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Abstract— This paper proposes a three-stage procedure for
parametric identification of PieceWise affine AutoRegressive
eXogenous (PWARX) models. The first stage simultaneously clas-
sifies the data points and estimates the number of submodels and
the corresponding parameters by solving the MIN PFS problem
(Partition into a MINimum Number of Feasible Subsystems) for
a suitable set of linear complementary inequalities derived from
data. Second, a refinement procedure reduces misclassifications
and improves parameter estimates. The third stage determines
a polyhedral partition of the regressor set via two-class or
multi-class linear separation techniques. As a main feature, the
algorithm imposes that the identification error is bounded by a
quantity δ. Such a bound is a useful tuning parameter to trade
off between quality of fit and model complexity. The performance
of the proposed PWA system identification procedure is demon-
strated via numerical examples and on experimental data from
an electronic component placement process in a pick-and-place
machine.

Index Terms— Nonlinear identification, piecewise affine autore-
gressive exogenous models, bounded error, MIN PFS problem.

I. I NTRODUCTION

When linear models are not appropriate for describing
accurately the dynamics of a system, nonlinear identification
must be employed. Several nonlinear model structures have
been considered and their properties investigated in the lit-
erature, see,e.g., the survey papers [1], [2], and references
therein. This paper focuses on the problem of identifying
PieceWise Affine (PWA) models of discrete-time nonlinear
and hybrid systems from input-output data. PWA systems are
obtained by partitioning the state and input set into a finite
number of polyhedral regions, and by considering linear/affine
subsystems sharing the same continuous state in each region
[3]. In other words, the state and output maps of a PWA
system are both piecewise affine. PWA models represent an
attractive model structure for system identification. Thanks to
the universal approximation properties of PWA maps [4], [5],
PWA models form a nonlinear black-box structure,i.e.a model
structure that is prepared to describe virtually any nonlinear
dynamics [1]. In addition, given the equivalence between PWA
systems and several classes of hybrid systems [6], [7], PWA
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system identification is useful for estimating hybrid models
from data.

The identification of a PWA model involves the estimation
of the parameters of the affine submodels and the hyperplanes
defining the partition of the state and input set (or the re-
gressor set, for models in regression form). This issue clearly
underlies a classification problem, namely each data point
must be associated to the most suitable submodel. As long as
partitioning is concerned, two alternative approaches canbe
distinguished:1) the partition is fixed a priori;2) the partition
is estimated together with the submodels. In the first case, data
classification is very simple, and estimation of the submodels
can be carried out by resorting to standard linear identification
techniques. In the second case, the regions are shaped to the
clusters of data, and the strict relation among data classifi-
cation, parameter estimation and region estimation makes the
identification problem very hard to cope with. The problem is
even more complicated when also the number of submodels
must be estimated. A number of approaches dealing with the
estimation of PWA models of nonlinear dynamical systems can
be found in different fields, such as neural networks, electrical
networks, time-series analysis, function approximation.See
[8] for a nice overview and classification. Recently, novel
contributions to this topic have been proposed in both the
hybrid systems and the nonlinear identification communities.
In [9] PieceWise affine ARX (PWARX) models are considered
and the combined use of clustering, linear identification, and
pattern recognition techniques is exploited in order to identify
both the affine submodels and the polyhedral partition of
the regressor set. In [10] the authors propose an algebraic
geometric solution to the identification of PieceWise Linear
(PWL) models which establishes a connection between PWL
system identification, polynomial factorization, and hyperplane
clustering. [11] describes an iterative algorithm that sequen-
tially estimates the parameters of the model and classifies
the data through the use of adapted weights. In [12] the
identification problem is formulated for two subclasses of
PWA models, namely Hinging Hyperplane ARX (HHARX)
and Wiener PWARX (W-PWARX) models, and solved via
mixed-integer linear or quadratic programs.

In this paper, a different approach inspired by ideas from
set-membership identification (see [13], [14] and references
therein) is proposed. The main feature is to impose that the
identification error is bounded by a given quantityδ for all
the samples in the estimation data set. In order to meet this
condition, the estimation of the number of submodels, data
classification and parameter estimation are performed simul-
taneously by partitioning a suitable set of linear complemen-



tary inequalities derived from data into a minimum number
of feasible subsystems (MIN PFS problem). A suboptimal
solution to the MIN PFS problem (which is an NP-hard
problem) is obtained by applying a modified version of the
greedy algorithm proposed in [15]. A refinement procedure
is also employed in order to reduce misclassifications and
to improve parameter estimates. Region estimation is lastly
performed via two-class [16], [17], or multi-class [18], [19],
linear separation techniques. The boundδ is used as a tuning
knob to trade off between quality of fit and model complexity:
The largerδ, the smaller the required number of submodels
at the price of a worse fit of the data. Another interesting
feature of the approach is that a set of feasible parameters can
be associated to each submodel according to the bounded-
error condition, thus allowing the evaluation of the related
parametric uncertainty [13].

Preliminary versions of the proposed identification tech-
nique appeared in [20], [21]. The present version contains
further new material, including improvements of the greedy
algorithm used to initialize the identification procedure,and a
way to associate undecidable data points to submodels by a
suitable reassignment in the classification process. In addition,
a case-study is presented, where the identification technique is
tested on real data from the electronic component placement
process in a pick-and-place machine [22].

II. PROBLEM STATEMENT

Given a discrete-time nonlinear dynamical system with
input uk ∈ R

p, output yk ∈ R, and possibly discontinuous
dynamics, letuk−1 andyk−1 be, respectively, past inputs and
outputs generated by the system up to timek− 1. A PWARX
model establishes a relationship between past observations
(uk−1,yk−1) and future outputsyk in the form

yk = f(xk) + εk , (1)

where εk ∈ R is the error term,xk ∈ R
n is the regression

vector with fixed structure depending only on pastna outputs
andnb inputs:

xk = [ yk−1 . . . yk−na
u′

k−1 . . . u′
k−nb

]′ (2)

(hence,n = na + p · nb), andf : X → R is the PWA map:

f(x) =











ϕ′θ1 if x ∈ X1

...
...

ϕ′θs if x ∈ Xs ,

(3)

which is defined over the regressor setX ⊆ R
n where the

PWARX model is valid. In (3),s is the number of submodels
(or discrete modes),ϕ is the extended vectorϕ = [ x′ 1]′,
and θi ∈ R

n+1, i = 1, . . . , s, are the parameter vectors of
each affine ARX submodel. The regionsXi form a complete
partition of X (i.e.

⋃s

i=1 Xi = X andX ◦
i

⋂

X ◦
j = ∅, ∀ i 6= j,

whereX ◦
i denotes the interior ofXi), and are assumed to be

convex polyhedra, described by

Xi =
{

x ∈ R
n : Hi ϕ � 0

}

, (4)

where Hi ∈ R
qi×(n+1), i = 1, . . . , s, and “�” denotes

componentwise inequality. Since the PWA map (3) is not

assumed to be continuous, with definition (4)f could be multi-
valued over common boundaries of the regionsXi. This issue
can be easily overcome by making some of the inequalities
strict in the definitions of the polyhedraXi.

Remark 1: In (4), qi is the number of linear inequalities
defining the i-th polyhedral region. As will be clarified in
Section V,qi ≤ s − 1 in the identified model. �

The identification of a PWARX model (1)-(4) from a finite
data set(yk,xk), k = 1, . . . , N , is a very complex problem
involving data classification and the estimation ofs, {θi}

s

i=1

and{Xi}
s

i=1. When the number of discrete modess is fixed,
the problem amounts to the reconstruction of the PWA mapf ,
and identification can be in principle carried out by minimizing
with respect toθi andHi, i = 1, . . . , s, the cost function

VN (θi,Hi) =
1

N

N
∑

k=1

ℓ
(

yk − f(xk)
)

, (5)

whereℓ is a given error penalty function, such asℓ(ε) = ε2, or
ℓ(ε) = |ε|. Note that, if the regionsXi, i = 1, . . . , s, are fixed
a priori andℓ(ε) = ε2, the minimization of (5) is carried out
only with respect toθi, i = 1, . . . , s, and reduces to ordinary
least-squares. When bothθi and Hi, i = 1, . . . , s, must be
estimated, the problem is in general nonconvex, and hence
much harder to solve. If the numbers of submodels must
be also estimated, the optimization problem should include
additional terms in the objective and/or additional constraints
(e.g., bounds ons), in order to limit the number of submodels
and avoid overfit. Several heuristic and suboptimal approaches
that are applicable, or at least related, to the identification of
PWARX models, have been proposed in the literature (see
[8] for an overview). Most of them look for good suboptimal
solutions of the minimization of (5), except the one in [12],
where the global optimum can be attained for two subclasses
of PWA models by reformulating the problem as a mixed
integer linear or quadratic program. As regards the number
of submodels, most approaches either assume a fixeds, or
adjusts iteratively (e.g., by adding one submodel at a time)
until the quality of fit is acceptable.

Inspired by ideas from set-membership identification (see
[13], [14] and references therein), the approach presentedin
this paper is based on imposing a boundδ > 0 on the error
term εk in (1) for all the samples in the estimation data set.
Feasible solutions of the identification problem are thus all
PWARX models (1)-(4) satisfying

|yk − f(xk)| ≤ δ , ∀ k = 1, . . . , N , (6)

for the given δ > 0. The focus here is on providing a
particular feasible solution. Since the numbers of submodels
is neither assumed to be known, nor fixed a priori, in order
to obtain a model which is as simple as possible (where
“simplicity” is measured in terms of the number of submodels)
the minimums allowing to satisfy (6) is sought. Hence, the
considered identification problem is as follows:

Problem 1: Given N data points(yk,xk), k = 1, . . . , N ,
and δ > 0, estimate a minimum positive integers, a set of
parameter vectors{θi}

s

i=1, and a polyhedral partition{Xi}
s

i=1



δ

Raw classification and

estimation via MIN PFS

(Algorithms 1 and 2)

data
(yk,xk)

(Algorithm 3)

Refinement

s, {Di}
s
i=1

s, {θi}
s
i=1

{Di}
s
i=1

{Xi}
s
i=1

Region
estimation
(Section V)

PWARX
model

Fig. 1. Flow diagram of the proposed PWA identification procedure. The
boxes correspond to the procedure steps, and the labels on the edges describe
the inputs and the outputs of each step.

of the regressor setX , such that the corresponding PWARX
model (1)-(4) satisfies condition (6).

Note that solving Problem 1 involves to classify the avail-
able data points into clusters{Di}

s

i=1 such that(yk,xk) ∈ Di

if and only if (yk,xk) is attributed to thei-th mode.
The procedure proposed in this paper to solve Problem 1

consists of three steps:
1) Raw classification and estimation via MIN PFS. Data

classification and parameter estimation are carried out
simultaneously, together with the estimation of the num-
ber of submodels, by partitioning a suitable set of linear
inequalities derived from data into a minimum number
of feasible subsystems (MIN PFS problem).

2) Refinement. Misclassifications are reduced and parame-
ter estimates are improved through an iterative procedure
alternating between data reassignment and parameter
update.

3) Region estimation. The clusters of regression vectors
are linearly separated via two-class or multi-class linear
separation techniques.

The first two steps will be described in Sections III and
IV. Region estimation will be addressed in Section V. A flow
diagram clarifying the links between the three steps is shown
in Fig. 1.

It is worthwhile to point out that the boundδ is not
necessarily given a priori, rather it is used as a tuning knobof
the identification procedure. As discussed in Section III-C, δ
can be adjusted in order to find the desired trade off between
model complexity and quality of fit, because the smallerδ, the
larger is typically the number of submodels needed to fit the
data to a PWA map (3), while on the other hand, the largerδ,
the worse is the quality of fit, since larger errors are allowed.
The case of different bounds for each data point can be always
cast into (6) by suitably scaling the data.
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Fig. 2. Affine subsystems, partition of the regressor set, andavailable data
points in Example 1.

In the following, pointwise parameter estimates will be
computed through theℓ∞ projection estimator [13]. Given a
set D of data points(yk,xk), the ℓ∞ projection estimate is
defined as:

φp(D) = arg min
θ

max
(yk,xk)∈D

|yk − ϕ′
kθ| , (7)

whereϕk = [ x′
k 1 ]′. Problem (7) can be solved via linear

programming. Theℓ∞ projection estimate is preferred because
it has favorable properties in the refinement procedure, as
shown in Section IV-A. However, it can be replaced by any
other projection estimate, such as least squares.

Remark 2:Problem 1 can be easily extended to multi-
output models (or models in state-space form for which the
whole state is measurable). In this case, the output of the
system isyk ∈ R

q, the PWA mapf is a q-valued function,
and (6) is replaced by:

‖yk − f(xk)‖∞ ≤ δ , ∀ k = 1, . . . , N . (8)

The approach to the solution of Problem 1 presented in this
paper is also applicable to the caseq > 1, provided that small
amendments to the procedures described in Sections III and
IV are introduced. The reader is referred to [23] for a detailed
description. �

The following example will be used throughout the paper
to clarify the different steps of the identification procedure.

Example 1:Let N = 200 data points(yk,xk) be generated
by the following PWARX system [20]:

yk =

8>>>><>>>>: −0.4yk−1 + uk−1 + 1.5 + ek if 4yk−1 − uk−1 + 10 < 0

0.5yk−1 − uk−1 − 0.5 + ek if 4yk−1 − uk−1 + 10 ≥ 0
and5yk−1 + uk−1 − 6 ≤ 0

−0.3yk−1 + 0.5uk−1 − 1.7 + ek if 5yk−1 + uk−1 − 6 > 0 .

wherexk = [ yk−1 uk−1 ]′. The number of modes is̃s = 3.
The input signaluk and the noise signalek are uniformly
distributed on[−4, 4] and on[−0.2, 0.2], respectively. The data
points available for estimation are shown in Fig. 2. From left
to right,54, 83 and63 data points were respectively generated
by the three affine subsystem.

III. R AW CLASSIFICATION AND ESTIMATION VIA MIN PFS

For the moment, let us not address the estimation of the
hyperplanes defining the polyhedral partition of the regressor



set, and focus our attention on determining a suitable number
of submodels, classifying the data points, and estimating the
affine submodels. In view of condition (6), this is accom-
plished by solving the following problem.

Problem 2: Given δ > 0, find the smallest numbers of
vectorsθi, i = 1, . . . , s, and a mappingk  i(k) such that
|yk − ϕ′

kθi(k)| ≤ δ for all k = 1, . . . , N .
Problem 2 consists in finding aPartition of the system of

linear complementary inequalities:

|yk − ϕ′
kθ| ≤ δ , k = 1, . . . , N , (9)

into a Minimum number ofFeasible Subsystems(MIN PFS
problem). Given any solution of Problem 2, the partition of
the linear complementary inequalities (9),i.e. the mapping
k  i(k), provides the classification of the data points,
whereas according to the bounded error condition each feasible
subsystem defines the set of feasible parameter vectors for the
corresponding affine submodel [13]. Note that each inequality
in (9) is termed alinear complementaryinequality because it
corresponds to the pair of linear inequalities:

{

ϕ′
kθ ≤ yk + δ

ϕ′
kθ ≥ yk − δ .

(10)

The MIN PFS problem is NP-hard. Hence, in [20] Prob-
lem 2 was tackled by resorting to the greedy randomized
algorithm proposed in [15]. The basic idea of the algorithm
is to find a vectorθ that makes the inequalities in (9) true for
as manyk as possible (MAX FS problem), then remove those
satisfied inequalities and repeat over the remaining ones, until
all inequalities have been accounted for. In the following,a
modified version of the algorithm [15] is proposed in order to
obtain a numbers of feasible subsystems which is typically
closer to be minimal.

A. A greedy algorithm for the MIN PFS problem

The greedy approach [15] to the MIN PFS problem divides
the overall partition problem into a sequence of MAX FS
subproblems, each one consisting in finding a vectorθ that
satisfies the maximum number of linear complementary in-
equalities of the system at hand. Starting from (9), feasible
subsystems of maximum cardinality are iteratively extracted
(and the corresponding inequalities removed), until the remain-
ing subsystem is feasible.

Finding aFeasible Subsystemof MAXimumcardinality of
a system of linear complementary inequalities (MAX FS
problem) is still an NP-hard problem [24], [25], [26]. Thus,a
randomized and thermal relaxation method providing (subop-
timal) solutions with a limited computational burden is also
proposed in [15].

However, due to both the suboptimality of the greedy
approach to the MIN PFS problem and the randomness of the
algorithm for the MAX FS problem, the greedy randomized
algorithm [15] is not guaranteed to find the minimum number
of feasible subsystems. In particular, it has been observedin
extensive trials that both the variance of the results may be
quite large (i.e. the number of extracted subsystems may differ
considerably from trial to trial), and the average number of

TABLE I

MODIFIED GREEDY ALGORITHM FOR THEMIN PFS PROBLEM WITH

COMPLEMENTARY INEQUALITIES

Algorithm 1
Let I1 =

�
1, . . . , N

	
andℓ = 0

REPEAT

Let ℓ = ℓ + 1 andΣℓ =
�
|yk − ϕ′

k
θ| ≤ δ : k ∈ Iℓ

	
Find a solutionθℓ to the MAX FS problem forΣℓ (Algorithm 2)
Let i = 1
WHILE i < ℓ

Let Kiℓ =
�
k ∈ Ii : |yk − ϕ′

k
θℓ| ≤ δ

	
IF #Kiℓ > #Ki THEN let θi = θℓ andℓ = i
Let i = i + 1

END WHILE

Let Kℓ =
�
k ∈ Iℓ : |yk − ϕ′

k
θℓ| ≤ δ

	
andIℓ+1 = Iℓ\Kℓ

UNTIL Iℓ+1 = ∅
RETURN s = ℓ andKi, i = 1, . . . , s

extracted subsystems may be rather far from the minimum
(see Example 2).

Based on the above discussion, the algorithm in [15] has
been modified as shown in Table I, where#A denotes the
cardinality of a finite setA, andA\B denotes the difference
of two setsA andB. The enhanced algorithm differs from the
original version for the addition of theWHILE loop. LetΣℓ be
the system consisting of the remaining inequalities after having
extractedℓ − 1 feasible subsystems from (9), and letθℓ be a
(suboptimal) solution of the MAX FS problem for systemΣℓ

(see Algorithm 2 in Table II). The solutionθℓ is applied to
the systemsΣi with i < ℓ (WHILE loop). Note thatΣℓ is a
subsystem ofΣi for all i < ℓ, so thatθℓ satisfies at least as
many complementary inequalities inΣi as inΣℓ. Let i∗ be the
smallest indexi, if any, such thatθℓ satisfies a larger number
of complementary inequalities inΣi than those satisfied byθi.
Then, the best solutionθi∗ for systemΣi∗ is set equal toθℓ,
andℓ is reset toi∗. Since the number of data points is finite,
the algorithm terminates in a finite number of steps.

Improvements obtained by the proposed modification to
the original algorithm are twofold. First, the cardinalities of
successively extracted subsystems are not increasing, as one
would expect if all MAX FS problems were solved exactly.
Second, it favors the construction of subsystems with larger
cardinality (e.g., by making it possible to merge subsystems of
complementary inequalities that might be satisfied by the same
parameter vector, but were extracted at different MAX FS
iterations due to the suboptimality of Algorithm 2). The
second improvement is also pursued by suitably modifying
the algorithm for the MAX FS problem in [15], as will be
described in the next subsection.

B. A relaxation algorithm for the MAX FS problem

Given a system of complementary inequalities like (9), the
problem of finding a vectorθ that makes the inequalities true
for as manyk as possible, is an extension of the combinatorial
problem of finding a feasible subsystem of maximum cardi-
nality of an infeasible system of linear inequalities, which is
known as MAX FS problem. Since the MAX FS problem
is NP-hard, its extension with complementary inequalitiesis



TABLE II

MODIFIED RANDOMIZED AND THERMAL RELAXATION ALGORITHM FOR

THE MAX FS PROBLEM WITH COMPLEMENTARY INEQUALITIES

Algorithm 2
GIVEN : C > 0, T0 > 0, θ(0) ∈ R

n+1, ρ ∈ (0, 1)
Let j = 0, θbest = θ(0) andIbest =

�
k ∈ Iℓ : |yk − ϕ′

k
θbest| ≤ δ

	
FOR c = 0 TO C − 1 DO

Let I = Iℓ andT = (1 − c/C)T0

REPEAT

Let j = j + 1
Pick an indexk from I according to the prescribed rule
Computevk

j andλj

Updateθ(j) and letI(j) =
�
k ∈ Iℓ : |yk − ϕ′

k
θ(j)| ≤ δ

	
IF #I(j) > #Ibest THEN let θbest = θ(j) andIbest = I(j)

Let I = I\
�
k
	

UNTIL I = ∅
IF c > ρC THEN

Let D =
�
(yk,xk) : k ∈ Ibest

	
Let θbest = φp(D) andθ(j) = θbest

Let Ibest =
�
k ∈ Iℓ : |yk − ϕ′

k
θbest| ≤ δ

	
END IF

END FOR

RETURN θbest

tackled in [15] by resorting to a randomized and thermal
variant of the classical Agmon-Motzkin-Schoenberg relaxation
method for solving systems of linear inequalities. In this
section, some modifications to the original algorithm [15] are
proposed in order to get a feasible subsystem whose cardinality
is typically closer to be maximal.

The modified algorithm for the MAX FS problem with
complementary inequalities is shown in Table II. It differsfrom
the original version for the addition of the finalIF statement.
The algorithm requires to define a maximum number of cy-
clesC > 0, an initial temperature parameterT0 > 0, an initial
estimateθ(0) ∈ R

n+1 (e.g., randomly generated or computed
through least squares), and a coefficientρ ∈ (0, 1). It consists
in a simple iterative procedure generating a sequenceθ(j) of
estimates, wherej = 1, . . . , CNℓ is the iteration counter, and
Nℓ is the number of complementary inequalities of the current
subsystemΣℓ of (9) (see Algorithm 1 in Table I). During each
of the C outer cycles, all theNℓ complementary inequalities
of Σℓ are selected in the order defined by a prescribed rule
(e.g., cyclicly or uniformly at random without replacement).
If k is the index of the complementary inequality considered
at iterationj, the current estimate is updated as follows:

θ(j) = θ(j−1) − sign(vk
j )λj ϕk, (11)

wherevk
j is the violation of thek-th complementary inequality:

v
k
j =

8><>: ϕ′
kθ(j−1) − yk − δ if ϕ′

kθ(j−1) > yk + δ

ϕ′
kθ(j−1) − yk + δ if ϕ′

kθ(j−1) < yk − δ

0 otherwise,

(12)

and the step sizeλj decreases exponentially with
∣

∣vk
j

∣

∣:

λj =
T

T0
exp

−

∣

∣vk
j

∣

∣

T . (13)

Geometrically, the inequality|yk − ϕ′
kθ| ≤ δ defines a

θ(j−1)

θ(j) = θ(j−1) − λjϕk

ϕ′
kθ = yk − δ ϕ′

kθ = yk + δ
ϑ1

ϑ2

Fig. 3. Geometric interpretation in the parameter space of a single iteration
of the relaxation algorithm for the MAX FS problem with complementary
inequalities (θ ∈ R

2).

hyperstrip in the parameter space (see Fig. 3). If the cur-
rent estimateθ(j−1) belongs to the hyperstrip (i.e. θ(j−1)

satisfies thek-th complementary inequality), thenθ(j) is set
equal to θ(j−1). Otherwise,θ(j) is obtained by making a
step toward the hyperstrip along the line orthogonal to the
hyperstrip and passing throughθ(j−1). The basic idea of the
algorithm is to favor updates of the current estimate which
aim at correcting unsatisfied inequalities with a relatively small
violation. Decreasing attention to unsatisfied inequalities with
large violations (whose correction is likely to corrupt other
inequalities that the current estimate satisfies) is obtained by
introducing the decreasing temperature parameterT to which
the violations are compared.

If the cycle counterc is greater thanρC (last IF statement),
the current best solutionθbest (i.e. the one that has satisfied
the largest number of complementary inequalities so far), is
replaced by theℓ∞ projection estimate (7). More precisely,
denoting byD the set of data points(yk,xk) such that the
corresponding inequality|yk − ϕ′

kθ| ≤ δ is in Σℓ and is
satisfied by the currentθbest (θold in the following), θbest is
updated as follows:

θbest = arg min
θ

max
(yk,xk)∈D

|yk − ϕ′
kθ| . (14)

The new θbest satisfies at least as many complementary
inequalities inΣℓ asθold, since:

max
(yk,xk)∈D

|yk −ϕ′
kθbest| ≤ max

(yk,xk)∈D
|yk −ϕ′

kθold| ≤ δ , (15)

and could possibly satisfy more complementary inequalities
than θold, thus providing a better solution of the MAX FS
problem for systemΣℓ. It was found experimentally that
suitable values forρ lie between0.7 and 0.8. Indeed, the
current solutionθ(j) (and hence the number of satisfied com-
plementary inequalities ofΣℓ) would not change significantly
as c approachesC, because the temperature parameterT
to which the violations are compared becomes smaller and
smaller. By resettingθ(j) to the current best solution (14) at
the exit of a cycle whenc approachesC, one focuses the future
search in a neighborhood ofθbest, where it is more likely
to satisfy a larger number of complementary inequalities.
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Fig. 4. Results of the application of the original and the modified version
of the randomized greedy algorithm for the MIN PFS problem in Example 2.
Top: Frequency of the number of extracted feasible subsystems. Bottom:
Average cardinality of the extracted feasible subsystems.

The solutionθbest returned by the algorithm is the one that,
during the overall process, has satisfied the largest numberof
complementary inequalities. It is however not guaranteed to
be optimal, due to the randomness of the search.

For the choice ofT0, the reader is referred to [15]. In
general, the larger the value ofC, the better the solution, at
the price of a longer computation time. Typical good choices
for C areC = 10 ÷ 20 [23].

Example 2: In order to show the improvements of the mod-
ified randomized greedy algorithm for the MIN PFS problem
(Table I and Table II) with respect to the original version [15],
the two algorithms are applied to a system of complementary
inequalities derived fromN = 1000 data points generated
by a PWARX system with ordersna = 2 and nb = 2,
s̃ = 4 submodels, and zero-mean gaussian noise with variance
σ2 = 0.2. M = 1000 independent runs of the two algorithms
are carried out with the same choice of the parametersC = 10,
T0 = 100 and δ = 1.4 = 3.13σ. In addition, ρ = 0.7 is
used in the modified algorithm. The frequency of the number
of extracted feasible subsystems and their average cardinality
over theM trials are computed for both algorithms. The results
are shown in Fig. 4. The original algorithm extracts a number
of feasible subsystems varying between 12 and 22 over the
M trials. The average is 18 subsystems, which is very far
from the minimum, namelỹs = 4. Moreover, the variance
of the results is quite large. On the other hand, the modified
algorithm extracts an average number of 5 feasible subsystems,
with the number of feasible subsystems varying between 4
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Fig. 5. Initial classification of the regression vectors in Example 1. Each
mark corresponds to a different cluster, for a total of three clusters. From
left to right, the three clusters consist of51, 87 and62 points, respectively.
The dashed lines represent the true partition of the regressor set, which is
unknown during the identification process.

and 7 over theM trials. In addition, the average cardinality
of the subsystems extracted after the fourth one is less than
the 0.3% of the total number of complementary inequalities.
These subsystems, that account for very few data points, can
be easily discarded (this issue is addressed in Section IV-B). It
is clear from Fig. 4(bottom) that the better performance of the
modified algorithm is due to the fact that it is able to extract
feasible subsystems of larger cardinality in the first iterations.
On the contrary, after extracting some large subsystems, the
original algorithm starts to extract many small subsystems.
It is worthwhile to note that the average computation time
was 7.53 sec for the original algorithm and6.35 sec for the
modified algorithm by running Matlab 6.5 on a 1GHz Intel
Pentium III.

Example 1 (cont’d): The initialization of the identification
procedure providess = 3 submodels for the given data set
with the choiceδ = 0.2 (equal to the true bound on the
noise). The other parameters of the greedy algorithm are
C = 10, T0 = 100, ρ = 0.7, and cyclic selection of the
complementary inequalities is used. Note that the estimated
number of submodels equals the true one. The corresponding
three clusters of regression vectors are shown in Fig. 5,
where some data points marked with circles clearly look as
misclassified. They areundecidabledata points (i.e. consistent
with more than one submodel), that have been associated by
the greedy strategy to the compatible submodel corresponding
to the largest feasible subsystem extracted from (9).

C. On the choice ofδ

For too large values ofδ, very large subsystems of (9) are
feasible, and beyond a certain value the whole system (9)
becomes feasible, which corresponds to fitting a linear model
to the data set. Hence, for largeδ the identified PWARX model
is simple because it contains very few affine submodels, but
the submodels do not fit well the corresponding data points, as
large errors are tolerated. Conversely, small values ofδ may
lead to a very large number of subsystems. In this case overfit
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Fig. 6. Number of submodels (top) and average quadratic error (bottom)
versus the error boundδ in Example 3.

may occur,i.e. the model starts to adjust to the particular noise
realization.

When a priori information on the system structure and the
noise characteristics is not available, an appropriate value
of δ can be selected by solving Problem 2 for different
values ofδ. Given the limited computational burden of the
randomized greedy algorithm for the MIN PFS problem, the
curves expressing the number of feasible subsystems of (9)
and the average quadratic error:

S2
2 =

1

N

s
∑

i=1

∑

k∈Ki

|yk − ϕ′
kθi|

2 (16)

as a function ofδ, can be easily plotted. Typically, whenδ
increases starting from a very small value, the number of
feasible subsystems decreases first sharply, and then more
smoothly after a certain value ofδ. Conversely, the average
quadratic error increases withδ. An appropriate value ofδ
should be chosen close to the knee of the first curve, trying
to keep the average quadratic error small, as shown in the
following example.

Example 3:N = 500 data points generated by a PWARX
system composed bỹs = 4 subsystems with ordersna = 1
and nb = 1, are considered. The additive noise is normally
distributed with zero mean and varianceσ2 = 0.1, and the
signal-to-noise ratio is about 10. The number of feasible
subsystems of (9), and the corresponding average quadratic
error are plotted as a function ofδ in Fig. 6. For values ofδ
below 0.9 (≃ 2.85σ), the average quadratic error is small, but
the large number of submodels clearly indicates overfit of the
data. For values ofδ between 0.9 and 1.9 (≃ 6σ), the number

of submodels remains constant and equal to the true number
s̃ = 4, whereas the average quadratic error grows moderately
with δ. For values beyondδ = 6, system (9) becomes feasible,
and only one submodel is sufficient. It is clear in Fig. 6 that the
best trade-off between model accuracy and model complexity
is achieved in this example forδ ranging from 0.9 to 1.1.

IV. REFINEMENT

The raw classification and estimation step described in
Section III returns an estimates of the number of submodels,
and the sets of indicesKi, i = 1, . . . , s, characterizing the
s feasible subsystems extracted from (9). These provide the
initial classification of theN data points(yk,xk) into the s

clustersD(0)
i =

{

(yk,xk) : k ∈ Ki

}

, i = 1, . . . , s.
Such estimate of the number of affine submodels and

classification of the data points may suffer two drawbacks.
The major one is that it is not guaranteed to yield minimum
partitions, i.e. due to both the suboptimality of the greedy
approach and the randomness of the algorithm used to tackle
each MAX FS problem, the numbers of feasible subsystems
extracted from (9) might be not minimal. The second drawback
is related to a kind of ambiguity that is inherent with the data.
Some data points may be consistent with more than one affine
submodel,i.e. they may satisfy|yk −ϕ′

kθi| ≤ δ for more than
one i = 1, . . . , s. These data points are termedundecidable.
Due to the undecidable data points, the cardinality and the
composition of the feasible subsystems could depend on the
order in which they are extracted from (9), as shown in
Example 1.

In order to cope with the above drawbacks, a procedure for
the refinement of the estimates is presented in Table III. It
consists of a basic procedure (steps 2, 4, 5 and 6) whose aim
is to improve iteratively both data classification and quality
of fit by properly reassigning the data points and updating
the parameter estimates. The basic procedure is illustrated in
Section IV-A. The additional steps 1 and 3 allow one to reduce
the number of submodels by exploiting parameter similarities
and cluster cardinalities. These are described in Section IV-B.

A. Dealing with undecidable data

As discussed above, there may exist undecidable data
points(yk,xk) that satisfy|yk −ϕ′

kθi| ≤ δ for more than one
index i. Undecidable data points could be classified correctly
only by exploiting the partition of the regressor set, whichis
however not available at this stage of the identification process.
When solving Problem 2 via the greedy strategy described in
Section III-A, undecidable data points are classified depending
on the order in which the feasible subsystems are extracted
from (9), as it was also clear in Example 1. As an alternative,
each undecidable data point(yk,xk) could be associated a
posteriori to the submodeli∗ such that the identification error
is minimized, namely:

i∗ = arg min
i=1,...,s

|yk − ϕ′
kθi| . (17)

Both criteria may lead to misclassifications when the partition
of the regressor set is estimated (see Fig. 7). Thus, in [20],



TABLE III

ALGORITHM FOR THE REFINEMENT OF THE ESTIMATES

Algorithm 3
GIVEN : α ≥ 0, β ≥ 0, γ > 0, c > 0

Let t = 1 andθ
(1)
i = φp(D

(0)
i ), i = 1, . . . , s

1) Merge submodels
Compute(i∗, j∗) = arg min

1≤i<j≤s
α

(t)
i,j , whereα

(t)
i,j = µ(θ

(t)
i , θ

(t)
j )

IF α
(t)
i∗,j∗

≤ α
THEN merge submodelsi∗ andj∗, and lets = s − 1

2) Data point reassignment
For each data point(yk,xk), k = 1, . . . , N :

• IF
��yk − ϕ′

k
θ
(t)
i

�� ≤ δ for only onei = 1, . . . , s

THEN assign(yk,xk) to D
(t)
i and mark it asfeasible

• IF
��yk − ϕ′

k
θ
(t)
i

�� ≤ δ for more than onei = 1, . . . , s
THEN mark (yk,xk) asundecidable

• OTHERWISE mark (yk,xk) as infeasible
3) Discard submodels

Computei∗ = arg min
i=1,...,s

β
(t)
i , whereβ

(t)
i = #D

(t)
i /N

IF β
(t)
i∗

≤ β
THEN discard submodeli∗, let s = s − 1 and go to step 2

4) Assignment of undecidable data points
For each undecidable data point(yk,xk):

ComputeCi(xk), i = 1, . . . , s, andi∗ = arg max
i=1,...,s

#Ci(xk)

IF
��yk − ϕ′

k
θ
(t)
i∗

�� ≤ δ

THEN assign(yk,xk) to D
(t)
i∗

and mark it asfeasible
5) Parameter update

Computeθ
(t+1)
i = φp(D

(t)
i ), i = 1, . . . , s

6) Termination
IF

θ
(t+1)
i − θ

(t)
i

 ≤ γ
θ

(t)
i

 for all i = 1, . . . , s

THEN RETURN s, θi = θ
(t+1)
i andDi = D

(t)
i , i = 1, . . . , s

ELSE let t = t + 1 and go to step 1

undecidable data points were discarded during the classifi-
cation process. Although this approach works well in many
cases, a non-negligible amount of information is lost when a
large number of undecidable data points shows up. Hence, a
modification to the classification procedure is proposed here
in order to attribute undecidable data points to submodels by
exploiting spatial localization. This improves both the data
classification (in view of the estimation of the regions) and
the parameter estimates.

Initial parameter estimates for each submodel are computed
through theℓ∞ projection estimator (7). Then, at each iteration
indexed by t = 1, 2, . . . , all data points are processed in
step 2 of the refinement procedure, and classified asfeasible,
infeasibleor undecidableaccording to the current estimated
parameter vectorsθ(t)

i , i = 1, . . . , s. A feasible data point
(yk,xk) satisfies the complementary inequality:

∣

∣yk − ϕ′
kθ

(t)
i

∣

∣ ≤ δ (18)

for only one i = 1, . . . , s, say i∗. Hence, it can be uniquely
associated to thei∗-th submodel, and assigned to the corre-
sponding clusterD(t)

i∗ . Note that the classification of the fea-
sible data points induces also a classification of the (feasible)
regression vectorsxk into the clusters

R
(t)
i =

{

xk : (yk,xk) ∈ D
(t)
i

}

, i = 1, . . . , s . (19)

x

y

τ

y = ϕ′θ1

y = ϕ′θ2

Fig. 7. PWA model with two discrete modes,x ∈ R. The gray set represents
the region of all possible undecidable data points for a fixedδ. By applying
both the greedy strategy for the MIN PFS problem and the criterion (17), the
only undecidable data point in the data set (the black circle) is attributed to
the first submodel. This yields two non-linearly separable clusters of points.

Infeasible data points do not satisfy (18) for anyi = 1, . . . , s.
If the corresponding violations are large, they are most likely
outliers and are therefore neglected. Undecidable data points
satisfy (18) for more than onei = 1, . . . , s, i.e. they are
consistent with more than one submodel.

Step 4 tries to solve the ambiguity concerned with un-
decidable data points by exploiting spatial localization in
the regressor set. The feasible points aroundxk are indeed
expected to provide useful information for correctly classifying
the undecidable data point(yk,xk). To this aim, letC(xk)
be the set of thec feasible regression vectors nearest toxk,
wherec is a fixed positive integer and the Euclidean distance
is used. If all points inC(xk) belong to the same clusterR(t)

i∗ ,
then (yk,xk) can be most likely associated to submodeli∗,
provided that also

∣

∣yk − ϕ′
kθ

(t)
i∗

∣

∣ ≤ δ (20)

is satisfied. However,C(xk) may in general contain regression
vectors from different setsR(t)

i . A candidate submodel is then
selected by computing the setsCi(xk) = C(xk)

⋂

R
(t)
i for all

i = 1, . . . , s, and the indexi∗ such that the cardinality of
Ci(xk) is maximized,i.e.

i∗ = arg max
i=1,...,s

#Ci(xk) . (21)

If (yk,xk) satisfies (20), then it is associated to thei∗-th sub-
model and assigned toD(t)

i∗ , otherwise it is left as undecidable.
Extensive tests have shown that this heuristic criterion is
very effective in reducing the number of undecidable data
points, thus improving data classification. However, it is still
conservative, because(yk,xk) is left as undecidable if (20) is
not satisfied.

New parameter estimates for each submodel are computed
in step 5 through theℓ∞ projection estimator (7). The use
of the ℓ∞ projection estimate is favorable here because it
guarantees that no feasible data point at refinementt becomes
infeasible at refinementt + 1, since for alli = 1, . . . , s:

max
(yk,xk)∈D

(t)
i

��yk−ϕ
′
kθ

(t+1)
i

�� ≤ max
(yk,xk)∈D

(t)
i

��yk−ϕ
′
kθ

(t)
i

�� ≤ δ. (22)

Good choices for the parameterc in step 4 depend on the
density of the data set. A smallc may originate setsC(xk)



which do not contain enough points for correct classification.
On the other hand, for large values ofc, a setC(xk) might
contain points distant fromxk. In this case, the data point
(yk,xk) could be badly assigned to a “far” cluster, or left
undecidable. Indeed, if many data points are still classified as
undecidable at the exit of the refinement procedure, one can
reducec, and repeat Algorithm 3. The parameterγ > 0 is the
tolerance used to check the termination condition in step 6.A
default value could beγ = 0.001.

B. Reducing the number of submodels

If the initialization procedure provides an overestimation of
the number of submodels needed to fit the data, this number
can be reduced by exploiting parameter similarities and clus-
ter cardinalities. Two submodelsi∗ and j∗ characterized by
similar parameter vectors can be merged in step 1, where

µ(θ1, θ2) =
‖θ1 − θ2‖

min{‖θ1‖, ‖θ2‖}
(23)

is used as a measure of the similarity of vectorsθ1 and θ2.
The joined parameter vector at iterationt is computed as
φp(D

(t−1)
i∗

⋃

D
(t−1)
j∗ ). Note that a large number of undecidable

data points is likely to show up in step 2 when two parameter
vectors are very close. If the cardinality of a cluster of feasible
data points is too small, the corresponding submodel (which
accounts only for few data) can be discarded in step 3.

The nonnegative thresholdsα andβ in steps 1 and 3 should
be suitably chosen in order to reduce the number of submodels
still preserving a good fit of the data. Tentative values for
α and β may be chosen after computingα(1)

i∗,j∗ and β
(1)
i∗ in

the first iteration of Algorithm 3. Ifα(1)
i∗,j∗ < 0.2, a rule of

thumb is to takeα ≃ 0.8α
(1)
i∗,j∗ . Similarly, if β

(1)
i∗,j∗ < 0.1,

one may takeβ ≃ 0.8β
(1)
i∗ . The user may also choose larger

values ofα andβ so as to impose the reduction of the number
of submodels. However, for too large values ofα and β, a
large number of infeasible data points will typically show up
as the number of submodels decreases and some significant
submodel is neglected. One can use this information in order
to adjustα andβ, and then repeat Algorithm 3.

Example 1 (cont’d): Fig. 8 shows the classification of the
regression vectors provided by the refinement procedure. The
parametersα andβ are not used (a reduction of the number
of submodels would result deleterious for the fit), and the
other parameters of the procedure areγ = 0.001 and c = 5.
The termination condition is reached after three refinements.
All data points are correctly classified, and no data point is
left undecidable or infeasible. In particular, all undecidable

TABLE IV

TRUE (θ̃i) AND ESTIMATED (θi) PARAMETER VECTORS INEXAMPLE 1

θ̃1 θ1 θ̃2 θ2 θ̃3 θ3

-0.4 -0.3961 0.5 0.5018 -0.3 -0.2989
1 0.9903 -1 -0.9980 0.5 0.5045

1.5 1.5472 -0.5 -0.4994 -1.7 -1.7072
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Fig. 8. Classification of the regression vectors (triangles, circles, diamonds)
in Example 1 after the refinement. The dashed lines represent the true partition
of the regressor set. All data points are correctly classified.

data points are correctly associated to submodels by exploit-
ing spatial localization in the regressor set (compare Fig.5
and Fig. 8). The parameter vectors estimated for the three
submodels are shown in Table IV.

V. REGION ESTIMATION

Given the clustersDi, i = 1, . . . , s, of feasible data points
returned by the refinement procedure, consider the correspond-
ing sets of regression vectors:

Ri =
{

xk : (yk,xk) ∈ Di

}

, i = 1, . . . , s . (24)

The region estimation problem consists in finding a complete
polyhedral partition

{

Xi

}s

i=1
of the regressor setX such that

Ri ⊆ Xi for all i = 1, . . . , s. The polyhedral regions (4)
are defined by hyperplanes. Hence, the problem of region
estimation is equivalent to that of separatings sets of points
by means of linear classifiers (hyperplanes). Note that a
hyperplane separating without errors the points inRi from
those inRj , i 6= j, might not exist because the setsRi andRj

have intersecting convex hulls. In this case, one will look for
a separating hyperplane that minimizes some misclassification
index.

Linear separation of thes setsR1, . . . ,Rs can be tackled
in two different ways:

a) Construct a linear classifier for each pair(Ri,Rj), with
i 6= j.

b) Construct a piecewise linear classifier which is able to
discriminate amongs classes.

In the first approach a separating hyperplane is constructed
for each pair(Ri,Rj), with i 6= j. This amounts to solve
s(s − 1)/2 two-classlinear separation problems. Redundant
hyperplanes (i.e., not contributing to the boundary of the
corresponding region) can be eliminated a posteriori through
standard linear programming techniques, so that the number
of linear inequalities defining thei-th polyhedral region is
qi ≤ s−1. Linear separation of two sets can be accomplished
by resorting to,e.g., Robust Linear Programming (RLP) [16]
or Support Vector Machines (SVM) [17] methods. Both RLP
and SVM look for a separating hyperplane of two sets that



Fig. 9. Linear separation of four sets of points: pairwise linear separation
(left) and piecewise linear separation (right). The partition on the left is not
complete (the gray area is not covered).

additionally minimizes a weighted sum of the misclassification
errors. An alternative method is to look for a separating
hyperplane that minimizes the number of misclassified points.
As detailed in [20], this is equivalent to solving a MAX FS
problem. Approacha) is computationally appealing, since it
does not involve all the data simultaneously. A major drawback
is that the estimated regions are not guaranteed to form a
complete partition of the regressor set whenn > 1, as shown
in Fig. 9(left). This drawback is quite important, since it
causes the model to be not completely defined over the whole
regressor set.

If the presence of “holes” in the partition is not acceptable,
approachb) can be employed to solve amulti-class linear
separation problem, where a piecewise-linear classifier iscon-
structed as the maximum ofs linear classification functions.
A first way [19], [27], to tackle the multi-class problem is
to compute thes linear classifiers by separating each setRi

from the union of all the others. This requires the solution
of s two-class linear separation problems. Unless each setRi

is linearly separable from the union of the remaining sets, this
approach has the drawback that multiply classified points or
unclassified points may occur, when alls classifiers are applied
to the original data set. This ambiguity is avoided by assigning
a point to the class corresponding to the classification function
that is maximal at that point. A second way to tackle the multi-
class problem is to directly constructs classification functions
such that, at each data point, the corresponding class function
is maximal. Classical two-class separation methods such as
SVM and RLP have been extended to this multi-class case
[18], [19]. The resulting methods are calledMulticategory
SVM (M-SVM) or Multicategory RLP (M-RLP), to stress
their ability of dealing with problems involving more than two
classes. Multi-class linear separation problems involve all the
available data, and therefore approachb) is computationally
more demanding than approacha). For a more detailed
overview of several linear separation techniques, see [23].

If a large number of misclassified points shows up when
linearly separating two setsRi and Rj , it probably means
that at least one of the two clusters corresponds to either a
nonconvex region (which then needs to be split into convex
polyhedra), or nonconnected regions where the submodel
is the same. Recall that the classification procedure groups
together all the data points that are fitted by the same affine
submodel. Efficient techniques for detecting and splittingthe
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Fig. 10. Final classification of the regression vectors (triangles, circles,
diamonds), and true (dashed lines) and estimated (solid lines) partition of the
regressor set in Example 1.

clusters corresponding to such situations, are currently under
investigation.

Once the regionsXi have been estimated, all the data points
can be finally classified by exploiting both the partition and
the bounded-error condition (6). Fork = 1, . . . , N , if xk ∈ Xi

for somei = 1, . . . , s, and |yk − ϕ′
kθi| ≤ δ, then (yk,xk) is

assigned to the clusterDi, otherwise it is marked as infeasible.
A feasible parameter set:

FPSi =
�
θ ∈ R

n+1 : |yk − ϕ
′
kθ| ≤ δ , ∀(yk,xk) ∈ Di

	
(25)

can be also associated to thei-th submodel, thus allowing the
evaluation of the related parametric uncertainty [13].

Example 1 (cont’d): The final classification of the regres-
sion vectors, and the estimated partition of the regressor set
are shown in Fig. 10. The partition is estimated through SVM.
The line separating triangles and diamonds is not drawn, since
it is redundant, while the two solid lines are defined by the
coefficients vectors:

h1 = (3.9591, −0.9665, 10.0196)

h2 = (5.0513, 1.1876, −5.9223) ,

that are very close to the true ones.

VI. EXAMPLES AND APPLICATIONS

In this section, the performance of the proposed PWA
identification procedure is demonstrated on a numerical exam-
ple, and on experimental data from an electronic component
placement process in a pick-and-place machine. The effective
use of the parameterδ of the procedure as a tuning knob to
trade off between model complexity and quality of fit is shown.

A. A numerical example

The proposed identification procedure is applied to fit the
data generated by a discontinuous PWARX system with orders
na = 2 and nb = 2, and s̃ = 4 regions. The input signal
is generated according to a uniform distribution on[−5, 5],
and the noise signal from a normal distribution with zero
mean and varianceσ2 = 0.2. The estimation data set contains



0 100 200 300 400 500

−2

0

2

4

6

8

10

12

14

16

time (samples)

re
si

du
al

s

Fig. 11. Plot of the residuals on validation data in the numerical example.
The dashed lines limit the interval[−δ, δ]. Spikes are due to regression vectors
incorrectly classified, and to discontinuity of the PWA map.

N = 1000 data points, of which 292, 234, 361 and 113
are generated by each of the four subsystems, respectively.
The SNR is about 17. The boundδ is chosen equal to 1.4,
approximately3.13σ. Since the noise is normally distributed,
pointwise estimates of the parameters are computed by least
squares. The initialization withC = 10, T0 = 100 andρ = 0.7
provides the correct numbers = 4 of submodels, and clusters
containing 363, 287, 229 and 121 data points, respectively.The
refinement procedure is run withc = 10, and terminates after 5
iterations. The estimated parameter vectors after the refinement
are shown in Table V. At this stage, the classification of the
data points consists of clusters with 293, 207, 365 and 101
data points, respectively. One data point is infeasible, and only
33 data points out of≈ 350 are left undecidable. Then, the
regions are estimated by M-RLP. The final reassignment of
the data points provides clusters with 291, 235, 360 and 113
data points. Only one data point is left infeasible. The99.7%
of the data points are correctly classified.

The model is validated by computing the residuals on
Nv = 500 validation data. The plot of the residuals is shown
in Fig. 11. They are mostly contained in the interval[−δ, δ].
Recall that the noise follows a normal distribution, and that
δ is taken≈ 3σ. Spikes are due to discontinuity of the PWA
map and to regression vectors incorrectly classified because
of errors in estimating the regions. For them, the wrong
parameter vector is used to compute the prediction. Errors in
the estimation of the switching surfaces from a finite data set
are in general inevitable. This example shows that such errors
can be detected and corrected a posteriori during the validation

TABLE V

NUMERICAL EXAMPLE : TRUE (θ̃i) AND ESTIMATED (θi) PARAMETER

VECTORS

θ̃1 θ1 θ̃2 θ2 θ̃3 θ3 θ̃4 θ4

-0.05 -0.0593 1.21 1.2208 1.49 1.4939 -1.20 -1.1838
0.76 0.7818 -0.49 -0.4957 -0.50 -0.4995 -0.72 -0.7275
1.00 1.0081 -0.30 -0.3007 0.20 0.2115 0.60 0.5716
0.50 0.5054 0.90 0.9035 -0.45 -0.4481 -0.70 -0.7013
-0.50 -0.4782 0 0.0242 1.70 1.7451 2.00 1.8076
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Fig. 12. Identification of the mounting head: Physical model ofthe
experimental setup.

of the model. When distinct spikes show up in the plot of the
residuals, the corresponding data points can be re-attributed,
e.g., to the nearest region with a compatible submodel, and
the augmented data set used to re-estimate the regions.

Note that this example is quite challenging due to the high
number of parameters to be estimated with respect to the
available data, and the high number (≈ 35%) of undecidable
data. The solution is determined in about15 s by running
Matlab 6.5 on a 1GHz Intel Pentium III.

B. A case study

We apply the proposed identification procedure to model the
electronic component placement process described in [22].The
process consists of a mounting head carrying the electronic
component. The component is pushed down until it comes
in contact with the circuit board, and then is released. A
real experimental setup consisting of a mounting head and
an impacting surface simulating the printed circuit board,is
used to gather the input-output data used for identification.
A physical model of the experimental setup is shown in
Fig. 12. The mounting head is represented by the massM ,
whose movement is only enabled along the vertical axis. The
springsc1 and c2 simulate elasticity. The dampersd1 andd2

provide linear friction, while the blocksf1 and f2 provide
dry friction. The input to the system is the voltage applied
to the motor driving the mounting head, represented by the
forceF in Fig. 12. The output of the system is the position of
the mounting head. The reader is referred to [22] for a more
detailed description of the experimental setup.

A data record over an interval of15 s is available. The
considered data set is sampled at150 Hz. Two modes of
operation are excited. In thefree mode, the mounting head

TABLE VI

IDENTIFICATION OF THE MOUNTING HEAD: FIT BETWEEN THE MEASURED

AND THE SIMULATED RESPONSES WITH THE IDENTIFIEDPWARX MODELS

s = 1 s = 2 s = 3 s = 4

FIT 78.22% 81.33% 90.18% 93.48%
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Fig. 13. Data sets used for estimation (top) and validation (bottom) in the
identification of the mounting head. The solid and the dashed lines represent
the system output and the scaled input, respectively.

moves unconstrained,i.e. without being in contact with the
impacting surface. In theimpact mode, the mounting head
moves in contact with the impacting surface. Input-output data
used for identification and validation are plotted in Fig. 13.
Nonlinear phenomena due to dry friction damping are evident
in both data sets,e.g., in the upper plot of Fig. 13 on the
interval (500, 750). A PWARX model structure with orders
na = 2 and nb = 2 is considered. By choosingδ = 0.06,
δ = 0.05, andδ = 0.04, models withs = 2, s = 3, ands = 4
discrete modes, respectively, are identified fromN = 1000
estimation data. For completeness, also a single ARX model
with the same model orders is identified. Fors = 3 and
s = 4, M-RLP linear separation techniques are applied in the
region estimation step in order to avoid “holes” in the partition.
Validation is then carried out by evaluating the fit between
the measured and the simulated responses usingNv = 400
validation data. By lettingy = (y1, . . . , yNv

) be the vector of
system outputs,̄y the mean value ofy, andŷ = (ŷ1, . . . , ŷNv

)
the vector of simulated outputs, the values of the following
measure of fit [28]:

FIT = 100 ·

(

1 −
‖ŷ − y‖

‖y − ȳ‖

)

% (26)

are shown in Table VI for the four identified models. These
values demonstrate that the fit improves as the number of
submodels increases,i.e. as smaller and smaller values ofδ
are chosen in the identification procedure. We stress that
ARX models are also identified for all combinations of the
model ordersna = 1, . . . , 20 and nb = 1, . . . , 20. The best
value of the fit obtained on validation data is≃ 80.00% for
na = 2 andnb = 18.

In Fig. 15, the plots of the simulated responses are graphi-
cally compared to the measured response. Fig. 15(left) clearly
shows that two affine submodels are not sufficient for accu-
rately reproducing the system dynamics. Very good accordance
between the measured and the simulated responses is instead
obtained withs = 3 and s = 4 submodels. Difficulties of
the identified models in reproducing the nonlinear phenomena
on the interval(210, 240) are likely to be due to incomplete
information provided by the estimation data. Indeed, in the

0 100 200 300 400
−0.08

−0.04

0

0.04

0.08

time (samples)

re
si

du
al

s

Fig. 14. Identification of the mounting head: Plot of the residuals on
validation data using the identified PWARX model withs = 4 discrete modes.
The dashed lines limit the interval[−δ, δ].

estimation data set (upper plot of Fig. 13), all significant
transitions of the output from low to high values show an
overshoot. Consequently, an overshoot shows up in the simu-
lated responses on the intervals(60, 140) and(210, 240), that
are both generated by the same sequence of affine submodels,
and are caused by large variations of the input signal. It is
interesting to note that the identified model withs = 4 discrete
modes is able to reproduce very faithfully the peak in the
interval(60, 140). The discrete mode evolution in Fig. 15(left)
clearly shows that one of the two submodels is active in
situations of high incoming velocity of the mounting head
(i.e. rapid transitions from low to high values of the mounting
head position). One submodel modelling the same situation is
also present in the identified models withs = 3 and s = 4
discrete modes.

For completeness, the plot of the residuals on validation
data using the identified PWARX model withs = 4 discrete
modes is shown in Fig. 14. Note that the residuals are mostly
contained in the interval[−δ, δ], although the boundδ on the
error cannot be guaranteed on data not used for estimation.

VII. C ONCLUSIONS

In this paper, a novel procedure for the identification of
PWARX models from input-output data has been presented
and discussed. The key approach is the selection of a boundδ
on the identification error, that enables one to address simul-
taneously the three issues of data classification, parameter
estimation and estimation of the number of submodels via
the solution of the MIN PFS problem for a suitable set of
linear inequalities derived from data. A refinement procedure
improves both data classification and parameter estimationby
alternating between data point reassignment and parameter
update. In this phase, outliers may be detected and discarded,
as well as the ambiguity concerned with undecidable data
points may be solved. The final step is the estimation of the
partition of the regressor set, that is carried out by resorting
to either two-class or multi-class linear separation techniques.
The performance of the proposed identification procedure with
respect to noise, overestimated model orders and classification
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Fig. 15. Simulation results for the mounting head using the identified PWARX models withs = 2 (left), s = 3 (center), ands = 4 (right) discrete modes.
Top: Simulated output (solid line) and system output (dashedline). Bottom: Evolution of the discrete mode.

accuracy is analyzed in the recent comparison papers [29], [30]
through extensive testing.

Current research concerns the possibility to include in
the identification procedure the a priori knowledge on the
system to be identified (e.g., saturations, thresholds, dead-
zones, Wiener or Hammerstein structures), as well as to
identify submodels of different orders for each discrete mode.
Techniques for efficiently detecting and handling non-convex
regions, or non-connected regions where the parameter vector
is the same, are also currently investigated.

An interesting issue would be to define suitable criteria for
validating the identified PWA models. Classical criteria like
residual analysis and whiteness tests could be not satisfac-
tory for this class of models. Since the switching surfaces
cannot be determined exactly from a given finite estimation
data set, even small errors in estimating the boundaries of
the regions might determine large residuals, if the system
dynamics is discontinuous. In this respect, it would be also
useful to provide bounds on the errors when reconstructing
the regions. Experiment design and order selection are other
issues of interest. In particular, the choice of the input signal
for identification should be such that not only all the affine
dynamics are sufficiently excited, but also accurate shaping of
the boundaries of the regions is possible.
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Linköping, Sweden, 2003. http://www.control.isy.liu.se/publications/.

[9] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering
technique for the identification of piecewise affine systems,” Automatica,
vol. 39, no. 2, pp. 205–217, 2003.

[10] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “An algebraic geometric
approach to the identification of a class of linear hybrid systems,” in
Proceedings of the 42nd IEEE Conference on Decision and Control,
(Maui, Hawaii), pp. 167–172, 2003.

[11] J. Ragot, G. Mourot, and D. Maquin, “Parameter estimationof switching
piecewise linear systems,” inProceedings of the 42nd IEEE Conference
on Decision and Control, (Maui, Hawaii), pp. 5783–5788, 2003.

[12] J. Roll, A. Bemporad, and L. Ljung, “Identification of piecewise affine
systems via mixed-integer programming,”Automatica, vol. 40, pp. 37–
50, 2004.

[13] M. Milanese and A. Vicino, “Optimal estimation theory fordynamic
systems with set membership uncertainty: an overview,”Automatica,
vol. 27, no. 6, pp. 997–1009, 1991.

[14] M. Milanese, J. P. Norton, H. Piet-Lahanier, and E. Walter, eds.,
Bounding Approaches to System Identification. New York: Plenum Press,
1996.

[15] E. Amaldi and M. Mattavelli, “The MIN PFS problem and piecewise lin-
ear model estimation,”Discrete Applied Mathematics, vol. 118, pp. 115–
143, 2002.

[16] K. P. Bennett and O. L. Mangasarian, “Robust linear programming
discrimination of two linearly inseparable sets,”Optimization Methods
and Software, vol. 1, pp. 23–34, 1992.

[17] C. Cortes and V. N. Vapnik, “Support-vector networks,”Machine Learn-
ing, vol. 20, pp. 273–297, 1995.

[18] K. P. Bennett and O. L. Mangasarian, “Multicategory discrimination
via linear programming,”Optimization Methods and Software, vol. 3,
pp. 27–39, 1994.

[19] E. J. Bredensteiner and K. P. Bennett, “Multicategory classification by
support vector machines,”Computational Optimization and Applica-
tions, vol. 12, pp. 53–79, 1999.

[20] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “A greedy ap-
proach to identification of piecewise affine models,” inHybrid Systems:
Computation and Control(O. Maler and A. Pnueli, eds.), vol. 2623 of
Lecture Notes in Computer Science, pp. 97–112, Springer Verlag, 2003.

[21] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino, “Setmembership
identification of piecewise affine models,” inProceedings of the 13th
IFAC Symposium on System Identification, (Rotterdam, The Nether-
lands), pp. 1826–1831, 2003.



[22] A. Lj. Juloski, W. P. M. H. Heemels, and G. Ferrari-Trecate, “Data-based
hybrid modelling of the component placement process in pick-and-place
machines,”Control Engineering Practice, vol. 12, no. 10, pp. 1241–
1252, 2004.

[23] S. Paoletti,Identification of piecewise affine models. PhD thesis, Di-
partimento di Ingegneria dell’Informazione, Università di Siena, Siena,
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