
Recent techniques for the identification of

piecewise affine and hybrid systems

A. Lj. Juloski1, S. Paoletti2, and J. Roll3

1 Department of Electrical Engineering, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands. A.Juloski@tue.nl

2 Department of Information Engineering, University of Siena
Via Roma 56, 53100 Siena, Italy. paoletti@dii.unisi.it

3 Division of Automatic Control, Linköping University
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Summary. The problem of piecewise affine identification is addressed by studying
four recently proposed techniques for the identification of PWARX/HHARX mod-
els, namely a Bayesian procedure, a bounded-error procedure, a clustering-based
procedure and a mixed-integer programming procedure. The four techniques are
compared on suitably defined one-dimensional examples, which help to highlight
the features of the different approaches with respect to classification, noise and tun-
ing parameters. The procedures are also tested on the experimental identification of
the electronic component placement process in pick-and-place machines.

1 Introduction

The focus of this chapter is on the problem of identifying PieceWise Affine
(PWA) models of discrete-time nonlinear and hybrid systems from input-
output data. PWA systems are obtained by partitioning the state and input
space into a finite number of non-overlapping convex polyhedral regions, and
by considering linear/affine subsystems sharing the same continuous state
variables in each region. The interest in PWA identification techniques is
motivated by several reasons. Since PWA maps have universal approxima-
tion properties [18, 10], PWA models represent an attractive black-box model
structure for nonlinear system identification. In addition, given the equiva-
lence between PWA systems and several classes of hybrid systems [4, 14], the
many different analysis, synthesis and verification tools for hybrid systems
(see, e.g., [2, 21, 28] and references therein) can be applied to the identified
PWA models. PWA systems have indeed many applications in different con-
texts such as neural networks, electrical networks, time-series analysis and
function approximation.

In the extensive literature on nonlinear black-box identification (see,
e.g., [27] and references therein), a few techniques can be found that lead to



PWA models of nonlinear dynamical systems. An overview and classification
of them is presented in [25]. Recently, novel contributions to this topic have
been also proposed in the hybrid systems community [5, 6, 13, 16, 22, 26, 29].
Identification of PWA models is a challenging problem that involves the es-
timation of both the parameters of the affine submodels, and the coefficients
of the hyperplanes defining the partition of the state and input space (or the
regressor space, for models in regression form). The main difficulty lies in the
fact that the identification problem includes a classification problem, in which
each data point must be associated to one region and to the corresponding
submodel. The problem is even harder when also the number of submod-
els must be estimated. In this chapter, four recently proposed techniques for
the identification of (possibly) discontinuous PWA models are considered,
namely the Bayesian procedure [16], the bounded-error procedure [5, 6], the
clustering-based procedure [13] and the Mixed-Integer Programming (MIP)
procedure [26]. While the MIP procedure formulates the identification prob-
lem as a mixed-integer linear or quadratic program that can be solved for the
global optimum, the other three procedures can only guarantee suboptimal
solutions. On the other hand, the very high worst-case computational com-
plexity of MILP/MIQP problems makes the approach in [26] affordable only
when few data are available, or data are clustered together. The four proce-
dures are studied here for what concerns the classification accuracy, and the
effects of noise, overestimated model orders and varying the tuning parame-
ters on the identification results. The study of specific cases can indeed shed
some light on the properties of the different techniques, and guide the user in
their application to practical situations.

This chapter is organized as follows. The considered PWA identification
problem is formulated and discussed in Section 2. Section 3 describes the four
compared procedures, and introduces several quantitative measures for assess-
ing the quality of the identified models. The different approaches of the four
procedures to data classification are addressed in Section 4. The effects of the
overestimation of model orders on the identification accuracy are investigated
in Section 5, while Section 6 studies the effects of noise. In Section 7 the sen-
sitivity of the identification results to tuning parameters is analyzed for the
Bayesian, bounded-error and clustering-based procedures. In Section 8 the
four procedures are tested on experimental data from the electronic compo-
nent placement process in pick-and-place machines [15]. Finally, conclusions
are drawn in Section 9.

2 Problem formulation

PieceWise affine AutoRegressive eXogenous (PWARX) models can be seen as
collections of affine ARX models equipped with the switching rule determined
by a polyhedral partition of the regressor set. Letting k ∈ Z be the time index,
and u(k) ∈ R and y(k) ∈ R be the system input and output, respectively,



a PWARX model establishes a relationship between past observations and
future outputs in the form

y(k) = f(x(k)) + e(k), (1)

where e(k) ∈ R is the prediction error, f(·) is the PWA map

f(x) =











[x′ 1]θ1 if x ∈ X1

...
[x′ 1]θs if x ∈ Xs,

(2)

defined over the regressor set X =
⋃s

i=1 Xi ⊆ R
n on which the PWARX model

is valid, and x(k) ∈ R
n is the regression vector with fixed structure depending

only on past na outputs and nb inputs:

x(k) = [y(k − 1) . . . y(k − na) u(k − 1) . . . u(k − nb)]
′ (3)

(hence, n = na + nb). In (2) s is the number of submodels and θi ∈ R
n+1 are

the parameter vectors (PVs) of the affine ARX submodels. The regions Xi are
convex polyhedra which do not overlap, i.e., Xi ∩Xj = ∅ for all i 6= j. Hence,
for a given data point

(

y(k), x(k)
)

, the corresponding active mode µ(k) can
be uniquely defined as:

µ(k) = i iff x(k) ∈ Xi. (4)

Given the data set D = {
(

y(k), x(k)
)

}N
k=1, the considered identification

problem consists of finding the PWARX model that best matches the data
according to some specified criterion of fit (e.g., the minimization of the sum
of absolute or squared prediction errors, see [27]). For fixed model orders na

and nb, this problem involves the estimation of the number of submodels s,
the PVs {θi}

s
i=1 and the polyhedral partition {Xi}

s
i=1. It also includes a clas-

sification problem in which each data point is associated to one region and the
corresponding submodel. In general, the simultaneous optimal estimation of
all the quantities above leads to very complex, nonconvex optimization prob-
lems with potentially many local minima, which complicate the use of local
search minimization algorithms. One of the main difficulties concerns the se-
lection of the number of submodels s. Constraints on s must be introduced
in order to keep the number of submodels low and to avoid overfit. Heuristic
and suboptimal approaches to the identification of PWARX models have been
proposed in the literature (see [25] for an overview). Most of these approaches
either assume a fixed s, or adjust s iteratively (e.g., by adding one submodel
at a time) in order to improve the fit. When s is fixed, the identification of a
PWARX model amounts to a PWA regression problem, namely the problem
of reconstructing the PWA map f(·) from the finite data set D.

Note that, if the partition of the regressor set is either known or fixed a pri-
ori, the problem complexity reduces to that of a linear identification problem,
since the data points can be classified to corresponding data clusters {Di}

s
i=1,

and standard linear identification techniques can be applied to estimate the
PVs for each submodel [19].



3 The compared procedures

In this section, four recently proposed procedures for the identification of
PWA models are briefly introduced and described. These are the Bayesian
procedure [16], the bounded-error procedure [5, 6], the clustering-based pro-
cedure [13] and the Mixed-Integer Programming (MIP) procedure [26].

In its basic formulation, the MIP procedure considers hinging-hyperplane
ARX models, which form a subclass of PWARX models with continuous PWA
map f(·) [10]. For this class of models, the identification problem is formulated
as a mixed-integer linear or quadratic program that can be solved for the
global optimum.

The Bayesian, bounded-error and clustering-based procedures identify
models in PWARX form. The basic steps that these procedures perform are
data classification and parameter estimation, followed by the reconstruction
of the regions. The bounded-error procedure also estimates the number of sub-
models. The first two steps are performed in a different way by each procedure,
as described in the following sections, while the estimation of the regions can
be carried out in the same way for all procedures. Basically, given the clusters
{Di}

s
i=1 of data points provided by the data classification phase, the corre-

sponding clusters of regression vectors Ri = {x(k) |
(

y(k), x(k)
)

∈ Di} are
constructed. Then, for all i 6= j a separating hyperplane of the clusters Ri

and Rj is sought, i.e., a hyperplane

M ′
ijx = mij , (5)

with Mij ∈ R
n and mij ∈ R, such that M ′

ijx(k) < mij for all x(k) ∈ Ri and
M ′

ijx(k) > mij for all x(k) ∈ Rj . If such a hyperplane cannot be found (i.e.,
the data set is not linearly separable) one is interested in finding a general-
ized separating hyperplane which minimizes the number of misclassified data
points or some misclassification cost. Robust Linear Programming (RLP) [7]
and Support Vector Machines (SVM) [11] methods (and their extensions to
the multi-class case [8, 9]) can be employed. The minimization of the number
of misclassifications is equivalent to solving a MAXimum Feasible Subsystem
(MAX FS) problem for a system of linear inequalities (see [24] and references
therein). The interested reader is referred to [5, 13, 23] for a detailed overview.

3.1 Mixed-integer programming procedure

The procedure proposed in [25, 26] is, in its basic formulation, an algorithm
for optimal identification of Hinging-Hyperplane ARX (HHARX) models [10],
which are described by

y(k) = f(x(k); θ) + e(k)

f(x(k); θ) = ϕ(k)′θ0 +
M
∑

i=1

σi max{ϕ(k)′θi, 0},
(6)



where ϕ(k)′ = [x(k)′ 1], θ′ = [θ′0 θ′1 . . . θ′M ], and σi ∈ {−1, 1} are fixed a priori.
It is easy to see that HHARX models form a subclass of PWARX models for
which the PWA map f(·) is continuous. The number of submodels s is bounded
by the quantity

∑n
j=0

(

M
j

)

, which only depends on the dimension n of the
regressor space and the number M of hinge functions.

The identification problem considered in [25, 26] selects the optimal pa-
rameter vector θ∗ by solving

θ∗ = arg min
θ

N
∑

k=1

|y(k) − f(x(k); θ)|p, (7)

where p = 1 or 2. Assuming a priori known bounds on θ (which may be taken
arbitrarily large), problem (7) can be reformulated as a mixed-integer linear
or quadratic program (MILP/MIQP) by introducing binary variables

δi(k) =

{

0 if ϕ(k)′θi ≤ 0

1 otherwise,
(8)

and auxiliary continuous variables zi(k) = max{ϕ(k)′θi, 0}. The MILP/MIQP
problems can then be solved for the global optimum.

The optimality of the described algorithm comes at the cost of a theoret-
ically very high worst-case computational complexity, which means that it is
mainly suitable for small-scale problems. To be able to handle somewhat larger
problems, different suboptimal approximations were proposed in [25]. Vari-
ous extensions are also possible so as to handle non-fixed σi, discontinuities,
general PWARX models, etc., again at the cost of increased computational
complexity. For more details, see [25, 26].

3.2 Bayesian procedure

The Bayesian procedure [16, 17] is based on the idea of exploiting the avail-
able prior knowledge about the modes and the parameters of the hybrid sys-
tem. The PVs θi are treated as random variables, and described through
their probability density functions (pdf s) pθi

(·). A priori knowledge on the
parameters can be supplied to the procedure by choosing appropriate a priori
parameter pdf s pθi

(·; 0). Various parameter estimates, such as expectation or
maximum a posteriori probability estimate, can be easily obtained from the
parameter pdf s. The data classification problem is posed as the problem of
finding the data classification with the highest probability. Since this problem
is combinatorial, an iterative suboptimal algorithm is derived in [16, 17].

Data classification and parameter estimation are carried out through se-
quential processing of the collected data points. At iteration k the data
point

(

y(k), x(k)
)

is considered, and attributed to the mode µ̂(k) using max-
imum likelihood. Then, the a posteriori pdf of θµ̂(k) is computed using as a

fact that
(

y(k), x(k)
)

was generated by mode µ̂(k). To numerically implement



the described procedure, particle filtering algorithms are used (see, e.g., [3]).
After the parameter estimation phase, each data point is attributed to the
mode that most likely generated it.

To estimate the regions, a modification of the standard Multicategory RLP
(MRLP) method [8] is proposed in [16, 17]. For each data point

(

y(k), x(k)
)

attributed to mode i, the price for misclassification into mode j is defined as

νij(x(k)) = log
p(

(

y(k), x(k)
)

| µ(k) = i)

p(
(

y(k), x(k)) | µ(k) = j)
, (9)

where p(
(

y(k), x(k)
)

| µ(k) = ℓ) is the likelihood that
(

y(k), x(k)
)

was gener-
ated by mode ℓ. Prices for misclassification are plugged into MRLP.

The Bayesian procedure requires that the model orders na and nb, and the
number of submodels s are fixed. The most important tuning parameters are
the a priori parameter pdf s pθi

(·; 0), and the pdf pe(·) of the error term.

3.3 Bounded-error procedure

The main feature of the bounded-error procedure [5, 6, 23] is to impose that
the error e(k) in (1) is bounded by a given quantity δ > 0 for all the samples
in the estimation data set D.

At initialization, the estimation of the number of submodels s, data classifi-
cation and parameter estimation are performed simultaneously by partitioning
the (typically infeasible) set of N linear complementary inequalities

|y(k) − ϕ(k)′θ| ≤ δ, k = 1, . . . , N, (10)

where ϕ(k)′ = [x(k)′ 1], into a minimum number of feasible subsystems
(MIN PFS problem). Then, an iterative refinement procedure is applied in
order to deal with data points

(

y(k), x(k)
)

satisfying |y(k) − ϕ(k)′θi| ≤ δ for
more than one θi. These data are termed undecidable. The refinement pro-
cedure alternates between data reassignment and parameter update. If desir-
able, it enables the reduction of the number of submodels. For given positive
thresholds α and β, submodels i and j are merged if αi,j < α, where

αi,j = ‖θi − θj‖2/min{‖θi‖2, ‖θj‖2}. (11)

Submodel i is discarded if the cardinality of the corresponding data cluster Di

is less than βN . Data points that do not satisfy |y(k)−ϕ(k)′θi| ≤ δ for any θi

are discarded as infeasible during the classification process, making it possible
to detect outliers. In [5, 6] parameter estimates are computed through the
ℓ∞ projection estimator, but any other projection estimate, such as least
squares, can be used [20].

The bounded-error procedure requires that the model orders na and nb are
fixed. The main tuning parameter is the bound δ: The larger δ, the smaller
the required number of submodels at the price of a worse fit of the data.



The optional parameters α and β, if used, also implicitly determine the final
number of submodels returned by the procedure. Another tuning parameter
is the number of nearest neighbors c used to attribute undecidable data points
to submodels in the refinement step.

3.4 Clustering-based procedure

The clustering-based procedure [13] is based on the rationale that small sub-
sets of regression vectors that lie close to each other could be very likely
attributed to the same region and the same submodel. The main steps of the
procedure are hence the following:

• Local regression. For k = 1, . . . , N , a local data set Ck is built by collecting
(

y(k), x(k)
)

and the data points
(

y(j), x(j)
)

corresponding to the c−1 re-
gression vectors x(j) that are nearest to x(k). Local parameter vectors θLS

k

are then computed for each local data set Ck through least squares.
• Construction of feature vectors. The centers mk = 1

c

∑

(y,x)∈Ck
x are com-

puted, and the feature vectors ξk = [(θLS
k )′ m′

k]′ are formed.
• Clustering. Feature vectors are partitioned into s groups {Fi}

s
i=1 through

clustering. To this aim, a “K-means”-like algorithm exploiting suitably
defined confidence measures on the feature vectors is used. The confidence
measures allow to reduce the influence of outliers and poor initializations.

• Parameter estimation. Since the mapping of the data points onto the fea-
ture space is bijective, the data clusters {Di}

s
i=1 can be easily built ac-

cording to the rule:
(

y(k), x(k)
)

∈ Di ↔ ξk ∈ Fi. The PVs {θi}
s
i=1 are

estimated from data clusters through weighted least squares.

The clustering-based procedure requires that the model orders na and
nb, and the number of submodels s are fixed. The parameter c, defining the
cardinality of the local data sets, is its main tuning knob. A modification to the
clustering-based procedure is proposed in [12] to allow for the simultaneous
estimation of the number of submodels.

3.5 Quality measures

In the following sections the four procedures described above will be compared
on suitably defined test examples. To this aim, some quantitative measures
for assessing the quality of the identification results are introduced here.

When the true system generating the data is known and belongs to the
considered model class, the accuracy of the estimated PVs can be evaluated
by computing the quantity:

∆θ = max
i=1,...,s

‖θi − θ̄i‖2

‖θ̄i‖2
, (12)

where θ̄i and θi are the true and identified PVs for mode i, respectively. ∆θ is
zero for the perfect estimates, and increases as estimates get worse. In general,



a sensible quality measure for the estimated regions is harder to define. For
the one-dimensional bi-modal case (n = 1 and s = 2) the following measure:

∆X =

∣

∣

∣

∣

m12

M12
−

m̄12

M̄12

∣

∣

∣

∣

(13)

is used, where M̄12, m̄12, M12, m12 are the coefficients of the true and esti-
mated separating hyperplane (5), respectively.

A general quality measure, which is also applicable when the true system
is not known, is provided by the averaged sum of the squared residuals:

σ̂2
e =

1

s

s
∑

i=1

SSRi

|Di|
, (14)

where the set Di contains the data points classified to mode i, | · | here denotes
the cardinality of a set, and the sum of squared residuals (SSR) for mode i is
defined as follows:

SSRi =
∑

(y(k),x(k))∈Di

(y(k) − [x(k)′ 1]θi)
2. (15)

The quality of the identified model is considered acceptable if σ̂2
e is small

and/or close to the expected noise variance of the true system.
Models with good one-step ahead prediction properties may perform

poorly in simulation. To evaluate the model performance in simulation, a
suitable measure of fit is

FIT = 100 ·

(

1 −
‖ŷ − y‖2

‖y − ȳ‖2

)

, (16)

where y = [y(1) . . . y(N)]′ is the vector of system outputs, ȳ is the mean value
of y, and ŷ = [ŷ(1) . . . ŷ(N)]′ is the vector of simulated outputs, obtained by
building regression vectors x(k) from real inputs and previously simulated
outputs. (16) can be interpreted as the percentage of the output variation
that is explained by the model.

In experimental identification, (14) and (16) are useful for selecting good
models from a set obtained by applying each identification procedure with
different values of the tuning parameters and/or of the model orders.

4 Intersecting hyperplanes

From the descriptions in the previous section, it is evident that each identi-
fication procedure implements a different approach to parameter estimation
and data classification. The aim of this section is to evaluate how the different
procedures are able to deal with data points that are consistent with more
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Fig. 1. Left: Results of data classification for the bounded-error, clustering-based
and MIP procedures. All the three procedures yield ∆θ = 0.0186 (using least
squares) and ∆X = 0.0055 (using RLP). Right: Data classification by attribut-
ing each data point to the submodel which generates the smallest prediction error.

than one submodel, namely data points lying in the proximity of the intersec-
tion of two or more submodels. Wrong attribution of these data points may
indeed lead to misclassifications when estimating the polyhedral regions.

In order to illustrate this problem, an example where the submodels of
the true system intersect over the regressor set X is designed. Consider the
one-dimensional PWARX system y(k) = f̄(x(k)) + η(k), where the additive
noise η(k) is normally distributed with zero mean and variance σ2

η = 0.005,

and the PWA map f̄(·) is defined as:

f̄(x) =

{

0.5x + 0.5 if x ∈ [−2.5, 0]

−x + 2 if x ∈ (0, 2.5].
(17)

N = 100 regressors x(k) are generated. The 80% is uniformly distributed over
[−2.5, 2.5], and the remaining 20% over [0.85, 1.15], so that the intersection
of the two submodels is excited thoroughly. Results for the bounded-error,
clustering-based and MIP procedures are shown in Figure 1, left. Note that
an extension of the MIP procedure described in Section 3.1 was applied in
order to handle discontinuities in the model.

In this example the three procedures classify correctly all the data points,
and both the PVs and the switching threshold are estimated accurately. How-
ever, this might not be the case in general. For the clustering-based procedure
the quality of the results depends on the choice of the cardinality c of the local
data sets (see Section 7). In addition, the clustering may fail when there is a
large variance on the centers mk corresponding to similar θLS

k .
The bounded-error procedure is applied with δ = 3ση and c = 10. The

gray area in Figure 1, left, represents the region of all possible undecidable

data points for the fixed δ. In [5] undecidable data points were discarded
during the classification process to avoid errors in the region estimation phase.
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Fig. 2. Left: a) Data points attributed to modes. b) Pricing function for mis-
classifications. Right: Estimation data set (crosses), true system (solid lines) and
estimated model (dashed lines). The Bayesian procedure yields ∆θ = 0.1366 and
∆X = 0.0228.

However, in this way a non-negligible amount of information is lost when a
large number of undecidable data points shows up. In [6, 23] undecidable
data points are attributed to submodels by considering the assignments of
the c nearest neighbors. Also for this method, classification results depend
on the choice of c (see again Section 7). It is interesting to point out that,
if parameter estimates are computed through the ℓ∞ projection estimator,
one gets ∆θ = 0.0671 in this example. As expected, parameter estimates are
worse than using least squares, since the noise of the true system is normally
distributed.

Classification results of the three procedures are compared to those ob-
tained by attributing each data point to the submodel which generates the
smallest prediction error [29]. Results using this approach are shown in Fig-
ure 1, right. Three data points around the intersection of the two submodels
are misclassified. This leads to non-linearly separable classes which determine
a larger error in the estimation of the switching threshold (∆X = 0.0693 in
this example using RLP).

The Bayesian procedure is applied on a different data set, shown in
Figure 2, right. The procedure is initialized with a priori parameter pdf s
pθ1

(·; 0) = pθ2
(·; 0) ∼ U([−2.5, 2.5] × [−2.5, 2.5]), where U(I) denotes the uni-

form distribution over the set I. Note that a priori parameter pdf s overlap.
Results of data classification are shown in Figure 2, left(a). There are five
wrongly classified data points. These points are close to the intersection of
the two submodels. The misclassification pricing function (9) is plotted in
Figure 2, left(b). The weight for misclassification of the wrongly attributed
data points is small compared to the weight for misclassification of those cor-
rectly attributed.
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Fig. 3. Left: σ̂2

e for the clustering-based procedure (s = 2, c = 20). Right: σ̂2

e for
the MIP procedure (2-norm criterion, M = 1).

5 Overestimation of model orders

The four identification procedures require that the model orders na and nb

are fixed. In order to investigate the effects of overestimated model orders, the
one-dimensional PWAR system y(k) = f̄(y(k−1))+η(k) is considered, where
the additive noise η(k) is normally distributed with zero mean and variance
σ2

η = 0.01, and the PWA map f̄(·) is defined as:

f̄(x) =

{

2x + 10 if x ∈ [−10, 0)

−1.5x + 10 if x ∈ [0, 10].
(18)

The sequence y(k) is generated with initial condition y(0) = −10. A ficti-
tious input sequence is also generated as u(k) ∼ U([−10, 10]). The four iden-
tification procedures are applied for all combinations of na = 1, . . . , 4 and
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e for the bounded-error procedure (δ = 3 ση, c = 10, α and β not
used). Right: Approximate distribution of ∆θ over Q = 100 runs using the bounded-
error procedure and different realizations of Gaussian noise with σ2

η = 0.075.
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Fig. 5. Left: σ̂2

e for the Bayesian procedure with s = 2 and unprecise initial pa-
rameter pdf s. Right: With precise initial parameter pdf s.

nb = 0, 1, . . . , 5, and σ̂2
e is computed for each identified model. Note that the

true system orders are na = 1 and nb = 0.
Figure 3, left, shows the log-values of σ̂2

e for models with different model
orders identified by the clustering-based procedure. For true system orders the
procedure identifies a model with σ̂2

e close to the noise variance, but the per-
formance significantly deteriorates when the model orders are overestimated.
This is due to the adopted rationale that data points close to each other in
the regressor space could be very likely attributed to the same submodel.
When overestimating the model orders, the regression vector is extended with
elements which do not contain relevant information for identification, but al-
ter the distances in the feature space. This may determine misclassifications
during clustering, and consequent bad estimates of the PVs and of the regions.

Since the MIP procedure solves the optimization problem (7) at the op-
timum (p = 2 is considered since the noise is normally distributed), from
Figure 3, right, it is apparent that the procedure has no difficulties in esti-
mating the over-parameterized models.

Results for the bounded-error procedure are shown in Figure 4, left. For the
case na = 1, nb = 0, a value of δ allowing to obtain s = 2 submodels is sought.
The procedure is then applied to the estimation of the over-parameterized
models using the same δ. When extending the regression vector, the minimum
number of feasible subsystems of (10) does not increase, and remains equal
in this example. Hence, the minimum partition obtained for na = 1, nb = 0
is also a solution in the over-parameterized case. This explains the very good
results shown in Figure 4, left, which are comparable to those obtained by the
MIP procedure. The enhanced version [6, 23] of the greedy algorithm [1] is
applied here for solving the MIN PFS problem. For completeness, it is reported
that the corresponding values of ∆θ obtained1 range between 0.005 and 0.012.

1To compute ∆θ, the entries of the true parameter vectors corresponding to
superfluous elements in the regression vector are set to 0.



Values of σ̂2
e for the Bayesian procedure with two different initializations

are shown in Figure 5. In the left plot, the a priori parameter pdf s for the
case na = 1, nb = 0 are chosen as pθ1

(·; 0) = pθ2
(·; 0) ∼ U([−5, 5]× [−20, 20]).

For increased orders, added elements in the parameter vectors are taken to be
uniformly distributed in the interval [−5, 5] (while their “true” value should
be 0). In the right plot, the a priori parameter pdf s for the case na = 1, nb = 0
are chosen as pθ1

(·; 0) ∼ U([0, 4] × [8, 12]) and pθ2
(·; 0) ∼ U([−4, 0] × [8, 12]),

and all added elements are taken to be uniformly distributed in the inter-
val [−0.5, 0.5]. This example shows the importance of proper choices for the
initial parameter pdf s in the Bayesian procedure. With precise initial pdf s the
algorithm estimates relatively accurate over-parameterized models. When the
a priori information is not adequate, the performance rapidly deteriorates.

6 Effects of noise

This section addresses the effects of noise on the identification accuracy. The
first issue of interest is the effect that different noise realizations with the same
statistical properties have on the identification results. The second issue is how
different statistical properties of the noise affect the identification results.

To shed some light on the above issues, an experiment is designed with the
one-dimensional PWARX system y(k) = f̄(x(k)) + η(k), and the PWA map
f̄(·) defined as in (18). The additive noise η(k) is normally distributed with
zero mean and variance σ2

η. A noiseless data set of N = 100 data points is
generated with x(k) ∼ U([−10, 10]). For fixed σ2

η, Q = 100 noise realizations
are drawn, and added to the noiseless data set. For each noise realization, a
model is identified using the different procedures, and the value of ∆θ is com-
puted for the identified models. In this way an approximate distribution of ∆θ

for each σ2
η and each procedure can be constructed, and its mean and variance

0.02 0.04 0.06 0.08 0.1 0.12 0.14
10

−3

10
−2

10
−1

σ2
η

E
[∆

θ]

MIP
bounded−error
clustering−based
bayesian

0.02 0.04 0.06 0.08 0.1 0.12 0.14
10

−6

10
−5

10
−4

σ2
η

V
ar

[∆
θ]

MIP
bounded−error
clustering−based
bayesian

Fig. 6. Left: Estimated means of the ∆θ distributions for several values of the noise
variance σ2

η. Right: Estimated variances.



can be estimated. Figure 4, right, shows one such distribution obtained using
the bounded-error procedure.

Figure 6 shows the estimated means and variances of the ∆θ distributions
as functions of σ2

η for the four procedures. From the analysis of the plots, it is
apparent that the MIP procedure achieves the best performance with respect
to noise. The bounded-error procedure performs well when δ is chosen close
to 3ση and the true PVs are quite different, as in this example. However, in
practical situations such a value is unlikely to be available, and several trials
are needed to find a suitable value for δ. As the noise level increases, the
clustering-based procedure requires to increase the cardinality c of the local
data sets in order to reduce the variance of the estimates (see Section 7 and the
discussion in [13, Section 3.1]). With precise initialization as in Section 5, the
Bayesian procedure achieves comparable performance to the other procedures,
while with imprecise initialization the quality measures are the worst of all
procedures (not shown in Figure 6).

7 Effects of varying the tuning parameters

The four identification procedures described in Section 3 require that some
parameters which directly determine the structure of the identified models
are fixed a priori. These are the model orders na and nb for all procedures,
the number of modes s for the Bayesian and the clustering-based procedure,
and the number of hinge functions M for the MIP procedure. The Bayesian,
bounded-error and clustering-based procedures also have several tuning pa-
rameters whose influence on identification results is not immediately obvious.
In this section, the effects of varying the tuning parameters will be illustrated
for these procedures by means of examples.

To investigate the role of the parameter c of the clustering-based proce-
dure, an experiment is designed where the approximate distribution of ∆θ is
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Fig. 7. Left: Estimated means of the ∆θ distributions for several values of c using
the clustering-based procedure, and σ2

η = 0.075. Right: Estimated variances.
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Fig. 8. Upper left: Plot of the estimated minimum number of submodels as a
function of δ for the bounded-error procedure. Upper right: Results of data clas-
sification with δ = 0.3 and α = 10%. Lower left: With δ = 0.3, α = 2% and c = 5,
yielding ∆θ = 0.0035 and ∆X = 0.0411. Lower right: With δ = 0.3, α = 2% and
c = 40, yielding ∆θ = 0.0035 and ∆X = 0.1422.

computed as described in Section 6 for different values of c and σ2
η = 0.075.

The estimated means and variances of such distributions are shown in Fig-
ure 7. It is apparent that there exists an optimal value of c for which the
identified model is most accurate. In the considered example the procedure
gives the best results for c = 15, corresponding to the minimum of both curves
in Figure 7. For the selection of c in practical cases, see [13].

The bounded-error procedure has several tuning parameters, and finding
their right combination is not always straightforward. The role of the param-
eters δ, α and c will be investigated here by considering the one-dimensional
PWARX system y(k) = f̄(x(k)) + η(k), where the additive noise η(k) is nor-
mally distributed with zero mean and variance σ2

η = 0.01, and the PWA map

f̄(·) is defined as:

f̄(x) =

{

0.3x + 10 if x ∈ [−2.5, 0]

x + 10 if x ∈ (0, 2.5].
(19)

N = 100 regressors x(k) are generated uniformly distributed over [−2.5, 2.5].
Figure 8, upper left, shows a plot of the estimated minimum number of feasible
subsystems of (10) as a function of δ. In general, such a plot can be used to
select an appropriate value for δ close to knee of the curve. In this example,
choosing δ in the suggested way allows to estimate the correct number of
modes s = 2. Using δ = 0.3, the initialization provides parameter estimates
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Fig. 9. Left: Simulation results on validation data using the PWARX model
identified by the clustering-based procedure with na = 2, nb = 2, s = 2 and
c = 90 (FIT = 74.7127%). Right: Simulation results on validation data using the
HHARX model identified by the MIP procedure with na = 2, nb = 1 and M = 2
(FIT = 81.5531%). Solid - simulated output, dashed - system output.

with α1,2 = 5.9%. If α is selected greater than α1,2, the two submodels are
merged into one during the refinement phase. In this case, a high number
of infeasible data points shows up (Figure 8, upper right), which indicates
poor fit of the data. Hence, the refinement procedure can be repeated using a
smaller value of α. The role of c with respect to classification is illustrated in
Figure 8, bottom. On the left, perfect classification is obtained using c = 5,
whereas on the right three data points are misclassified using c = 40, which
causes a larger error when estimating the switching threshold.

For the Bayesian procedure the most important tuning knobs are the a pri-
ori pdf s of the parameters. Effects of improper choices are clearly illustrated
in Sections 5 and 6. The more precise the a priori knowledge on the system,
the better the procedure is expected to perform (see also Section 8).

8 Experimental example

In this section the four procedures are applied to the identification of the
electronic component placement process in pick-and-place machines2. Pick-
and-place machines are used to automatically place electronic components on
printed circuit boards. The process consists of a mounting head carrying the
electronic component, which is pushed down until it comes in contact with
the circuit board, and then is released. The input to the system is the voltage
applied to the motor driving the mounting head. The output of the system is
the position of the mounting head. A detailed description of the process and
of the experimental setup can be found in [15, 17].

2The authors would like to thank Hans Niessen for some of the results presented
in this section.
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Fig. 10. Left: Data set used for identification with the Bayesian procedure. a) Out-
put signal. Data marked with ◦ and × are those used for initializing the free mode
and the impact mode, respectively. b) Input signal. Right: Simulation results on
validation data using the identified PWARX model with na = 2, nb = 2 and s = 2
(FIT = 77.1661%). Solid - simulated output, dashed - system output.

A data record over an interval of T = 15 s is available. The data sets used
for identification with the Bayesian, clustering-based and MIP procedures
are sampled at 50 Hz, while the data set used for identification with the
bounded-error procedure is sampled at 150 Hz. Two modes of operation can
be distinguished through physical insight into the process. In the free mode the
mounting head moves unconstrained, whereas in the impact mode the carried
component is in contact with the circuit board. Hard nonlinear phenomena
due to dry friction are also present.

Results obtained by applying the four identification procedures are shown
in Figures 9, 10 and 11. Note that the aim in this section is only to show that
all the four procedures are able to estimate sensible models of the experimental
process. A fair comparison of models identified by different procedures is not
always possible here, mainly because they were obtained using different model
structures and/or different data sets.

For identification using the Bayesian and clustering-based procedures, a
data set consisting of 750 samples is partitioned into two overlapping sets
of 500 points each. The first set is used for estimation, and the second for
validation. Figure 9, left, shows the simulation results on validation data for
the best model identified by the clustering-based procedure. The best model
is obtained for a high value of c. A possible explanation of this, given in
[15, 17], is that using large local data sets the effects of dry friction can be
“averaged out” as a process noise. Differences between the measured and
simulated responses due to unmodeled dry friction are clearly visible on the
time interval (225, 300).

Physical insight into the process helps the initialization of the Bayesian
procedure. Although the mode switch does not occur at a fixed height of
the mounting head, data points below a certain height can be most likely



0 100 200 300 400

0

5

10

15

20

25

ou
tp

ut

0 100 200 300 400
1

4

time (samples)

m
od

e

0 100 200 300 400

0

5

10

15

20

25

ou
tp

ut

0 100 200 300 400
1

4

time (samples)

m
od

e

Fig. 11. Left: Simulation results on validation data using the model with s = 2
modes identified by the bounded-error procedure (FIT = 81.3273%). Right: Using
the model with s = 4 modes (FIT = 93.4758%). Solid - simulated output, dashed -
system output.

attributed to the free mode. A similar consideration holds for the impact
mode, see Figure 10, left(a). The a priori information is exploited to obtain
rough estimates θLS

i of the PVs of the two modes through least squares. As
in [13], the empirical covariance matrix Vi of θLS

i is also computed. The a priori
parameter pdf s are then taken to be normal distributions with means θLS

i

and covariance matrices Vi. Simulation results on validation data are shown
in Figure 10, right. It is apparent that the identified model benefits from the
prior knowledge, and yields a higher value of FIT than the model obtained
through the clustering-based procedure.

The MIP procedure identifies a model with na = 2, nb = 1 and M = 2
using N = 150 estimation data points. The 2-norm criterion is considered,
and s = 4 submodels are obtained. Simulation results on the same validation
data set as for the Bayesian and clustering-based procedures are shown in
Figure 9, right. Although a smaller number of data points is used to estimate
the model, it is apparent that the use of more than two submodels is favorable
to improve the fit.

The bounded-error procedure identifies models with orders na = 2 and
nb = 2 using N = 1000 estimation data. Two models with s = 2 and s = 4
modes are identified for δ = 0.06 and δ = 0.04, respectively. For s = 4, multi-
category RLP [8] is used for region estimation. Simulation results on validation
data are shown in Figure 11. Again, it is apparent that the fit improves as the
number of submodels increases, i.e., as δ decreases. The active mode evolution
at the bottom of Figure 11, left, clearly shows that one of the two submodels
is active in situations of high incoming velocity of the mounting head (i.e.,
rapid transitions from low to high values of the mounting head position). One
submodel modeling the same situation is also present in the identified model
with s = 4 modes.



9 Conclusions

In this chapter the problem of PWA identification has been addressed by
studying four recently proposed techniques for the identification of PWARX
or HHARX models. The four techniques have been compared on suitably
defined test examples, and tested on the experimental identification of the
electronic component placement process in pick-and-place machines.

Identification using the clustering-based procedure is straightforward, as
only one parameter has to be tuned. However, poor results are obtained when
the model orders are overestimated, since distances in the feature space be-
come corrupted by irrelevant information. The bounded-error procedure gives
good results when the right combination of the tuning parameters is found,
but several attempts are often needed for finding such a combination. The
Bayesian procedure is designed to take advantage of prior knowledge on the
system, and has been shown to be very effective in the pick-and-place ma-
chine identification. The MIP procedure provides globally optimal results and
needs no parameter tuning, but requires the solution of MILP/MIQP prob-
lems whose theoretical worst-case computational complexity is very high.
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