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Abstract— This paper proposes a three-stage procedure for system identification is useful for estimating hybrid madel
parametric identification of PieceWise affine AutoRegressive from data.
eXogenous (PWARX) models. The first stage simultaneously clas-  pg jgentification of a PWA model involves the estimation

sifies the data points and estimates the number of submodels and .
the corresponding parameters by solving the MIN PFS problem of the parameters of the affine submodels and the hyperplanes

(Partition into a MINimum Number of Feasible Subsystems) for defining the partition of the state and input set (or the re-
a suitable set of linear complementary inequalities derived from gressor set, for models in regression form). This issuerlglea

data. Second, a refinement procedure reduces misclassificationsuynderlies a classification problem, namely each data point
and improves parameter estimates. The third stage determines ., .t he associated to the most suitable submodel. As long as

a polyhedral partition of the regressor set via two-class or titioning i d two alt i hes lma
multi-class linear separation techniques. As a main feature, the pariiioning IS concerned, two altérnative approaches an

algorithm imposes that the identification error is bounded by a distinguished1) the partition is fixed a priori2) the partition
quantity §. Such a bound is a useful tuning parameter to trade is estimated together with the submodels. In the first casta, d
off between quality of fit and model complexity. The performance  classification is very simple, and estimation of the subrigode
of the proposed PWA system identification procedure is demon- 5 pe carried out by resorting to standard linear identiéina
strated via numerical examples and on experimental data from . .

an electronic component placement process in a pick-and-place techniques. In the second case, the regions are shaped to_ Fhe
machine. clusters of data, and the strict relation among data classifi
cation, parameter estimation and region estimation makes t
identification problem very hard to cope with. The problem is
even more complicated when also the number of submodels
must be estimated. A number of approaches dealing with the
estimation of PWA models of nonlinear dynamical systems can

|. INTRODUCTION be found in different fields, such as neural networks, eleaitr

When linear models are not appropriate for describirf%etworksa time-series analysis, function approximatiSee
accurately the dynamics of a system, nonlinear identificati[8] for a nice overview and classification. Recently, novel
must be employed. Several nonlinear model structures h&@htributions to this topic have been proposed in both the
been considered and their properties investigated in the [aybrid systems and the nonlinear identification commusiitie
erature, seee.g, the survey papers [1], [2], and referencel [9] PieceWise affine ARX (PWARX) models are considered
therein. This paper focuses on the problem of identifyin@nd the combined use of clustering, linear identificatiord a
PieceWise Affine (PWA) models of discrete-time nonlinedpattern recognition techniques is exploited in order taitg
and hybrid systems from input-output data. PWA systems dt@th the affine submodels and the polyhedral partition of
obtained by partitioning the state and input set into a finite regressor set. In [10] the authors propose an algebraic
number of polyhedral regions, and by considering linefinaf geometric solution to the identification of PieceWise Linea
subsystems sharing the same continuous state in each re§fdyL) models which establishes a connection between PWL
[3]. In other words, the state and output maps of a PWgystem identification, polynomial factorization, and hypane
system are both piecewise affine. PWA models represent @stering. [11] describes an iterative algorithm thatuseg
attractive model structure for system identification. Theato tially estimates the parameters of the model and classifies
the universal approximation properties of PWA maps [4], [5{he data through the use of adapted weights. In [12] the
PWA models form a nonlinear black-box structiire,a model dentification problem is formulated for two subclasses of
structure that is prepared to describe virtually any na@m PWA models, namely Hinging Hyperplane ARX (HHARX)
dynamics [1]. In addition, given the equivalence betweerPWaNd Wiener PWARX (W-PWARX) models, and solved via

systems and several classes of hybrid systems [6], [7], p\m’lxed-i_nteger linear or quadratic programs. _
In this paper, a different approach inspired by ideas from
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tary inequalities derived from data into a minimum numbessumed to be continuous, with definition {4¢ould be multi-

of feasible subsystems (MIN PFS problem). A suboptimablued over common boundaries of the regidrs This issue
solution to the MIN PFS problem (which is an NP-hard¢dan be easily overcome by making some of the inequalities
problem) is obtained by applying a modified version of thstrict in the definitions of the polyhedr#;.

greedy algorithm proposed in [15]. A refinement procedure Remark 1:In (4), ¢; is the number of linear inequalities
is also employed in order to reduce misclassifications adéfining thei-th polyhedral region. As will be clarified in

to improve parameter estimates. Region estimation isylasgection V,q; < s — 1 in the identified model. O
performed via two-class [16], [17], or multi-class [18]9]1  The identification of a PWARX model (1)-(4) from a finite
linear separation techniques. The bounts used as a tuning data set(y;,xx), K = 1,..., N, is a very complex problem

knob to trade off between quality of fit and model complexityinvolving data classification and the estimationsof{6;}:_,
The largerd, the smaller the required number of submodelgnd {&;};_,. When the number of discrete modess fixed,
at the price of a worse fit of the data. Another interestingie problem amounts to the reconstruction of the PWA rfiap
feature of the approach is that a set of feasible parameders and identification can be in principle carried out by minimig
be associated to each submodel according to the boundgith respect tod; and H;, i = 1,. .., s, the cost function
error condition, thus allowing the evaluation of the retate
parametric uncertainty [13]. 1
Preliminary versions of the proposed identification tech- V(0 Hi) = N Zﬁ(yk - f(Xk))» (%)
nigue appeared in [20], [21]. The present version contains k=1
further new material, including improvements of the greedynerer is a given error penalty function, such&s) = 2, or
algorithm used to initialize the identification procedused a ((¢) = |¢|. Note that, if the regionst;, i = 1,...,s, are fixed
way to associate undecidable data points to submodels by Briori and(e) = 2, the minimization of (5) is carried out
suitable reassignment in the classification process. litiadd only with respect td;, i = 1,..., s, and reduces to ordinary
a case-study is presented, where the identification teabng least-squares. When both and H;, i = 1,...,s, must be
tested on real data from the electronic component placemegtimated, the problem is in general nonconvex, and hence
process in a pick-and-place machine [22]. much harder to solve. If the numberof submodels must
be also estimated, the optimization problem should include
Il. PROBLEM STATEMENT additional terms in the objective and/or additional coaisiis
Given a discrete-time nonlinear dynamical system wit(®.g, bounds ors), in order to limit the number of submodels
input u, € RP, outputy, € R, and possibly discontinuousand avoid overfit. Several heuristic and suboptimal apgresic
dynamics, letn*~! andy”*~! be, respectively, past inputs andhat are applicable, or at least related, to the identificatf
outputs generated by the system up to time 1. A PWARX PWARX models, have been proposed in the literature (see
model establishes a relationship between past obsersati¢#] for an overview). Most of them look for good suboptimal

(uk=1, y*=1) and future outputg; in the form solutions of the minimization of (5), except the one in [12],
where the global optimum can be attained for two subclasses
Yk = f(xk) + ek, (1) of PWA models by reformulating the problem as a mixed

wheree;, € R is the error termx;, € R” is the regression integer linear or quadratic program. As regards thg number
vector with fixed structure depending only on pastoutputs Of submodels, most approaches either assume a fixext

andn, inputs: adjusts iteratively .g, by adding one submodel at a time)
, , , until the quality of fit is acceptable.
Xk = [Yh-1 v Yhong g - Wy, | ) Inspired by ideas from set-membership identification (see

(hencen = n, +p-ny), and f : X — R is the PWA map: [13], [14] and references therein), the approach preseinted

this paper is based on imposing a bound- 0 on the error

term e, in (1) for all the samples in the estimation data set.

f(x) = : : (3) Feasible solutions of the identification problem are thus al
©'0, if xeX,, PWARX models (1)-(4) satisfying

@/01 if X € Xl

which is defined over the regressor s€tC R™ where the lyk — f(xx)| <6, VYk=1,...,N, (6)
PWARX model is valid. In (3)s is the number of submodels
(or discrete modes)y is the extended vectop = [ x’ 1], for the givend > 0. The focus here is on providing a
andf; € R""', i = 1,...,s, are the parameter vectors ofparticular feasible solution. Since the numbenof submodels
each affine ARX submodel. The regioA$ form acomplete is neither assumed to be known, nor fixed a priori, in order
partition of X (i.e. J_, X; = X and X AP =0,Yi#j, to obtain a model which is as simple as possible (where
where X denotes the interior o), and are assumed to be‘simplicity” is measured in terms of the number of submoylels
convex polyhedra, described by the minimums allowing to satisfy (6) is sought. Hence, the
B A considered identification problem is as follows:
Xi={x€R": Hip 20}, @ Problem 1: Given N data points(y,xx), k = 1,..., N,
where H; € R%>(+D 4 —= 1 ... s and “<” denotes andd > 0, estimate a minimum positive integer a set of
componentwise inequality. Since the PWA map (3) is n@arameter vector§d; };_,, and a polyhedral partitiof.X; };_;
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PW/ERIX In the following, pointwise parameter estimates will be

tmode computed through thé., projection estimator [13]. Given a

setD of data points(yx,xx), the /o, projection estimate is

Fig. 1. Flow diagram of the proposed PWA identification paoe. The defined as:
boxes correspond to the procedure steps, and the label® @uges describe

the inputs and the outputs of each step. fbp(D) =argmin  max _|y; — 99;@9| ) (7)
0 (yk,xk)eD

wherep, = [ x}, 1 ]'. Problem (7) can be solved via linear
of the regressor set’, such that the corresponding PWARXprogramming. Thé, projection estimate is preferred because
model (1)-(4) satisfies condition (6). it has favorable properties in the refinement procedure, as
Note that solving Problem 1 involves to classify the avaikhown in Section IV-A. However, it can be replaced by any
able data points into cluste{®;}._, such that(y,,x;) € D; other projection estimate, such as least squares.

if and only if (y,xy) is attributed to the-th mode. Remark 2:Problem 1 can be easily extended to multi-
The procedure proposed in this paper to solve Problemolitput models (or models in state-space form for which the
consists of three steps: whole state is measurable). In this case, the output of the

1) Raw classification and estimation via MIN PFBata System isy, € R?, the PWA mapf is a ¢-valued function,
classification and parameter estimation are carried c¥td (6) is replaced by:
simultaneously, together vyi_th t.he estimation of the num- lyr — i)l <6, Yhk=1,...,N. ®)
ber of submodels, by partitioning a suitable set of linear _ _ _
inequalities derived from data into a minimum numbefhe approach to the solution of Problem 1 presented in this
of feasible subsystems (MIN PFS problem). paper is also applicable to the cage- 1, provided that small

2) RefinementMisclassifications are reduced and param@mendments to the procedures described in Sections Ill and
ter estimates are improved through an iterative proceduiéare introduced. The reader is referred to [23] for a detail
alternating between data reassignment and parameigpcription. O
update. The following example will be used throughout the paper

3) Region estimationThe clusters of regression vectordo clarify the different steps of the identification proceelu
are linearly separated via two-class or multi-class linear Example 1:Let N = 200 data pointgys, x)) be generated

separation techniques. by the following PWARX system [20]:

The first two steps will be described in Sections Il and —0.4yp—1 +up—1 + 1.5+ e if dyk—1 —ug—1+10<0
IV. Region estimation will be addressed in Section V. A flow,, — ] 0-5¥k—1 —uk—1 —05+ex if dgp—1 = up—1 +10 2 0
diagram clarifying the links between the three steps is show én Y1 + Uk—1 <
|n F|g, 1. —0.3yr—1 + 0.5up_1 — 1.7+ ex if bypr_1 +ur—1 —6>0.

It is worthwhile to point out that the bound is not Wherex, = [yx_1 ux—1 |- The number of modes is = 3.
necessarily given a priori, rather it is used as a tuning kefob The input signalu;, and the noise signad, are uniformly
the identification procedure. As discussed in Section |IBC distributed orf{—4, 4] and on[—0.2, 0.2], respectively. The data
can be adjusted in order to find the desired trade off betwe@ints available for estimation are shown in Fig. 2. Front lef
model complexity and quality of fit, because the smailathe to right, 54, 83 and63 data points were respectively generated
larger is typically the number of submodels needed to fit th¥y the three affine subsystem.
data to a PWA map (3), while on the other hand, the lafger
the worse is the quality of fit, since larger errors are alldwe!ll. RAW CLASSIFICATION AND ESTIMATION VIA MIN PFS
The case of different bounds for each data point can be always$-or the moment, let us not address the estimation of the
cast into (6) by suitably scaling the data. hyperplanes defining the polyhedral partition of the regpes



TABLE |
MODIFIED GREEDY ALGORITHM FOR THEMIN PFSPROBLEM WITH
COMPLEMENTARY INEQUALITIES

set, and focus our attention on determining a suitable numbe

of submodels, classifying the data points, and estimatieg t

affine submodels. In view of condition (6), this is accom-

plished by solving the following problem.
Problem 2: Given § > 0, find the smallest numbes of  Algorithm 1

vectorsé;, i = 1,...,s, and a mapping: — i(k) such that Letli ={1,...,N}and/=0

|yk — @k&l(kﬂ <4 forall k= 1,...,N. REPEAT

. e . Let¢=/¢+1andX, = {|yx — |0 <6 : ke I}
Problem 2 consists in finding Bartition of the system of  Find a solutiond, to the MAX FS problem fors, (Algorithm 2

linear complementary inequalities: Leti=1
WHILE ¢ < £
/ — L. /
-0 <, k=1,...,N 9 Let Kip={k € l; : |yx — ©}00] < 6}
‘yk 7k | - ’ T ( ) IF #K,;p > #K; THEN let0; = 0, and{ =i
into a Minimum number of Feasible Subsystem#IN PFS Leti=1i+1

. . . END WHILE
problem). Given any solution of Problem 2, the partition of | ¢y, — (k€ Iy : lye — 00 <6} andIpyy = I\K,

the linear complementary inequalities (9). the mapping unTiL I, =0

k — i(k), provides the classification of the data pointsRETURNs =fandK; i=1,...,s

whereas according to the bounded error condition eachdleasi

subsystem defines the set of feasible parameter vectorsédor t

corresponding affine submodel [13]. Note that each inetualg,racreq subsystems may be rather far from the minimum

in (9) is termed dinear complementarynequality because it (see Example 2).

corresponds to the pair of linear inequalities: Based on the above discussion, the algorithm in [15] has
{ 010 < yr +6 been modified as shown in Table I, wheted denotes the

(10) cardinality of a finite set4, and A\ B denotes the difference
of two setsA and B. The enhanced algorithm differs from the
The MIN PFS problem is NP-hard. Hence, in [20] Proberiginal version for the addition of the’HILE loop. LetX, be
lem 2 was tackled by resorting to the greedy randomizéde system consisting of the remaining inequalities afésirig
algorithm proposed in [15]. The basic idea of the algorithreaxtracted?/ — 1 feasible subsystems from (9), and tetbe a
is to find a vectom that makes the inequalities in (9) true for(suboptimal) solution of the MAX FS problem for system
as manyk as possible (MAX FS problem), then remove thosgsee Algorithm 2 in Table II). The solutiofl, is applied to
satisfied inequalities and repeat over the remaining omd#, uthe systems:; with ¢ < ¢ (WHILE loop). Note thaty, is a
all inequalities have been accounted for. In the followiag, subsystem of; for all i < ¢, so thatd, satisfies at least as
modified version of the algorithm [15] is proposed in order tmmany complementary inequalities ¥y as inY,. Let:* be the
obtain a numbeg of feasible subsystems which is typicallysmallest index, if any, such that), satisfies a larger number

00 > yr — 9.

closer to be minimal. of complementary inequalities If; than those satisfied k.
Then, the best solutiofi;« for systemX;- is set equal td,,
A. A greedy algorithm for the MIN PFS problem and/ is reset to;*. Since the number of data points is finite,

.. the algorithm terminates in a finite humber of steps.
The greedy approach [15] to the MIN PFS problem divides Improvements obtained by the proposed modification to

the overall partition problem info a sequence of MAX F%ﬂe original algorithm are twofold. First, the cardinagi of

z;'?igfrizgli?es,mezf;rr;l,?r:eni?:;lesrur(;? I'i?]efg:dg;gmzlggztgr;; iﬁuccessively extracted subsystems are not increasingyeas o
o ) .Would expect if all MAX FS problems were solved exactly.
equalities of the system at hand. Starting from (9), feasib ould expect if & S problems were solved exactly

subsystems of maximum cardinality are iteratively exedct econd, it favors the construction of subsystems with farge
o o . : cardinality €.g, by making it possible to merge subsystems of
(and the corresponding inequalities removed), until tieaia- y €9, by grp 9 Y

ing subsystem is feasible complementary inequalities that might be satisfied by tieesa
Finding aFeasible Subsysterf MAXimumcardinality of parameter vector, but were extracted at different MAX FS

a svstem of linear comolementary inequalities (MAX I:gera’[ions due to the suboptimality of Algorithm 2). The
Y L P y q ( Second improvement is also pursued by suitably modifying
problem) is still an NP-hard problem [24], [25], [26]. Thus,

randomized and thermal relaxation method providing (subothe algorithm for the MAX FS problem in [15], as will be

timal) solutions with a limited computational burden ismls&escnbed In the next subsection.
proposed in [15]. ) )

However, due to both the suboptimality of the greed: A relaxation algorithm for the MAX FS problem
approach to the MIN PFS problem and the randomness of theGiven a system of complementary inequalities like (9), the
algorithm for the MAX FS problem, the greedy randomizeg@roblem of finding a vectof that makes the inequalities true
algorithm [15] is not guaranteed to find the minimum numbdor as manyk as possible, is an extension of the combinatorial
of feasible subsystems. In particular, it has been obseirvedproblem of finding a feasible subsystem of maximum cardi-
extensive trials that both the variance of the results may bality of an infeasible system of linear inequalities, whis
quite large i.e. the number of extracted subsystems may diffémown as MAX FS problem. Since the MAX FS problem
considerably from trial to trial), and the average number @ NP-hard, its extension with complementary inequalities



TABLE I

J:
MODIFIED RANDOMIZED AND THERMAL RELAXATION ALGORITHM FOR :
THE MAX FS PROBLEM WITH COMPLEMENTARY INEQUALITIES
. D
Algorithm 2 < 90) — gl-1 _ )
GIVEN: C >0, Ty >0, 0 € R, p e (0,1) T I T Ak
Letj =0, Opest = ) and Ipesr = {k €l |yk - @;cebesd < 6}
FORc=0TOC —1 DO
LetI =1, andT = (1 — ¢/C)Tp
REPEAT
letj=j+1
Pick an indexk from I according to the prescribed rule
Computev® and); 5
Updatee(ig and let/V) = {k € I, : |y — ¢},00)| <6} =y —0 o0 =yp+06 *
IF #10) > #1 .o THEN let Opesy = 009) and Ipeqp = 109
Let I = I\{k} . o o —
UNTIL T = 0 Fig. 3. Geometric interpretation in the parameter space ofiglesiteration
IF ¢ > pC THEN of the relaxation algorithm for the MAX FS problem with compientary
h - 5
Let D = {(yk, %) : k € Tpest } inequalities ¢ € R=).

Let fyest = ¢p(D) and ) = by

Let Ipest = {k € Ip : |yx — 0}, Opest| < 8}
END IF hyperstrip in the parameter space (see Fig. 3). If the cur-
END FOR ) s . -
RETURN Bpes rent estimated’~1) belongs to the hyperstripi.¢. 801
satisfies thek-th complementary inequality), the#’) is set
equal to #U—1, Otherwise,§\9) is obtained by making a
step toward the hyperstrip along the line orthogonal to the
tackled in [15] by resorting to a randomized and thermapquperstrip and passing througt¥—1). The basic idea of the
variant of the classical Agmon-Motzkin-Schoenberg ref@xe  algorithm is to favor updates of the current estimate which
method for solving systems of linear inequalities. In thigim at correcting unsatisfied inequalities with a relaghahall
section, some modifications to the original algorithm [16¢ a yjolation. Decreasing attention to unsatisfied inequesitivith
proposed in order to get a feasible subsystem whose catyinahrge violations (whose correction is likely to corrupt eth
is typically closer to be maximal. inequalities that the current estimate satisfies) is obthiny

The modified algorithm for the MAX FS problem withintroducing the decreasing temperature paranigtes which
complementary inequalities is shown in Table II. It difféilsm  the violations are compared.
the Original version for the addition of the final statement. If the Cyc'e counter is greater tharpc’ (|ast||: Statement)’
The algorithm requires to define a maximum number of Cyhe current best solutiofi,.s; (i.e. the one that has satisfied
clesC > 0, an initial temperature parameté > 0, an initial  the largest number of complementary inequalities so far), i
estimated®) € R"* (e.g, randomly generated or computedeplaced by the.,. projection estimate (7). More precisely,
through least squares), and a coefficiert (0,1). It consists denoting byD the set of data pointsy,x;,) such that the
in a simple iterative procedure generating a sequeéfteof corresponding inequalityy, — ¢,#| < ¢ is in X, and is

esti.mates, wher¢ =1,...,CNy is thg iteratip_n counter, and satisfied by the currertyes; (Goq in the following), fpes: is
N, is the number of complementary inequalities of the curregpdated as follows:

subsystent:, of (9) (see Algorithm 1 in Table I). During each
of the C outer cycles, all theV, complementary inequalities Opest = arg mein max__|yr — ¢30] . (14)

of X, are selected in the order defined by a prescribed rule (v e ) €D

(e.g, cyclicly or uniformly at random without replacement)The new 6,.,, satisfies at least as many complementary
If & is the index of the complementary inequality considergdequalities inX, as 6,4, since:

at iterationj, the current estimate is updated as follows:

_ _ max |yx — PpbOpest| < max |yp —ppboal <0, (15)
9U) — plG—1) _ sign(vf))\j Ok, (11) (Yr,xk)ED (Y, x1)ED

and could possibly satisfy more complementary inequalitie
than 6,4, thus providing a better solution of the MAX FS

G0 g 5 i ol sy 8 problem for systemX,. It was found experimentally that

Wherev§-€ is the violation of the:-th complementary inequality:

k_ ' pGi—1 a1 suitable values forp lie between(.7 and 0.8. Indeed, the
R A SO’“G(? '<w—s (12) current solutior‘ﬂ<j)p(and hence the number of satisfied com-
0 otherwise plementary inequalities of,) would not change significantly
and the step siza; decreases exponentially wiﬂnﬂ: asc gpproach(.asc,. because the temperature paramefer
. to which the V|0Iat|0n$ are compared becomes smaller and
T 7@ smaller. By resetting?) to the current best solution (14) at
A= T exp T . (13) the exit of a cycle when approacheg’, one focuses the future

search in a neighborhood &k.s;, where it is more likely
Geometrically, the inequalityy, — ¢,.0] < ¢ defines a to satisfy a larger number of complementary inequalities.
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and 7 over theM trials. In addition, the average cardinality
of the subsystems extracted after the fourth one is less than
— = - o the 0.3% of the total number of complementary inequalities.
extracted feasible subsystem These subsystems, that account for very few data points, can
be easily discarded (this issue is addressed in Section.|\t-B
Fig. 4. Results of the application of the original and the rfiediversion 1S clear from Fig. 4(bottom) that the better performancehef t
of the randomized greedy algorithm for the MIN PFS problem xaiple 2. modified algorithm is due to the fact that it is able to extract
Top: Frequency of the number of extracted feasible subsyst@wom:  feasible subsystems of larger cardinality in the first tieres.
Average cardinality of the extracted feasible subsystems. .
On the contrary, after extracting some large subsystemas, th
original algorithm starts to extract many small subsystems
The solutionfy., returned by the algorithm is the one thatlt iS worthwhile to note _that the average computation time
during the overall process, has satisfied the largest nuofbeas 7-53 sec for the original algorithm an6.35 sec for the
complementary inequalities. It is however not guaranteed odified algorithm by running Matlab 6.5 on a 1GHz Intel
be optimal, due to the randomness of the search. Pentium IlI.

For the choice ij"O, the reader is referred to [15] In Example 1¢0nt,d): The initialization of the identification
general, the larger the value 6f, the better the solution, atProcedure provides = 3 submodels for the given data set
the price of a longer computation time. Typical good choice#ith the choiced = 0.2 (equal to the true bound on the
for C areC' = 10 + 20 [23]. noise). The other parameters of the greedy algorithm are

Example 2:In order to show the improvements of the modC = 10, To = 100, p = 0.7, and cyclic selection of the
ified randomized greedy algorithm for the MIN PFS probleriomplementary inequalities is used. Note that the estinate
(Table 1 and Table I1) with respect to the original versios]jL nhumber of submodels equals the true one. The corresponding
the two algorithms are applied to a system of complementdfjyee clusters of regression vectors are shown in Fig. 5,
inequa”ties derived frorn]\/' = 1000 data points generatedWhere some data pOintS marked with CirCIeS Clearly |00k as
by a PWARX system with orders, = 2 andn, = 2, misclassified. They arendecidabledata pointsi(e. consistent
§ = 4 submodels, and zero-mean gaussian noise with variaf¢éh more than one submodel), that have been associated by
o2 =0.2. M = 1000 independent runs of the two algorithmghe greedy strategy to the compatible submodel correspgndi
are carried out with the same choice of the parameters10, 10 the largest feasible subsystem extracted from (9).

To = 100 and§ = 1.4 = 3.130. In addition,p = 0.7 is
used in the modified algorithm. The frequency of the number .
of extracted feasible subsystems and their average cﬁtylina%' On the choice 09

over theM trials are computed for both algorithms. The results For too large values of, very large subsystems of (9) are
are shown in Fig. 4. The original algorithm extracts a numbégasible, and beyond a certain value the whole system (9)
of feasible subsystems varying between 12 and 22 over thecomes feasible, which corresponds to fitting a linear inode
M trials. The average is 18 subsystems, which is very fay the data set. Hence, for largehe identified PWARX model
from the minimum, namel\s = 4. Moreover, the variance is simple because it contains very few affine submodels, but
of the results is quite large. On the other hand, the modifille submodels do not fit well the corresponding data poists, a
algorithm extracts an average number of 5 feasible subwgstelarge errors are tolerated. Conversely, small value§ ofay

with the number of feasible subsystems varying betweenleld to a very large number of subsystems. In this case overfit

100

0 5



14 , , , , , , of submodels remains constant and equal to the true number
5 = 4, whereas the average quadratic error grows moderately
with §. For values beyond = 6, system (9) becomes feasible,
and only one submodel is sufficient. It is clear in Fig. 6 tinat t
best trade-off between model accuracy and model complexity
is achieved in this example far ranging from 0.9 to 1.1.

12

10

IV. REFINEMENT

The raw classification and estimation step described in

Section Il returns an estimateof the number of submodels,

0 1 2 3 z 5 6 7 and the sets of indice&;, i« = 1,...,s, characterizing the

s feasible subsystems extracted from (9). These provide the
initial classification of theN data points(yg, xx) into the s
clustersD”) = {(y,xz) : k€ K;},i=1,...,s.

Such estimate of the number of affine submodels and
classification of the data points may suffer two drawbacks.
The major one is that it is not guaranteed to yield minimum
partitions, i.e. due to both the suboptimality of the greedy
approach and the randomness of the algorithm used to tackle
each MAX FS problem, the numberof feasible subsystems
extracted from (9) might be not minimal. The second drawback
is related to a kind of ambiguity that is inherent with theadat
Some data points may be consistent with more than one affine
submodelj.e. they may satisfyly;, — ¢}.6;] < ¢ for more than
Fig. 6. Number of submodels (top) and average quadratic ebattom) one; — 1,... s. These data points are termaddecidable
versus the erfor boundlin Example 3. Due to the undecidable data points, the cardinality and the
composition of the feasible subsystems could depend on the

may occurj.e. the model starts to adjust to the particular noisg'der in which they are extracted from (9), as shown in

realization. Example 1. _
When a priori information on the system structure and the N order to cope with the above drawbacks, a procedure for
noise characteristics is not available, an appropriatemevalthe refinement of the estimates is presented in Table IIl. It

of & can be selected by solving Problem 2 for differerffONSIStS of a basic procedure (steps 2, 4, 5 and 6) whose aim
values of§. Given the limited computational burden of thdS 10 improve iteratively both data classification and gyal
randomized greedy algorithm for the MIN PFS problem, th@f fit by properly reassigning the data points and updating
curves expressing the number of feasible subsystems of parameter estimates. The basic procedure is illudtiate

and the average quadratic error: ection IV-A. The additional steps 1'§1nd 3 allow one Fo .red'Lllce
) the number of submodels by exploiting parameter simi&siti
1 d cluster cardinalities. These are described in Sectidh |
2 _ 102 and clus
== ; k; k= &0 (16)

as a function ofs, can be easily plotted. Typically, when A
increases starting from a very small value, the number of ) ) ]
feasible subsystems decreases first sharply, and then mor@S discussed above, there may exist undecidable data
smoothly after a certain value @f Conversely, the averagepo'nts_(y’fvxk) that satisfy|y, — ¢}, < 6 for more than one
quadratic error increases with An appropriate value of index . Unde_c!dable data _p_omts could be classified COfrectIy
should be chosen close to the knee of the first curve, tryifgy Py exploiting the partition of the regressor set, whish

to keep the average quadratic error small, as shown in {pwever not available at this stage of the identificatiorcpss.
following example. When solving Problem 2 via the greedy strategy described in

Example 3: N = 500 data points generated by a PWARXSEection I1I-A, L_Jndec_idable data points are classified ddjyen
system composed by = 4 subsystems with orders, = 1 " the order_ in which the fe§3|ble subsystems are extra_cted
andn, = 1, are considered. The additive noise is normallffom (9), as it was also clear in Example 1. As an alternative,
distributed with zero mean and varianed = 0.1, and the ach undecidable data poif,x;) could be associated a
signal-to-noise ratio is about 10. The number of feasib[%OSt?f_iOfi to the submodeét such that the identification error
subsystems of (9), and the corresponding average quadriiglinimized, namely:
error are plotted as a function éfin Fig. 6. For values of i* =arg min |yr — 0. (17)
below 0.9 ¢ 2.850), the average quadratic error is small, but =108
the large number of submodels clearly indicates overfit ef tiBoth criteria may lead to misclassifications when the partit
data. For values of between 0.9 and 1.9(60), the number of the regressor set is estimated (see Fig. 7). Thus, in [20],

Dealing with undecidable data



TABLE Ill
ALGORITHM FOR THE REFINEMENT OF THE ESTIMATES

Algorithm 3
GIVEN: «>0,8>0,7v>0,c>0
Lett=1and6") = ¢,(D\?),i=1,...,s

1) Merge submodels “ " -
e kY . t t) t t
Compute(:*, j*) = arglgriné?gs o; 5, wherea; ;= pu(0;7,0;7)
IF ai? L <«
THEN merge submodels* andj*, and lets = s — 1
2) Data point reassignment
For each data pon(‘(ig)/k, Xg) k=1,..., N: Fig. 7. PWA model with two discrete modes,c R. The gray set represents
o IF |y, — i 0;”| < éforonlyonei=1,...,s the region of all possible undecidable data points for a fixeBy applying
THEN assign(yy, Xx) t0 Dgt) and mark it adeasible bOIth th%g"?dedgl Stcfla“ﬂgy for the rll\/”’\c“ PFS pf((’?:englans ct)h?:’mhﬁ(gn.dthe
—_ o oW < — only undecidable data point in the data set (the black giriclattributed to
° ITFHE‘kaa;Iik(Z;, Lk—) (;;%rnrggé%;ﬁ: ong=1,...,s the first submodel. This yields two non-linearly separabisstelrs of points.
e OTHERWISE mark (yi, xx) asinfeasible
3) Discard submodels
Computei* = arg _min B, wherep!") = #D /N Infeasible data points do not satisfy (18) for any 1, ..., s.
g0 < 3 S If the corresponding violations are large, they are moslyik
THEN discard submodei*, let s = s — 1 and go to step 2 outliers and are therefore neglected. Undecidable datatgoi
4) Assignn;]ent gf l{gdglcidgble data points satisfy (18) for more than one = 1,...,s, i.e. they are
For each undecidable data poit, xy): , consistent with more than one submodel.
ComputeC;(xg), t =1,...,s, andi* = arg max #C;(xx) . T .
=18 Step 4 tries to solve the ambiguity concerned with un-
IE ‘ ) 9@) <5 . . i . . . .
Yk~ PRl | = @ _ _ decidable data points by exploiting spatial localization i
5) P;'r*ai:‘e?;s'ggég’t@éxk) to D;.” and mark it adeasible the regressor set. The feasible points arowmpdare indeed
Computed™ 1) = ¢,(DP), i =1,...,s expected to provide useful information for correctly classg
6) Termination the undecidable data poirfi,x;). To this aim, letC(xy)
1 . . .
[0t — | < H9§3)H foralli=1,...,s be the set of the: feasible regression vectors nearestxig
t t . . . . . . .
THEN RETURN s, 0; = 0,'") andD; =DV, i =1,...,s wherec is a fixed positive integer and the Euclidean distance

ELSE lett =¢+ 1 and go to step 1

(t)

is used. If all points irC(x;,) belong to the same clust@&’,
then (yx,x;) can be most likely associated to submodel
provided that also

1 g(t)
undecidable data points were discarded during the classifi- |yk — b <0 (20)

cation process. Although this approach works well in many satisfied. However;(x;) may in general contain regression
cases, a non-negligible amount of information is lost when\gctors from different set®"”. A candidate submodel is then
large number of undecidable data points shows up. Hencegdected by computing the setsx;) = C(xz) mR(t) for all
modification to the classification procedure is propose&her _ | "¢ and the indexi* such that the carldinality of

in ord_e_r to attrilbute unt_jec!dable Qatg points to submodgls Pi(xk) is maximizedi.e.
exploiting spatial localization. This improves both thetada
classification (in view of the estimation of the regions) and
the parameter estimates. o o _
Initial parameter estimates for each submodel are computédyx, Xi) satisfies (20), then it is associated to theth sub-
through thef., projection estimator (7). Then, at each iteratioodel and assigned ®.", otherwise it is left as undecidable.
indexed byt = 1,2,..., all data points are processed ifExtensive tests have shown that this heuristic criterion is
Step 2 of the refinement procedure’ and classifiefkasible very effective in reducing the number of undecidable data
infeasibleor undecidableaccording to the current estimatedPoints, thus improving data classification. However, ittifl s
parameter vectorﬁft), i = 1,...,s. A feasible data point conservative, becauggy, xi) is left as undecidable if (20) is

(yx, xy) satisfies the complementary inequality: not satisfied. _
New parameter estimates for each submodel are computed

in step 5 through thée,, projection estimator (7). The use
of the /., projection estimate is favorable here because it
for only onei = 1,...,s, sayi*. Hence, it can be uniquely guarantees that no feasible data point at refinerhéstomes
associated to thé*-th submodel, and assigned to the corrénfeasible at refinement+ 1, since for alli =1,...,s:
sponding clustengf). Note that the classification of the fea-
sible data points induces also a classification of the (éelsi
regression vectorsg,, into the clusters

" = arg max #Ci(xx) . (21)

|y — k0| <6 (18)

§t+1)| < max

max |yk — 4,02,9
R (ykxk)ED

(yk»xk)Efo

" S N 7)
Good choices for the parametelin step 4 depend on the
density of the data set. A small may originate set€(xy)

Rgt) = {xk Yk, xk) € DZ@}, i=1,...,s. (19)



which do not contain enough points for correct classificatio A A 2 0 o® 0 <> 0
On the other hand, for large values @fa setC(x;) might N A O‘\<> © %
contain points distant fronx,. In this case, the data point ) AAA %ﬁ@ © o © o o
(yk,xx) could be badly assigned to a “far” cluster, or left NS O& o “0 %O o
undecidable. Indeed, if many data points are still clagbifie Ag § ©gof><> o @ <><>
undecidable at the exit of the refinement procedure, one can 33 ol Aﬁa @% S o O <><><>
reducec, and repeat Algorithm 3. The parameter- 0 is the N ro® o 0@ @%
tolerance used to check the termination condition in stefy 6. vy ® O < % %
default value could be = 0.001. s Aﬁ,b 088 © OO‘\\ % <<>> o ?9
A \

, b © 08 09 00 o

B. Reducing the number of submodels -4t 0 0 9 %% %
If the initialization procedure provides an overestimatif o 70 Vs S

the number of submodels needed to fit the data, this number

can be reduced by exploiting parameter similarities and-cluFig. 8. Classification of the regression vectdriangles, circles, diamonds

ter cardinalities. Two submodel$ and j* characterized by in Example 1 after the refinement. The dashed lines represeiruh partition
- ’ . of the regressor set. All data points are correctly claskifie

similar parameter vectors can be merged in step 1, where

|61 — 02|
min{|[01 [, 62|} (23) data points are correctly associated to submodels by éxploi
ing spatial localization in the regressor set (compare big.

is us_eo_l as a measure of the simi_larity_ of_vectﬁfsand f2. and Fig. 8). The parameter vectors estimated for the three
The joined parameter vector at iteratianis computed as gypmodels are shown in Table V.

¢p(Dy Y UDL). Note that a large number of undecidable

data points is likely to show up in ste_p 2 when two parameter V. REGION ESTIMATION

vectors are very close. If the cardinality of a cluster ofsfbke . . ) .

data points is too small, the corresponding submodel (whichCIVen the clusterd;, i = 1,...,s, of feasible data points

accounts only for few data) can be discarded in step 3. returned by the reflpement procedure, consider the comelspo
The nonnegative thresholdsand3 in steps 1 and 3 should N9 sets of regression vectors:

be suitably chosen in order to reduce the number of submodels R; = {Xk : (yr, X)) € Di} . i=1,....5. (24)

still preserving a good fit of the data. Tentative values for . o S
a and 8 may be chosen after computi D and ﬁ_(*l) in The region estimation problem consists in finding a complete

o <j02 A rule of POVhedral partitioln{/"(i}‘::1 of the regressor set such that
) ) AT R; C X; for all i = 1,...,s. The polyhedral regions (4)
thumb is to takea =~ 0.8a;. ;.. Similarly, if 5. < 0.1, gre defined by hyperplanes. Hence, the problem of region
one may take3 ~ 0.8 ﬁi(*l). The user may also choose largeestimation is equivalent to that of separatingets of points
values ofa and 3 so as to impose the reduction of the numbdsy means of linear classifiers (hyperplanes). Note that a
of submodels. However, for too large values @fand 3, a hyperplane separating without errors the pointsip from
large number of infeasible data points will typically show uthose inR;, i # j, might not exist because the s&s andR ;
as the number of submodels decreases and some signifi¢eave intersecting convex hulls. In this case, one will look f
submodel is neglected. One can use this information in ordeseparating hyperplane that minimizes some misclassiicat
to adjusta and 3, and then repeat Algorithm 3. index.
Example 1 ¢ont'd): Fig. 8 shows the classification of the Linear separation of the setsR,,..., R, can be tackled
regression vectors provided by the refinement procedure. Tih two different ways:

parametersy and 3 are not used (a reduction of the number) Construct a linear classifier for each &R, R;), with
of submodels would result deleterious for the fit), and the ;¢ ;.

other parameters of the procedure are- 0.001 andc = 5. p) Construct a piecewise linear classifier which is able to
The termination condition is reached after three refinement  gjscriminate among classes.

All data points are correctly classified, and no data point is |, e first approach a separating hyperplane is constructed
left undecidable or infeasible. In particular, all undexite for each pair(R;,R;), with i # j. This amounts to solve
s(s — 1)/2 two-classlinear separation problems. Redundant
TABLE IV hyperplanes ife., not contributing to the boundary of the
TRUE (0;) AND ESTIMATED (6;) PARAMETER VECTORS INEXAMPLE 1 corresponding region) can be eliminated a posteriori tiinou
standard linear programming techniques, so that the number
of linear inequalities defining thé-th polyhedral region is
¢; < s— 1. Linear separation of two sets can be accomplished
'01'4 -(;).550631 015 _%'.59%%3% 'g_ g’ _(())_ 5234?59 by resorting to.e.g, Robust Linear Programming (RLP) [16]
15 15472| -05 -0.4994| -1.7 -1.7072 or Support Vector Machines (SVM) [17] methods. Both RLP
and SVM look for a separating hyperplane of two sets that

(b1, 02) =

the first iteration of Algorithm 3. Ifa

9~1 91 ég 92 9~3 93




Fig. 9. Linear separation of four sets of points: pairwiseedir separation
(left) and piecewise linear separation (right). The paniton the left is not
complete (the gray area is not covered).

additionally minimizes a weighted sum of the misclassifarat Fig. 10. Final classification of the regression vectdriaigles, circles,

errors. An alternative method is to look for a Separatirgamon@ and true (dashed lines) and estimated (solid lines) fmartdf the
) L . o . tin E le 1.

hyperplane that minimizes the number of misclassified goin gressor set In Example

As detailed in [20], this is equivalent to solving a MAX FS

problem. Approactu) is computationally appealing, since ity sters corresponding to such situations, are curremttjer
does not involve all the data simultaneously. A major dra"kbainvestigation

is that the estimated regions are not guaranteed to form Hnce the regiong; have been estimated, all the data points

complete partition of the regressor set wher- 1, as shown ¢4, e finally classified by exploiting both the partition and
in Fig. 9(left). This drawback is quite important, since ithe bounded-error condition 6). For=1,..., N, if x € &,
causes the model to be not completely defined over the whele <o~ 1 . ong s — ol0i] < 6, then (ye, i) is

regressor set. _ - assigned to the clust@;, otherwise it is marked as infeasible.
If the presence of “holes” in the partition is not acceptable feasible parameter set:
approachd) can be employed to solve multi-classlinear
separation problem, where a piecewise-linear classifieons FPS; = {0 e R™™ : |yr — k6] < 6,Y(yx, xx) € Di}  (25)
truct the maximum aflinear classification functions. . .
struie ed as the maximum oflinear class cation functions can be also associated to thth submodel, thus allowing the
A first way [19], [27], to tackle the multi-class problem is . . :
. o : evaluation of the related parametric uncertainty [13].

to compute thes linear classifiers by separating each &t Example 1 ¢ontd): The final classification of the regres-
from the union of all the others. This requires the solution P ' . . 9

: . sion vectors, and the estimated partition of the regressbr s
of s two-class linear separation problems. Unless eaclRset N oo )
- } g, . are shown in Fig. 10. The partition is estimated through SVM.
s linearly separable from the union of the remaining séts, t The line separating triangles and diamonds is not drawoesin
approach has the drawback that multiply classified points b 9 9 e

or. . S )

unclassified points may occur, when attlassifiers are applied '? IS Te.d””da”t' wh|'le the two solid lines are defined by the

to the original data set. This ambiguity is avoided by adsign coefficients vectors:

a point to the class corresponding to the classificationtfanc hi = (3.9591, —0.9665, 10.0196)

that is maximal at that point. A second way to tackle the multi he = (5.0513, 1.1876, —5.9223)

class problem is to directly construetlassification functions ’ ’ ’

such that, at each data point, the corresponding classidancthat are very close to the true ones.

is maximal. Classical two-class separation methods such as

SVM and RLP have been extended to this multi-class case VI. EXAMPLES AND APPLICATIONS

[18], [19]. The resulting methods are call@dulticategory

SVM (M-SVM) or Multicategory RLP (M-RLP), to stress

their ability of dealing with problems involving more thamnd

classes. Multi-class linear separation problems invol¢éha

available data, and therefore approdghis computationally

more demanding than approach. For a more detailed

overview of several linear separation techniques, see [23]
If a large number of misclassified points shows up when ]

linearly separating two set®,; and R;, it probably means A A numerical example

that at least one of the two clusters corresponds to either a'he proposed identification procedure is applied to fit the

nonconvex region (which then needs to be split into convebata generated by a discontinuous PWARX system with orders

polyhedra), or nonconnected regions where the submodgl = 2 andn, = 2, ands = 4 regions. The input signal

is the same. Recall that the classification procedure groupsgenerated according to a uniform distribution prb, 5],

together all the data points that are fitted by the same affiard the noise signal from a normal distribution with zero

submodel. Efficient techniques for detecting and splitting mean and variance® = 0.2. The estimation data set contains

In this section, the performance of the proposed PWA
identification procedure is demonstrated on a numericahexa
ple, and on experimental data from an electronic component
placement process in a pick-and-place machine. The eféecti
use of the parametey of the procedure as a tuning knob to
trade off between model complexity and quality of fit is shown
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Fig. 11. Plot of the residuals on validation data in the nuoatrexample. Fig. 12. Identification of the mounting head: Physical model tiog

The dashed lines limit the intervit-d, §]. Spikes are due to regression vectorexperimental setup.
incorrectly classified, and to discontinuity of the PWA map.

of the model. When distinct spikes show up in the plot of the

N = 1000 data points, of which 292, 234, 361 and 113esjduals, the corresponding data points can be re-atdbu
are generated by each of the four subsystems, respectively, to the nearest region with a compatible submodel, and
The SNR is about 17. The boundis chosen equal to 1.4, the augmented data set used to re-estimate the regions.
approximately3.13c. Since the noise is normally distributed, Note that this example is quite challenging due to the high
pointwise estimates of the parameters are computed by leg$ber of parameters to be estimated with respect to the
squares. The initialization with’ = 10, Tp = 100 andp = 0.7 available data, and the high number $5%) of undecidable
prOVideS the correct numbel’: 4 of Submodels, and CIUSterSdata. The So|ution iS determined in abo‘lﬁ S by running
containing 363, 287, 229 and 121 data points, respectiVely. matlab 6.5 on a 1GHz Intel Pentium 111.
refinement procedure is run with= 10, and terminates after 5
iterations. The estimated parameter vectors after thecragmt B. A case study
are shown in Table V. At this stage, the classification of the’
data points consists of clusters with 293, 207, 365 and 101WVe apply the proposed identification procedure to model the
data points, respectively. One data point is infeasibld, @y electronic component placement process described inT22].
33 data points out of 350 are left undecidable. Then, theProcess consists of a mounting head carrying the electronic
regions are estimated by M-RLP. The final reassignment @Pmponent. The component is pushed down until it comes
the data points provides clusters with 291, 235, 360 and 1 contact with the circuit board, and then is released. A
data points. Only one data point is left infeasible. T9eT% real experimental setup consisting of a mounting head and
of the data points are correctly classified. an impacting surface simulating the printed circuit boasd,

The model is validated by computing the residuals ossed to gather the input-output data used for identification
Ny = 500 validation data. The plot of the residuals is showA Physical model of the experimental setup is shown in
in Fig. 11. They are mostly contained in the interyals, §]. Fig- 12. The mounting head is represented by the nidss
Recall that the noise follows a normal distribution, andt thdhose movement is only enabled along the vertical axis. The
§ is takena 30. Spikes are due to discontinuity of the PWASPringsc, andc, simulate elasticity. The dampeds and d,
map and to regression vectors incorrectly classified beca@$ovide linear friction, while the blockg; and f, provide
of errors in estimating the regions. For them, the wron@"y friction. The input to the system is the voltage applied
parameter vector is used to compute the prediction. Errorstp the motor driving the mounting head, represented by the
the estimation of the switching surfaces from a finite data s@rce £ in Fig. 12. The output of the system is the position of
are in general inevitable. This example shows that suchieerréle@ mounting head. The reader is referred to [22] for a more

can be detected and corrected a posteriori during the vislida detailed description of the experimental setup.
A data record over an interval df5 s is available. The

considered data set is sampled 1&0 Hz. Two modes of

TABLE V . . .
s operation are excited. In thizee mode, the mounting head
NUMERICAL EXAMPLE: TRUE (6;) AND ESTIMATED (6;) PARAMETER
VECTORS
TABLE VI
— — - - IDENTIFICATION OF THE MOUNTING HEAD: FIT BETWEEN THE MEASURED
01 01 0> 02 03 03 04 04

20.05 0.0593| 121 12008 | 1.49 14939 | 120 -1.1838 AND THE SIMULATED RESPONSES WITH THE IDENTIFIELPWARX MODELS

0.76  0.7818 | -0.49 -0.4957| -0.50 -0.4995| -0.72  -0.7275
1.00 1.0081| -0.30 -0.3007| 0.20 0.2115| 0.60 0.5716 -
050 05054 | 0.90 0.035| -045 -0.4481| -0.70 -0.7013 s=1 s=2 5=3 s=4
-0.50 -0.4782| O 0.0242 | 1.70 1.7451 | 2.00 1.8076 FIT | 78.22% | 81.33% | 90.18% | 93.48%
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Fig. 13. Data sets used for estimation (top) and validatiaitm) in the Fig. 14. Identification of the mounting head: Plot of the resid on
identification of the mounting head. The solid and the dashess Irepresent validation data using the identified PWARX model with= 4 discrete modes.
the system output and the scaled input, respectively. The dashed lines limit the intervi-4, d].

moves unconstrained,e. without being in contact with the estimation data set (upper plot of Fig. 13), all significant
impacting surface. In thémpact mode, the mounting headtransitions of the output from low to high values show an
moves in contact with the impacting surface. Input-outtad overshoot. Consequently, an overshoot shows up in the simu-
used for identification and validation are plotted in Fig. 13ated responses on the intervadif), 140) and (210, 240), that
Nonlinear phenomena due to dry friction damping are evideate both generated by the same sequence of affine submodels,
in both data setse.g, in the upper plot of Fig. 13 on theand are caused by large variations of the input signal. It is
interval (500, 750). A PWARX model structure with orders interesting to note that the identified model witk= 4 discrete

n, = 2 andn, = 2 is considered. By choosing = 0.06, modes is able to reproduce very faithfully the peak in the
d = 0.05, andé = 0.04, models withs = 2, s = 3, ands =4 interval (60, 140). The discrete mode evolution in Fig. 15(left)
discrete modes, respectively, are identified frdfm= 1000 clearly shows that one of the two submodels is active in
estimation data. For completeness, also a single ARX modsgtuations of high incoming velocity of the mounting head
with the same model orders is identified. For= 3 and (i.e. rapid transitions from low to high values of the mounting

s =4, M-RLP linear separation techniques are applied in thead position). One submodel modelling the same situasion i
region estimation step in order to avoid “holes” in the gami.  also present in the identified models with= 3 ands = 4
Validation is then carried out by evaluating the fit betweegiscrete modes.

the measured and the simulated responses uSing= 400 For completeness, the plot of the residuals on validation
validation data. By lettingy = (y1,...,yn,) be the vector of data using the identified PWARX model with= 4 discrete
system outputsy the mean value of, andy = (91,...,9~,) modes is shown in Fig. 14. Note that the residuals are mostly
the vector of simulated outputs, the values of the followingontained in the intervdl-4, 5], although the bound on the
measure of fit [28]: error cannot be guaranteed on data not used for estimation.
|y — vl
FIT =100 (1 ly — g|) % (26) VII. CONCLUSIONS

are shown in Table VI for the four identified models. These In this paper, a novel procedure for the identification of
values demonstrate that the fit improves as the number RVARX models from input-output data has been presented
submodels increasese. as smaller and smaller values &f and discussed. The key approach is the selection of a bdund
are chosen in the identification procedure. We stress thmat the identification error, that enables one to addresslsimu
ARX models are also identified for all combinations of théaneously the three issues of data classification, paramete

model ordersn, = 1,...,20 andn;, = 1,...,20. The best estimation and estimation of the number of submodels via
value of the fit obtained on validation datads80.00% for the solution of the MIN PFS problem for a suitable set of
ne = 2 andn;, = 18. linear inequalities derived from data. A refinement procedu

In Fig. 15, the plots of the simulated responses are graphiiproves both data classification and parameter estimatjon
cally compared to the measured response. Fig. 15(leftjlgleaalternating between data point reassignment and parameter
shows that two affine submodels are not sufficient for accupdate. In this phase, outliers may be detected and distarde
rately reproducing the system dynamics. Very good accaalaras well as the ambiguity concerned with undecidable data
between the measured and the simulated responses is inspeats may be solved. The final step is the estimation of the
obtained withs = 3 and s = 4 submodels. Difficulties of partition of the regressor set, that is carried out by résprt
the identified models in reproducing the nonlinear phen@meto either two-class or multi-class linear separation tépines.
on the interval(210,240) are likely to be due to incomplete The performance of the proposed identification procedutie wi
information provided by the estimation data. Indeed, in thespect to noise, overestimated model orders and classifica
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Simulation results for the mounting head using thatiled PWARX models withs = 2 (left), s = 3 (center), ands = 4 (right) discrete modes.

Top: Simulated output (solid line) and system output (dadime). Bottom: Evolution of the discrete mode.

accuracy is analyzed in the recent comparison papers Y], [ [4]

through extensive testing.
Current research concerns the possibility to include

the identification procedure the a priori knowledge on the
system to be identifiede(g, saturations, thresholds, dead-

zones, Wiener or Hammerstein structures), as well as

identify submodels of different orders for each discretedmo

J.-N. Lin and R. Unbehauen, “Canonical piecewise-lmapproxima-
tions,” IEEE Transactions on Circuits and Systems — |: Fundamental
Theory and Applicationsvol. 39, pp. 697-699, Aug. 1992.

L. Breiman, “Hinging hyperplanes for regression, cléisation, and
function approximation,”IlEEE Transactions on Information Theory
vol. 39, pp. 999-1013, May 1993.

] A. Bemporad, G. Ferrari-Trecate, and M. Morari, “Obséility and

Techniques for efficiently detecting and handling non-esnv [7]
regions, or non-connected regions where the parametesrvect

is the same, are also currently investigated.

(8]

An interesting issue would be to define suitable criteria for

validating the identified PWA models. Classical criterikeli

residual analysis and whiteness tests could be not satisfe{?:]
tory for this class of models. Since the switching surfaces
cannot be determined exactly from a given finite estimatidt’]
data set, even small errors in estimating the boundaries of
the regions might determine large residuals, if the system
dynamics is discontinuous. In this respect, it would be al$b!l
useful to provide bounds on the errors when reconstructing
the regions. Experiment design and order selection are othe)

issues of interest. In particular, the choice of the inpghal

for identification should be such that not only all the aﬁinﬁ3]

dynamics are sufficiently excited, but also accurate slyapfn
the boundaries of the regions is possible.
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