω) is a positive and continuous function of ω∈R
+, then system Σ

is Cg-stable for all the perturbed systems P such that:

(a) systems P and P0 have the same number of eigenvalues outside Cg

(including algebraic multiplicities);

(b) Σ is well-posed;

(c) P (s) can be expressed in the form (4) (i.e. there exists δP (s) such that
(4) holds), with δP (s) satisfying the inequality σ̄

[

δP (−α+jω)
]

<lm(ω),
∀ω∈R

+.

In view of Remark 2, in the following the family of perturbed systems P
satisfying the conditions (a), (b) and (c) of Lemma 1 will be denoted by
Mbu(α, lm). The subscript recalls that the transfer matrices P (s) of all the
perturbed systems in this family could be viewed as belonging to a (normal-
ized) ‘ball of uncertainty’ around the nominal transfer matrix P0(s) [15].

For a fixed σ∈R, let RLσ,∞ be the set of all proper rational matri-
ces with real coefficients and free of poles on the σ+jω-axis. Then, for all
G(s)∈RLσ,∞, the following quantity is well-defined:

‖G(s)‖σ,∞ , sup
ω∈R

σ̄ [G(σ + jω)]
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which is a straightforward extension of the usual L∞ norm. The subset of
RLσ,∞ consisting of all proper rational matrices with real coefficients and
free of poles with real part greater than or equal to σ will be denoted by
RHσ,∞. For σ=0 the usual set RH∞ is obtained. Also the following lemma
gives conditions for the robust Cg-stability of system Σ. It generalizes well-
known results (see, e.g., References [9, 16]), and can be proven by means of a
simple extension of the small-gain theorem (see Reference [12] for a suitable
version of it in the setting of this paper).

Lemma 2 If, for a fixed α≥0 characterizing Cg,

(i) Σ0 is well-posed and Cg-stable;

(ii) ‖W2(s)T0(s)W1(s)‖−α,∞≤ρ−1,

where ρ>0 and W1(s), W2(s)∈RH−α,∞, then system Σ is well-posed and
Cg-stable for all the perturbed systems P such that:

(a) system P is Cg-stabilizable and Cg-detectable;

(b) P (s) can be expressed in the form (4) (i.e. there exists δP (s) such that
(4) holds), with δP (s) satisfying the relation δP (s)=W1(s)∆(s)W2(s),
where ∆(s)∈RH−α,∞ is such that ‖∆(s)‖−α,∞<ρ.

In view of Remark 2, in the following the family of perturbed systems P
satisfying the conditions (a) and (b) of Lemma 2, for fixed weighting matrices
W1(s) and W2(s) characterizing the spatial and frequency structure of the
uncertainty, will be denoted by Msg(α, ρ). The subscript refers to the fact
that Lemma 2 can be proven by means of (a suitable extension of) the small-
gain theorem, thus recalling that the multiplicative perturbations, relating
the transfer matrices P (s) of all the perturbed systems in this family to the
nominal one P0(s), belong to RH−α,∞.

Remark 3 The strict inequality in condition (c) of Lemma 1 (or (b) of
Lemma2) can be relaxed to ≤ if the inequality in the corresponding hypothesis
(ii) is strengthened to <. Notice that both Lemmas 1 and 2 (as well as
subsequent Lemmas 3 and 4) can be effectively used not only to check a
posteriori the robust Cg-stability of the closed-loop system Σ in Figure 1, but
also to design a compensator K satisfying a priori robustness requirements
(see, e.g., References [9, 10, 14, 16]). �
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Remark 4 When the uncertainty affecting the description of the controlled
system is characterized in the form of input multiplicative perturbation, i.e.
in the form

P (s) = P0(s)
(

I + δP (s)
)

(7)

where δP (s) is a p×p rational matrix (whose existence is guaranteed for all
P (s) by P0(s) having full row rank in the rational field), both Lemmas 1
and 2 (as well as the discussion to follow) still hold by replacing (4) with
(7), and T0(s) with the so-called input complementary sensitivity matrix

R0(s),K(s)P0(s)
(

I−K(s)P0(s)
)−1

of Σ0. �

3 Families of systems that are robustly stabilized

under multiplicative perturbations

In this section, the families Mbu(α, lm) and Msg(α, ρ) defined in the previous
section will be considered in detail. First, notice that the hypotheses and the
conditions of Lemma 1, guaranteeing the Cg-stability of Σ in addition to the
one of Σ0, also guarantee the Cg-stabilizability and the Cg-detectability of
systems P and P0, as well as the hypotheses and the conditions of Lemma 2
do. Thus, the implication stressed by Remark 1 follows about the use of the
terms ‘eigenvalue of P outside Cg’ and ‘pole of P (s) outside Cg’.

Under the hypotheses and the conditions of Lemma 1, it is obvious that
P (s) cannot have poles on the −α+jω-axis different from those of P0(s), since
such poles should be introduced by the factor I+δP (s), in contradiction with
condition (c). On the other hand, still under the hypotheses of Lemma 1,
and if P0(s) has poles on the −α+jω-axis, one could ask whether there exist
perturbed systems P in the family Mbu(α, lm) such that these poles disappear
in P (s) or reduce their algebraic multiplicities (this might be compatible with
conditions (a) and (c) of Lemma 1 if such poles of P0(s) are shifted to poles
of P (s) in the right-hand side of the −α+jω-axis). The answer is negative,
as it is stated by the following proposition.

Proposition 1 Under hypotheses (i) and (ii) of Lemma 1, the nominal sys-
tem P0 and all the perturbed systems P in the family Mbu(α, lm) have the
same eigenvalues on the −α+jω-axis, with the same algebraic multiplicities.

Proof. From (i) it follows that T0(s) has no poles on the −α+jω-axis,
whereas from (c) it follows that δP (s) has no poles on the −α+jω-axis. Hence
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det(I−δP (s)T0(s)) has no poles on the −α+jω-axis, either. Moreover,

σ̄
[

δP (−α + jω)T0(−α + jω)
]

≤ σ̄
[

δP (−α + jω)
]

σ̄ [T0(−α + jω)]

< lm(ω)
1

lm(ω)
= 1, ∀ω ∈ R

+

Hence, σ
¯

[

I−δP (−α+jω)T0(−α+jω)
]

>0, ∀ω∈R
+, and therefore the rational

function det(I−δP (s)T0(s)) has not even zeros on the −α+jω-axis. On the
other hand, identities (2) and (6) (the former written both for the nominal
and the perturbed system) yield

det(I − DDK)

det(I − D0DK)

det(sI − AΣ) det(sI − A0)

det(sI − A) det(sI − AΣ0
)

= det(I − δP (s)T0(s)) (8)

Since Σ0 and Σ are Cg-stable, and hence free of eigenvalues on the −α+jω-
axis, the proven lack of zeros and poles of det(I−δP (s)T0(s)) on the −α+jω-
axis implies that all the eigenvalues of A0 on the −α+jω-axis are also eigen-
values of A with the same algebraic multiplicities (and vice versa). �

Similarly, under the hypotheses and the conditions of Lemma 2, it is
obvious that P (s) cannot have poles outside Cg different from those of P0(s),
since such poles should be introduced by the factor I+δP (s), in contradiction
with condition (b), implying δP (s)∈RH−α,∞. On the other hand, still under
the hypotheses of Lemma 2, and if P0(s) has poles outside Cg, one could ask
whether there exist perturbed systems P in the family Msg(α, ρ) such that
these poles disappear in P (s) or reduce their algebraic multiplicities (this
might be compatible with the conditions of Lemma 2 if such poles of P0(s)
are, e.g., shifted to poles of P (s) in the left-hand side of the −α+jω-axis,
so as to violate condition (a) of Lemma 1). Also in this case the answer is
negative, as it is stated by the following proposition.

Proposition 2 Under hypotheses (i) and (ii) of Lemma 2, the nominal sys-
tem P0 and all the perturbed systems P in the family Msg(α, ρ) have the
same eigenvalues outside Cg, with the same algebraic multiplicities.

Proof. For any ∆(s) characterizing a system P∈Msg(α, ρ) according to
condition (b) of Lemma 2, let systems M and D be minimal realizations
of M(s)=W2(s)T0(s)W1(s) and ∆(s), respectively, and consider the closed-
loop system Σ̂ obtained by replacing P and K with M and D in Figure 1.
Since M(s) and ∆(s) belong to RH−α,∞ (so that M and D are Cg-stable),
‖M(s)‖−α,∞≤ρ−1 and ‖∆(s)‖−α,∞<ρ, then a suitable extension of the small-

gain theorem implies that Σ̂ is well-posed and Cg-stable. Therefore, by rewrit-
ing equation (2) with Σ, P and K replaced by Σ̂, M and D, respectively, and
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noticing that all the eigenvalues of Σ̂, M and D belong to Cg in view of their
Cg-stability, it follows that det(I−∆(s)M(s)) has neither zeros nor poles out-
side Cg. On the other hand, identities (2) and (6) (the former written both
for the nominal and the perturbed system) yield relation (8), where

det(I − δP (s)T0(s)) = det(I − W1(s)∆(s)W2(s)T0(s))

= det(I − ∆(s)W2(s)T0(s)W1(s))

Since Σ and Σ0 are Cg-stable, the proven lack of zeros and poles of the rational
function det(I−∆(s)M(s)) outside Cg implies that all the eigenvalues of A0

outside Cg are also eigenvalues of A with the same algebraic multiplicities
(and vice versa). �

3.1 Comparison between families of perturbed systems whose

robust stabilization is guaranteed by Lemmas 1 and 2

It is now interesting to compare the families Mbu(α, lm) and Msg(α, ρ) un-
der the hypotheses of both Lemmas 1 and 2. In order to simplify the ex-
position, we could choose lm(·) and ρ providing as large as possible fam-
ilies Mbu(α, lm) and Msg(α, ρ). This means taking ρ as the inverse of
‖W2(s)T0(s)W1(s)‖−α,∞, and lm(ω) as the inverse of σ̄ [T0(−α+jω)] for all

ω∈R
+, unless this quantity is zero for some ω’s, in which case the above

choice is possible outside arbitrarily small neighborhoods of such ω’s.
First, we observe that, for perturbed systems P in the family Msg(α, ρ),

the multiplicative factor δP (s) belongs to RH−α,∞, i.e. it is proper and with
all poles in Cg, whereas for perturbed systems P in the family Mbu(α, lm), it
must be simply free of poles on the −α+jω-axis, and can be also not proper,
if lm(ω) is unbounded as ω goes to infinity (what allows to take into account,
e.g., the case of unmodelled dynamics [14]). Moreover, under the hypotheses
of Lemma 2, systems P in the family Msg(α, ρ) have all the eigenvalues
outside Cg of the nominal system P0, with the same locations and algebraic
multiplicities (see Proposition 2), whereas, in view of Proposition 1, under the
hypotheses of Lemma 1, systems P in the family Mbu(α, lm) have unchanged
in locations and algebraic multiplicities only the eigenvalues of the nominal
system P0 on the −α+jω-axis. The latter situation might be not so restrictive
if such eigenvalues are actually invariant (e.g. the zero pole of a d.c. motor
whose output is position). Other eigenvalues on the right-hand side of the
−α+jω-axis can instead move, being constrained by condition (a) of Lemma 1
only to remain unchanged in number (see Reference [14] and the subsequent
Example 1).
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From these arguments it follows that, in the case of P0(s) having poles
outside Cg, and under the hypotheses of both Lemmas 1 and 2, the family
Mbu(α, lm) is much more significant than the family Msg(α, ρ) for any choice
of the weighting matrices W1(s) and W2(s), since all systems in the latter
family are constrained to have those poles in the same locations and with the
same multiplicities. Consider also that it is possible to choose α≥0 such that
the nominal system P0 has no eigenvalues on the −α+jω-axis.

In a particular (but significant in practice) case, it can be easily shown
that, under the hypotheses of Lemma 2, the family Mbu(α, lm) contains the
family Msg(α, ρ), so that the former is larger than the latter (see again the
subsequent Example 1). For a fixed scalar proper rational function r(s) free
of poles and zeros outside Cg, and for W1(s)=I and W2(s)=r(s)I, suppose
to have found a compensator K such that all the hypotheses of Lemma 2
are satisfied for some ρ>0. Notice that hypothesis (ii) of Lemma 2 is now
equivalent to

ρ−1 ≥ σ̄ [W2(−α + jω)T0(−α + jω)] = |r(−α + jω)| σ̄ [T0(−α + jω)]

for all ω ∈ R
+, which implies the existence of a positive and continuous

function lm(·), defined by

lm(ω) , |r(−α + jω)| ρ, ∀ω ∈ R
+ (9)

such that σ̄ [T0(−α+jω)]≤1/lm(ω), ∀ω∈R
+. With such a choice of lm(·),

it is easy to verify that a perturbed system P satisfying the conditions of
Lemma 2 also satisfies the conditions of Lemma 1. In particular, condition
(a) of Lemma 1 is guaranteed by Proposition 2, condition (b) is guaranteed
by Lemma 2, and condition (c) is satisfied in view of (9) and of the following
relations

σ̄
[

δP (−α + jω)
]

= σ̄ [∆(−α + jω)W2(−α + jω)]

≤ |r(−α + jω)| ‖∆(s)‖−α,∞

< |r(−α + jω)| ρ, ∀ω ∈ R
+

The above choice for W1(s) and W2(s) (that is possible for any multivariable
system) does not imply any loss of generality in the special case q=1, so that,
for q=1 and under the hypotheses of Lemma 2, there always exists a choice of
the bound lm(·) such that the family Mbu(α, lm) actually contains the family
Msg(α, ρ). This is what occurs in the following very simple example, which
shows that, under the hypotheses of Lemma 1, the family Mbu(α, lm) actually
includes perturbed systems P having eigenvalues lying in the right-hand side

12



0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

p

β

Figure 2: Robust stability regions considered in Example 1.

of the −α+jω-axis that are different from those of the nominal system P0. It
also confirms that the family Mbu(α, lm) may be much more significant than
the family Msg(α, ρ).

Example 1 Consider a nominal stabilizable and detectable unstable system
P0 having transfer function P0(s)=1/(s−1) , and a compensator K with trans-
fer function K(s)=−12/(s + 6) , such that hypothesis (i) of both Lemmas 1
and 2 is satisfied. Then, let Π be the set of all stabilizable and detectable
systems P characterized by transfer functions of the type

P (s) =
β

s − p
, β, p ∈ R

If P∈Π, it is easy to see that δP (s)=[(β−1)s+(p−β)]/(s−p), and therefore
the pole of P (s) is also a pole of the corresponding multiplicative perturbation
δP (s).

Fixed α=0, it is very simple, by applying the Routh criterion, to compute
the set of pairs (β, p) characterizing all systems P∈Π being stabilized by the
compensator K. A portion of this set is represented by the whole gray region
in Figure 2. The set of pairs (β, p) characterizing systems P∈Π satisfying
the conditions of Lemma 1 with lm(ω) chosen as the inverse of σ̄ [T0(jω)],
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is represented by the dark gray region in Figure 2. The set of pairs (β, p)
characterizing systems P∈Π satisfying the conditions of Lemma 2 is instead
always included in the vertical segment drawn in the same figure, for any
choice of the weighting functions W1(s), W2(s)∈RH∞ (this is not surprising
as, in view of Proposition 2, the unstable eigenvalue of P0 cannot change its
location), and reduces to the nominal point, if at least one of such functions
is chosen strictly proper.

It is stressed that, if the set Π includes all stabilizable and detectable
systems P characterized by transfer functions of the type

P (s) =
γs + β

s − p
, γ, β, p ∈ R

(thus allowing an input/output direct link), there is no system P∈Π with
γ 6=0, satisfying the conditions of Lemma 2, whereas systems P∈Π with γ 6=0
actually exist, satisfying the conditions of Lemma 1. �

3.2 On the choice of α

Although the nonnegative number α seems to be fixed by the desired rate
of decay of the free responses of the closed-loop system, in this subsection it
will be shown that it can sometimes be advantageous to increase its value, or
even to consider different values of α for the same system (see the subsequent
Example 3). In particular, although Lemma 1 is usually presented in the
literature with reference to α=0, its application with α>0 may be useful in
order to check the corresponding robust strengthened stability for perturbed
systems P that actually may occur in practice, and that may belong to the
family Mbu(α, lm) for some α>0, even if they do not belong to the family
Mbu(0, l′m) for any function l′m(·), since they violate condition (a) for α=0.
Indeed, if some stable pole of P0(s) remains stable only for ‘small’ variations of
the parameters of the controlled system, a proper choice of α>0 may allow to
actually consider perturbed systems P satisfying the conditions of Lemma 1
for this α>0 (if it excludes such a stable pole from Cg), although violating
condition (a) of the same lemma for α=0 (see the subsequent Example 3).
In particular, if the nominal system P0 is already asymptotically stable, by
considering α=0 only asymptotically stable perturbed systems P are allowed
in the family Mbu(0, l′m) for any function l′m(·), in view of condition (a), so
that Lemma 1 would guarantee robust stability for a family of already stable
systems only. The choice of a suitable α>−Re(λi), where λi are the stable
eigenvalues of A0 possibly moving across the jω-axis, may allow to overcome
this difficulty (see again the subsequent Example 3).
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Lastly, a careful choice of α>0 might be useful in order to avoid that
some pole or transmission zero of P0(s) lies on the Cg-boundary, since this
would restrict severely the family Mbu(α, lm), in view of Proposition 1 and
the subsequent Remark 5, respectively.

Notice that, because of the strong limitations implied by Proposition 2,
there are less advantages in the application of Lemma 2 with α>0, even
if P0 is asymptotically stable. In addition, in the case of P0(s) having a
transmission zero with nonnegative real part, for any choice of α≥0 the family
Msg(α, ρ) is severely restricted. In fact, in view of the subsequent Remark 5,
perturbed systems P of actual interest are very likely to be characterized by
corresponding δP (s) having such a transmission zero as a pole, so that δP (s)
does not belong to RH−α,∞ for any α≥0, thus violating condition (b) of
Lemma 2.

Remark 5 Consider the assumption

rank [P0(s)] = min(q, p) (10)

in the rational field. Under this assumption (which is often satisfied in prac-
tice), it can be argued that, if P0(s) has a transmission zero on the −α+jω-
axis (or outside Cg), then for most perturbed systems P for which there exists
δP (s) satisfying (4), such a transmission zero appears as a pole of δP (s), thus
preventing P to belong to the family Mbu(α, lm) (or Msg(α, ρ)). Such an
assertion can be justified as follows.

If q<p, so that P0(s) has full row rank in the rational field, denote by
P−R

0 (s) a minimal right inverse of P0(s). If, for a perturbed system P and
for the corresponding P (s), there exists δP (s) such that (4) holds, from (5)
it follows that

δP (s) = δP (s)P−R
0 (s) (11)

If q≥p, so that P0(s) has full column rank in the rational field, denote by
P−L

0 (s) a minimal left inverse of P0(s). Then, for any perturbed system P,
and for the corresponding P (s), there exists δP (s) such that (4) holds, and
all such δP (s) are expressed by the relation

δP (s) = δP (s)P−L
0 (s) + δ̄P (s) (12)

by considering all rational δ̄P (s) such that δ̄P (s)P0(s)=0.
It is known that all the transmission zeros of P0(s) are poles of P−R

0 (s),
or P−L

0 (s). Hence, if P0(s) has a transmission zero on the −α+jω-axis (or
outside Cg), then in view of (11) or (12), respectively, δP (s) is very likely
to have a pole in the same location, thus justifying the assertion. This may
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occur even if δP (s),P (s)−P0(s) has no poles on the −α+jω-axis (or outside
Cg). Notice that, unlike the SISO case, in the MIMO case it can even occur
that P (s) has unchanged transmission zeros with respect to P0(s), and these
nevertheless appear as poles of δP (s). �

The following example, which is physically motivated, illustrates a MIMO
case in which the transfer matrix P0(s) of the nominal system P0 has an
unstable transmission zero. Calculation of the poles of the multiplicative
perturbations relating the transfer matrices P (s) of perturbed systems P of
interest to P0(s), confirms the assertion made in Remark 5.

Example 2 Consider a finite dimensional linear model of a clamped flex-
ible beam vibrating in a plane. For simplicity, only the three lower order
vibration modes are taken into account. It is assumed that two piezoelectric
sensors and two piezoelectric actuators are used for vibration damping, so
that the two measured outputs are (approximately) the curvatures at the
sensor locations, and the two control inputs are (approximately) the bending
torques applied by the actuators. The model of the beam, derived according
to Euler-Bernoulli theory (valid for small deflections), is a two-input two-
output sixth order linear system. Let the beam be made of steel, and be half
a meter long, five centimeters wide and one millimeter thick. Let one sensor
and one actuator be placed in the location indicated as A in Figure 3 (very
close to the clamped end, where all the curvatures of the vibration modes of
the beam have a high value). Then, let the second actuator and the second
sensor be placed in the locations indicated in Figure 3 as B and C, respec-
tively. Location C is very close to a local maximum in the curvature of the
second mode. Assume that each of the vibration modes of the beam is nat-
urally damped by some (small and positive) uncertain viscous coefficient ζi,
i=1, 2, 3, and let the nominal model P0 of the beam be obtained by setting
ζi=0.02, i=1, 2, 3. Notice that all the physical parameters of this example
are taken from a real experimental setup, built in the Robotics and Control
Laboratory of the DISP at the University of Rome ‘Tor Vergata’.

The transfer matrix of the nominal system P0 is P0(s)=N0(s)/d0(s),
where N0(s) is a 2×2 polynomial matrix, and

d0(s) = (s2 +0.817 s+417.295)(s2 +5.121 s+16388.8)(s2 +14.338 s+128491)

The McMillan-Smith form of P0(s) is

M0(s) =





1

d0(s)
0

0 ε0(s)




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Figure 3: The beam considered in Example 2: locations of sensors and actu-
ators, and shapes of the considered vibration modes.

where ε0(s)=s2 + 0.104 s − 7346.7. The roots of ε0(s) are the transmis-
sion zeros of P0(s). Such roots are −85.7647 and 85.6607, i.e. the transfer
matrix of the nominal system has one unstable transmission zero. The per-
turbed systems P of interest are characterized by transfer matrices of the
type P (s)=N(s)/d(s), where N(s) is a 2×2 polynomial matrix whose entries
depend on ζ1, ζ2 and ζ3, and

d(s) = (s2 + 40.8556 ζ1 s + 417.295)(s2 + 256.038 ζ2 s + 16388.8)×

×(s2 + 716.913 ζ3 s + 128491)

By computing δP (s)=(P (s) − P0(s)) P−1
0 (s), it can be seen that δP (s) has

fourteen poles: the six poles of P0(s), the six poles of P (s), and the roots
of ε0(s). Hence, even though all the poles of P0(s) and P (s) have negative
real part, δP (s) has one unstable pole, namely the positive root of ε0(s). The
fact that this root has been shown to be also a transmission zero of P0(s),
confirms the assertion made in Remark 5. �

The following very simple example shows that the use of Lemma 1 with a
proper choice of α>0 (thus requiring the corresponding robust strengthened
stability) allows to take into account perturbed systems P violating condition
(a) of Lemma 1 for α=0 in consequence of possibly small variations of the
parameters of the system from their nominal values (such a situation might
be quite frequent in practice).

Example 3 Consider a nominal reachable and observable asymptotically
stable system P0 having transfer function P0(s)=1/(s2 +0.2s+1). The poles
of P0(s) are very close to the jω-axis (their real part is −0.1). Consider also
a compensator K with transfer function K(s)=−90(s+2)/(s+16), such that
hypothesis (i) of Lemma 1 is satisfied. Then, let Π be the set of all reachable
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and observable systems P characterized by transfer functions of the type

P (s) =
β

s2 + 2ζs + 1
, β, ζ ∈ R

If P∈Π, it is easy to see that δP (s)=[(β−1)s2 +(0.2β−2ζ)s+(β−1)]/(s2 +
2ζs + 1), and therefore the poles of P (s) (that in this case are all the eigen-
values of P) are also poles of the corresponding multiplicative perturbation
δP (s).

The set of pairs (β, ζ) characterizing systems P∈Π satisfying the con-
ditions of Lemma 1 with lm(ω) chosen as the inverse of σ̄ [T0(−α+jω)], is
represented in Figure 4 for α=0 and α=1 (the latter choice is allowed, since
the real part of the nominal closed-loop eigenvalues is less than −1) by the
dark gray region and by the light gray region, respectively. The analysis of
these regions confirms that the most convenient choice of α≥0 depends on
the expected range of values for the parameter ζ: e.g. for ζ ranging from 0.2
to −1 the choice of α=1 seems to be appropriate, whereas for ζ ranging from
0 to 1.5 (i.e. if it is known that the eigenvalues of P remain stable) the choice
of α=0 is still the more suitable.

In this example, the union of the two regions depicted in Figure 4 can be
used as an estimate of the set of pairs (β, ζ) characterizing all systems P∈Π
being (asymptotically) stabilized by the given compensator K. �

4 The case of additive perturbations and further

comparisons

In this section, well-known sufficient conditions guaranteeing the robust Cg-
stability of control system Σ under additive perturbations (defined by (3))
affecting the nominal transfer matrix P0(s) of the controlled system, will
be analyzed and a bit extended (see the subsequent Theorem 1) in order
to take into account also additive perturbations δP (s) having poles on the
Cg-boundary.

Let V0(s),K(s)
(

I−P0(s)K(s)
)−1

denote the so-called control sensitivity
matrix of the nominal closed-loop system Σ0 (under the assumption that Σ0

is well-posed). Then, a first condition for the robust Cg-stability of system Σ
is given by the following lemma [15, 21], which can be proven by means of a
suitable extension of the Nyquist criterion.

Lemma 3 If, for a fixed α≥0 characterizing Cg,
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Figure 4: Robust stability regions considered in Example 3.

(i) Σ0 is well-posed and Cg-stable;

(ii) σ̄ [V0(−α+jω)]≤
1

la(ω)
, ∀ω∈R

+,

where la(ω) is a positive and continuous function of ω∈R
+, then system Σ is

Cg-stable for all the perturbed systems P such that:

(a) systems P and P0 have the same number of eigenvalues outside Cg

(including algebraic multiplicities);

(b) Σ is well-posed;

(c) δP (s) in (3) satisfies the inequality σ̄ [δP (−α+jω)]<la(ω) , ∀ω∈R
+.

In the following, the family of perturbed systems P satisfying the condi-
tions (a), (b) and (c) of Lemma 3 will be denoted by Abu(α, la). The subscript
recalls that the transfer matrices P (s) of all the perturbed systems in this
family could be viewed as belonging to a ‘ball of uncertainty’ around the
nominal transfer matrix P0(s) [15].

The following lemma gives a second type of conditions for the robust Cg-
stability of Σ. It generalizes well-known results (see, e.g., References [9, 16])
and can be proven by means of a suitable extension of the small-gain theorem.
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Lemma 4 If, for a fixed α≥0 characterizing Cg,

(i) Σ0 is well-posed and Cg-stable;

(ii) ‖W2(s)V0(s)W1(s)‖−α,∞≤ρ−1,

where ρ>0 and W1(s), W2(s)∈RH−α,∞, then system Σ is well-posed and
Cg-stable for all the perturbed systems P such that:

(a) system P is Cg-stabilizable and Cg-detectable;

(b) δP (s) in (3) satisfies the relation δP (s)=W1(s)∆(s)W2(s), where ∆(s)
belongs to RH−α,∞, and is such that ‖∆(s)‖−α,∞<ρ.

In the following, the family of perturbed systems P satisfying the condi-
tions (a) and (b) of Lemma 4, for fixed weighting matrices W1(s) and W2(s),
will be denoted by Asg(α, ρ). The subscript refers to the fact that Lemma 4
can be proven by means of (a suitable extension of) the small-gain theorem,
thus recalling that the additive perturbations relating the transfer matrices
P (s) of all the perturbed systems in this family to the nominal one P0(s),
belong to RH−α,∞.

Remark 6 The strict inequality in condition (c) of Lemma 3 (or (b) of
Lemma 4) can be relaxed to ≤ if the inequality in the corresponding hy-
pothesis (ii) is strengthened to <. �

An analysis of the families Abu(α, la) and Asg(α, ρ) can be carried out in
a wholly similar way to what has been made in the previous section for the
families Mbu(α, lm) and Msg(α, ρ). In particular, the following propositions:

Proposition 3 Under hypotheses (i) and (ii) of Lemma 3, the nominal sys-
tem P0 and all the perturbed systems P in the family Abu(α, la) have the same
eigenvalues on the −α+jω-axis, with the same algebraic multiplicities.

Proposition 4 Under hypotheses (i) and (ii) of Lemma 4, the nominal sys-
tem P0 and all the perturbed systems P in the family Asg(α, ρ) have the same
eigenvalues outside Cg, with the same algebraic multiplicities.

(that are nearly obvious, and can be proven similarly to Propositions 1 and 2,
respectively, or by means of appropriate tools of realization theory) suggest
that, under the hypotheses of both Lemmas 3 and 4, the family Abu(α, la) is
more significant than the family Asg(α, ρ) in the case of P0(s) having poles
outside Cg, since, according to Proposition 4, all systems in the latter family
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are constrained to have those poles in the same locations and with the same
multiplicities. This can be stressed by stating that, for simple but reasonable
choices of W1(s) and W2(s), and consequently of la(ω), under the hypotheses
of Lemma 4 the family Abu(α, la) contains the family Asg(α, ρ) (what can be
derived in the same way as the similar statement about families Mbu(α, lm)
and Msg(α, ρ) has been).

Notice that also the choice of α≥0 can be discussed through arguments
similar to the ones adduced in the previous section, when multiplicative per-
turbations were considered, with the exception that a remark similar to Re-
mark 5 does not hold, obviously, for additive perturbations.

4.1 Comparison between families of perturbed systems whose

robust stabilization is guaranteed by Lemmas 1 and 3

It seems then useful to carry out the further comparison between families
Mbu(α, lm) and Abu(α, la), under the hypotheses of both Lemmas 1 and 3. A
compensator K such that the nominal closed-loop system Σ0 satisfies hypoth-
esis (i) of both lemmas will be considered. For simplicity and compactness
of the formulas, we shall refer to the case α=0, i.e. to the mere asymptotic
stability, but the subsequent conclusions hold for any choice of α≥0.

First, suppose P0(s) is free of poles on the Nyquist contour (see a sub-
sequent comment for the significance of this hypothesis), and notice that,
in order to obtain a family Abu(0, la) as large as possible, we could choose
la(ω) as the inverse of σ̄ [V0(jω)] for all ω∈R

+, unless this quantity is zero
for some ω’s, in which case the above choice is possible outside arbitrarily
small neighborhoods of such ω’s. A sufficient condition guaranteeing that the
bound lm(·) satisfies the hypothesis (ii) of Lemma 1 is the following:

lm(ω)σ̄ [P0(jω)] ≤ la(ω), ∀ω ∈ R
+ (13)

(which, in particular, allows to define lm(·) by putting the equality in (13)),
since, in this case,

σ̄ [T0(jω)] ≤ σ̄ [P0(jω)] σ̄ [V0(jω)] ≤
σ̄ [P0(jω)]

la(ω)
≤

1

lm(ω)
, ∀ω ∈ R

+

Then, if the bounds la(·) and lm(·) are chosen so as to satisfy (13), the
perturbed systems P in the family Mbu(0, lm) also belong to the family
Abu(0, la). In particular, they satisfy condition (c) of Lemma 3, since

σ̄ [δP (jω)] ≤ σ̄
[

δP (jω)
]

σ̄ [P0(jω)] < lm(ω)σ̄ [P0(jω)] ≤ la(ω), ∀ω ∈ R
+

Therefore, the family Mbu(0, lm) is contained in the family Abu(0, la).
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Second, suppose P0(s) is free of transmissions zeros on the Nyquist con-
tour (see a subsequent comment for the significance of this hypothesis) and
has full column rank in the rational field, so that a left inverse P−L

0 (s) of
P0(s) exists, and for all additive perturbations δP (s) defined by (3) there
exists δP (s) such that δP (s)=δP (s)P0(s), so as to satisfy (4) (in particular,
δP (s) can be chosen as δP (s)=δP (s)P−L

0 (s)). If P−L
0 (s) is chosen to be min-

imal, its poles are all the transmission zeros of P0(s), so that P−L
0 (s) has

no poles on the Nyquist contour. Now, consider a bound lm(·) such that
hypothesis (ii) of Lemma 1 is satisfied (possibly the bound lm(·) specified at
the beginning of Subsection 3.1, so as to enlarge the family Mbu(0, lm) as
much as possible). A sufficient condition guaranteeing that the bound la(·)
satisfies the hypothesis (ii) of Lemma 3 is the following:

la(ω)σ̄
[

P−L
0 (jω)

]

≤ lm(ω), ∀ω ∈ R
+ (14)

(which, in particular, allows to define la(·) by putting the equality in (14)),
since, in this case,

σ̄ [V0(jω)] ≤ σ̄
[

P−L
0 (jω)

]

σ̄ [T0(jω)] ≤
σ̄

[

P−L
0 (jω)

]

lm(ω)
≤

1

la(ω)
, ∀ω ∈ R

+

As a consequence, if the bounds lm(·) and la(·) are chosen so as to satisfy (14),
the perturbed systems P in the family Abu(0, la) also belong to the family
Mbu(0, lm). In particular, they satisfy condition (c) of Lemma 1, since

σ̄
[

δP (jω)
]

≤ σ̄ [δP (jω)] σ̄
[

P−L
0 (jω)

]

< la(ω)σ̄
[

P−L
0 (jω)

]

≤ lm(ω), ∀ω ∈ R
+

Therefore, the family Abu(0, la) is contained in the family Mbu(0, lm).
If P0(s) is free both of poles and transmission zeros on the Nyquist contour

and has full column rank in the rational field, then both previous discussions
can be applied, and one could argue the identity of the families Mbu(0, lm)
and Abu(0, la), if both (13) and (14) hold. However, although this is trivially
true for SISO systems by choosing lm(ω)|P0(jω)|=la(ω), ∀ω∈R

+, a similar
choice for MIMO systems is unlikely to be available, since it is readily seen
that there exists a pair of positive and continuous functions la(·) and lm(·)
satisfying both (13) and (14) if and only if

σ̄ [P0(jω)] σ̄
[

P−L
0 (jω)

]

≤ 1, ∀ω ∈ R
+ (15)

Taking into account that P−L
0 (jω)P0(jω) = I, (15) is equivalent to

σ̄
[

P−L
0 (jω)

]

σ̄ [P0(jω)] = 1, ∀ω ∈ R
+
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and this, for p=q (i.e. for square nonsingular P0(s)), means that the largest
and the smallest singular values of P0(jω) coincide for all ω∈R

+.
It is stressed that, in the above analysis, if relation (13), or (14), fails

to hold, then the corresponding inclusion between the two families may fail
to hold, too. However, even when the bounds la(·) and lm(·) are chosen
independently, some further comments may be helpful.

It was shown in Remark 5 that, if (10) holds, P0(s) has transmission
zeros on the Nyquist contour and, for a possible P (s), there exists δP (s) such
that (4) holds, then δP (s) is likely to have poles on the Nyquist contour,
even if the corresponding δP (s) has not. Therefore, if P0(s) has transmission
zeros, but is free of poles, on the Nyquist contour, and (10) holds, perturbed
systems P might exist that belong to Abu(0, la), but not to Mbu(0, lm). This
does not mean, in general, that, under the mentioned hypotheses, the family
Abu(0, la) includes the family Mbu(0, lm), but it can be argued that in this
case the former family may be more significant than the latter.

By converse, if P0(s) has poles on the Nyquist contour, then from (3)
it follows that the additive perturbation δP (s) corresponding to a possible
perturbed system P is likely to have poles on the Nyquist contour, whereas
the multiplicative perturbation δP (s) satisfying (4) for the same P (s) (if it
exists) might not have such poles, since they might be introduced in the
right-hand side of (5) by P0(s) itself. Therefore, if P0(s) has poles, but is free
of transmission zeros, on the Nyquist contour, perturbed systems P might
exist that belong to Mbu(0, lm), but not to Abu(0, la). Also in this case,
this does not mean, in general, that, under the mentioned hypotheses, the
family Mbu(0, lm) includes the family Abu(0, la), but it can be argued that
the former family may be more significant than the latter, for instance when
δP (s) satisfying (4) exists for all the perturbed systems P of interest, as it is
shown by the following very simple example.

Example 4 Consider a nominal stabilizable and detectable unstable system
P0 having transfer function P0(s)=1/[s(s − 1)] , with a pole on the Nyquist
contour for α=0, and a compensator K with transfer function K(s)=−(140s+
60)/(s2 + 12s + 57), such that hypothesis (i) of both Lemmas 1 and 3 is
satisfied. Then, let Π be the set of all stabilizable and detectable systems P
characterized by transfer functions of the type

P (s) =
β

s(s − p)
, β, p ∈ R

If P∈Π, it is easy to see that δP (s)=[(β − 1)s + (p− β)]/[s(s− 1)(s− p)] and
δP (s)=[(β − 1)s + (p− β)]/(s− p), and therefore the pole s=p of P (s) is also
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Figure 5: Robust stability regions considered in Example 4.

a pole of the corresponding multiplicative perturbation δP (s), whereas the
pole s=0 of P (s) is not.

Fixed α=0, it is very simple, by applying the Routh criterion, to compute
the set of pairs (β, p) characterizing all systems P∈Π being stabilized by the
compensator K. A portion of this set is represented by the whole gray region
in Figure 5. The set of pairs (β, p) characterizing systems P∈Π satisfying
the conditions of Lemma 1 with lm(ω) chosen as the inverse of σ̄ [T0(jω)],
is represented by the dark gray region in Figure 5. The set of pairs (β, p)
characterizing systems P∈Π satisfying the conditions of Lemma 3 is instead
always included in the oblique segment drawn in the same figure, for any
choice of the positive bound la(·) satisfying hypothesis (ii) of Lemma 3. Notice
that such a segment belongs to the line of equation β=p, which implies that
the zero pole has the same residual in P (s) as in P0(s), so that δP (s) has no
zero pole. �

In Example 4, the perturbed systems P of interest have a zero eigenvalue
as the nominal system P0, so that both Propositions 1 and 3 should be not
really restrictive in that case. Nevertheless, it is stressed that the robust
stability region guaranteed by Lemma 1 is much more significant than the
one guaranteed by Lemma 3, as the analysis of Figure 5 attests. This is
actually due to the fact that, in order the additive perturbation δP (s) not to
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have a zero pole (so as to satisfy condition (c) of Lemma 3), the zero pole
must have the same residual in P (s) as in P0(s), which is a further restriction
besides Proposition 3.

4.2 An extension of Lemma 3

The above discussion suggests to investigate the possibility of extending the
results stated in both Lemmas 1 and 3, so as to allow also additive and multi-
plicative perturbations having poles on the Cg-boundary. Only an extension
of Lemma 3 will be here presented, since it may imply a significant enlarge-
ment of family Abu(α, la) (see the subsequent Remark 8), whereas this is not
true, in general, for the similar extension of Lemma 1.

Theorem 1 If, for a fixed α≥0 characterizing Cg,

(i) Σ0 is well-posed and Cg-stable;

(ii) σ̄ [V0(−α+jω)]≤
1

la(ω)
, ∀ω∈R

+-{ω1, . . . , ωr},

where la(ω) is a positive and continuous function of ω∈R
+-{ω1, . . . , ωr}, for

some r∈Z, r>0, and some ω1, . . . , ωr∈R
+, and is such that

lim
ω→ωi

la(ω) = +∞, ∀ i=1, . . . , r (16)

then system Σ is well-posed and Cg-stable for all the perturbed systems P
such that:

(a) systems P and P0 have the same number of eigenvalues outside Cg

(including algebraic multiplicities);

(b) there exists ε∈(0, 1) such that δP (s) in (3) satisfies the inequality

σ̄ [δP (−α + jω)] ≤ ε la(ω) , ∀ω ∈ R
+-{ω1, . . . , ωr}

Proof. Under hypotheses (i) and (ii), consider any perturbed system P
satisfying conditions (a) and (b), and define Γ(s),δP (s)V0(s). The following
relations hold for all ω ∈ R

+-{ω1, . . . , ωr}:

σ̄ [Γ(−α + jω)] ≤ σ̄ [δP (−α + jω)] σ̄ [V0(−α + jω)] ≤ ε (17)

Denote by γh,k(s) the h-th row and k-th column entry of Γ(s). Since

max
h, k

|γh,k(−α + jω)| ≤ σ̄ [Γ(−α + jω)] , ∀ω ∈ R
+-{ω1, . . . , ωr} (18)
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from (17) and (18) it follows that Γ(s) belongs to RL−α,∞. Indeed, if Γ(s)
had a pole in −α+jω̄, or were not proper, then the left-hand side of (18)
should be unbounded as ω tends to ω̄ or to infinity, in contradiction with
(17) and (18). Hence, σ̄ [Γ(−α+jω)] is a continuous function of ω∈R

+, and
therefore

σ̄ [Γ(−α + jω)] ≤ ε , ∀ω ∈ R
+ (19)

This implies

det (I − λδP (−α + jω)V0(−α + jω)) 6= 0 , ∀ω ∈ R, ∀λ ∈ [0, 1]

Then the proof can be completed through arguments wholly similar to Ref-
erence [7, pp.278-279], provided suitable amendments of notations. �

In order to attest the improvement of Theorem 1 as compared with
Lemma 3, it is stressed that, if Theorem 1 is applied to Example 4, the
robust stability region thus computed matches the one computed through
Lemma 1. The following remarks are concerned with the applicability of
Theorem 1.

Remark 7 Although (16) allows the bound la(ω) to be infinite for all ω’s in
a certain finite set, wholly similar limitations to those stated by Proposition 3
for Lemma 3, continue to hold also for Theorem 1, since it can be shown that,
under the hypotheses (i) and (ii) of Theorem 1, no perturbed system P exists
satisfying the conditions (a) and (b) of the same theorem, and such that the
poles of P0(s) on the −α+jω-axis disappear in P (s), or reduce their algebraic
multiplicities as eigenvalues of P. This might not be restrictive, if such poles
are actually independent of the uncertainty (as in Example 4), e.g. when,
for α=0, they are due to an internal model of exogenous signals provided by
a subcompensator which is considered as embedded in P (see the following
remark). �

Remark 8 Hypothesis (ii) and condition (16) of Theorem 1 imply

σ̄ [V0(−α+jωi)] = 0, ∀ i = 1, . . . , r

Hence, the only possible ω’s such that la(ω) can assume infinite value (thus
allowing δP (s) to have a pole at −α+jω) correspond to blocking zeros of V0(s)
(i.e. zeros common to all non zero elements of V0(s)) on the Cg-boundary. It
is then interesting to investigate when a pole s0 of P0(s) lying on the −α+jω-
axis is also a blocking zero of V0(s), so that the use of Theorem 1 instead of
Lemma 3 might be advantageous.

26



In the SISO case, it is trivial to verify that, if P0(s) has a pole s0=−α+jω0

on the Cg-boundary, and Σ0 is Cg-stable, then s0 is a zero of V0(s). Recall
that, for α=0, the pole of P0(s) at s0 implies that P0 has an internal model of
the sinusoidal (or constant, if ω0=0) exogenous signals with angular frequency
ω0. Since s0 is still a pole of the transfer matrix P (s) of all the perturbed
systems P for which the asymptotic stability of Σ is preserved by virtue of
Theorem 1 (see Remark 7), the property of asymptotic tracking of reference
signals, as well as asymptotic rejection of disturbances, of the considered type
is robustly maintained by Σ for all those systems P (as in Example 4).

In the MIMO case, the existence of a pole of P0(s) at s0=−α+jω0 in
general does not imply that s0 is also a blocking zero of V0(s), but it is stressed
that, for α=0, this occurs when P0 has a complete internal model of the
exogenous signals of the above specified type. Notice that a complete internal
model of the exogenous signals corresponding to the eigenvalue s0=jω0 can
be provided by a suitable subcompensator which is connected in series with
the controlled system and is considered as embedded in P0, as well as in P.
In this case, K in Figure 1 only denotes the stabilizing subcompensator. �

5 Conclusions

In the literature several conditions for stability robustness within various un-
certainty descriptions can be found. In order to use such conditions properly,
so as to meet robustness requirements in realistic cases, it is useful to have
knowledge of both their advantages and limitations. In this paper two kinds
of classical robust stability conditions (based on the Nyquist criterion and on
the small-gain theorem, respectively), which apply in case of either additive
or multiplicative perturbations, were analyzed, and some properties of the
related families of perturbed systems were formally derived. In particular, a
proof was given of the invariance - in locations and algebraic multiplicities - of
the eigenvalues outside Cg of the perturbed systems whose Cg-stabilization
is guaranteed by the conditions based on the small-gain theorem, whereas
for the perturbed systems whose Cg-stabilization is guaranteed by the con-
ditions based on the Nyquist criterion a proof was given of the invariance
- in locations and algebraic multiplicities - of the only eigenvalues lying on
the Cg-boundary. The mentioned conditions were then compared pairwise,
and simple examples were exhibited in order to illustrate both the presented
properties and comparisons. The conditions based on the Nyquist criterion
appeared to be advantageous. Some advantages exhibited by this type of
conditions only in the case of multiplicative perturbations may be recovered
also in the case of additive perturbations through the use of the presented
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extension of Lemma 3, namely Theorem 1, which allows to take into account
additive perturbations having poles on the Cg-boundary.

The analysis proposed in the paper can be useful in order to choose which
type of perturbation and which type of condition (as well as which value of
α≥0 characterizing Cg) are more suitable in each particular application, in
view of the properties of the nominal controlled system.

Finally, it is stressed that results and discussions wholly similar to those
presented in this paper, can be developed also for discrete-time systems,
considering as Cg-boundary a circle of radius R, 0<R≤1, depending on the
strength of the stability requirement (which corresponds to asymptotic sta-
bility if R=1) and/or on motivations similar to those contained in Section 3.2.
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