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Introduction − 1

Network architectures able to process “plain”
data, collected within arrays, are said to be static;
they just define a “mapping” between the sets of
input and output values

In other words… once the network has been
trained, it realizes a function between inputs and
outputs, calculated according to the learning set

The output at time t depends only on the input at

the same time
The network does not have “short−term” memory
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Static networks: Feedforward neural networks
They learn a static I/O mapping, Y=f (X), X and Y 
static patterns (arrays)

They model static systems: classification or regres-
sion tasks
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Static networks

For classification problems:

f : ℝn
 {0,1}m

where n is the dimension of the input vector and m
is the number of different classes that patterns
belong to (sigmoid output neurons)

For regression problems

f : ℝn
 ℝm

where n is the dimension of the input vector and m
is the dimension of the target (linear output
neurons) 
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Dynamic networks: Recurrent neural networks

They learn a non−stationary I/O mapping, 
Y(t)=f(t,X(t)), X(t) and Y(t) are time−varying patterns

They model dynamic systems: control systems, op-
timization problems, artificial vision and speech re-
cognition tasks, time series prediction
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Dynamic networks

Equipped with a temporal dynamics, these net-
works are able to capture the temporal structure
of the input and to “produce” a timeline output

Temporal dynamics: unit activations can change in
time even in presence of the same input pattern

Architectures composed by units having feedback 
connections, both between neurons belonging to 
the same layer or to different layers

Partially recurrent networks

Recurrent networks
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Partially recurrent networks

Feedforward networks endowed with a set of input
units, called state or context units
The context layer output corresponds to the out-
put, at the previous time step, of the units that
emit feedback signals, and it is sent to the units
receiving feedback signals

Elman networks (1990)

Jordan networks (1986)
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Elman networks − 1

The output of each context unit is equal to that of the
corresponding hidden unit at the previous (discrete)
instant:

 xc,i(t) = xh,i(t −1)

To train the network, the Backpropagation algorithm is 
used, in order to learn the hidden−output, the input− 
hidden and the context−hidden weights 9

Feedback connections on the
hidden layer, with fixed
weights all equal to one
Context units equal, in num-
ber, to the hidden units, and
considered just as input units
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All the output functions operate on the weighed sum of
the inputs, except for the input and the context layers, 
that act just as “buffers”

Actually, sigmoidal functions are used in both the hidden 
and the output layer

The context layer inserts a single−step delay in the
feedback loop: the output of the context layer is
presented to the hidden layer, in addition to the
current pattern

The context layer adds, to the current input, a value that
reproduces the output achieved at the hidden layer
based on all the patterns presented up to the previous
step
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Learning − all the trainable weights are attached to 
forward connections

1) The activation of the context units is initially set to zero, 

i.e. xc,i(0)=0, i at t=0

2) Input pattern xt: evaluation of the activations/outputs of 
all the neurons, based on the feedforward transmission 
of the signal along the network

3) Weight updating using Backpropagation (on−line)

4) Let t = t+1, xc(t) = xh(t −1) and go to 2)

The Elman network produces a finite sequence of out-
puts, one for each input

The Elman network is normally used for object trajectory 
prediction, and for the generation/recognition of lin-
guistic patterns
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Jordan networks − 1

Feedback connections on the output layer, with fixed
weights all equal to one
Self−feedback connections for the state neurons, with 

constant weights equal to a; a  1 is the recency 

constant
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The network output is sent to the hidden layer by 
using a context layer 
The activation, for the context units, is determined 
based on the activation of the same neurons and of 
the output neurons, both calculated at the previous 
time step 

xc,i(t) = xo,i(t −1) + a xc,i(t −1) 
Self−connections allow the context units to develop a 
local or “individual” memory, which takes into account 
past information with a weight that decreases over time

To train the network, the Backpropagation algorithm is 
used, in order to learn the hidden−output, the input− 
hidden and the context−hidden weights
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The context layer inserts a delay step in the feedback
loop: the context layer output is presented to the
hidden layer, in addition to the current pattern

The context layer adds, to the input, a value that
reproduces the output achieved by the network based on
all the patterns presented up to the previous step,
coupled with a fraction of the value calculated, also at
the previous step, by the context layer itself (via
self−connections)
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The simplest dynamic data type is the sequence,
which is a natural way to model temporal/sequential
domains

In speech recognition, the words, which are the object of
the recognition problem, naturally flow to constitute a
temporal sequence of acoustic features
In molecular biology, proteins are organized in amino
acid strings

Stock market, video analysis, weather forecasts,…

The simplest dynamic architectures are recurrent net-
works, able to model temporal/sequential phenomena

Temporal data − 1
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Temporal data− 2
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Sequential data describing 
the primary structure of a 
protein 

Temporal data describing 
acoustic features



Recurrent networks − 1

A neural network is said to be recurrent if it contains
some neurons whose activations depend directly or
indirectly from their outputs
In other words, following the signal transmission
through the network, cyclic paths exist that connect
one or more neurons with itself/themselves:

without crossing other neurons  direct feedback (xi(t) 
explicitly appears in the evaluation of ai(t+1) − where ai()  
and xi() respectively represent the activation and the 
output of neuron i)
and/or crossing other neurons  indirect feedback

A fully connected neural network is always a recurrent
network
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Recurrent networks − 2

20

RNN with lateral 
feedbacks

Fully connected 
RNN 

RNN with self 
feedbacks



A recurrent network processes a temporal sequence by
using an internal state representation, that appropri-
ately encodes all the past information injected into its
inputs

memory arises from the presence of feedback loops
between the output of some neurons and the input of
other neurons
assuming a synchronous update mechanism, the feed-
back connections have a memory element (a one−step
delay)

The inputs are sequences of arrays:

where Tp represents the length of the p−th sequence (in

general, sequences of finite length are considered,
even if this is not a necessary requirement)
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Commonly using an MLP as the basic block, multiple
types of recurrent networks may be defined, depend-
ing on which neurons are involved in the feedback

The feedback may be established from the output to the
hidden neurons
The feedback may involve the output of the hidden layer
neurons
In the case of multiple hidden layers, feedbacks can also
be present on several layers

Therefore, many different configurations are possible
for a recurrent network
Most common architectures exploit the ability of MLPs
to implement non−linear functions, in order to realize
networks with a non−linear dynamics
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The behaviour of a recurrent network (during a time
sequence) can be reproduced by unfolding it in time,
and obtaining the corresponding feedforward network
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x(t) = f(x(t−1),u(t))

y(t) = g(x(t),u(t))

x

x0

x2

u1

u

u2

Recurrent networks − 5
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Recurrent processing

Before starting to process the p−th sequence, the state

of the network must be initialized to an assigned value

(initial state) xp(0)
Every time the network begins to process a new se-
quence, there occurs a preliminary “reset” to the initial
state, losing the memory of the past processing phases,
that is, we assume to process each sequence independ-
ently from the others

At each time step, the network calculates the current

output of all the neurons, starting from the input up(t) 

and from the state xp(t−1)
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Processing modes
Let us suppose that the L−th layer represents the 

output layer
The neural network can be trained to transform the input
sequence into an output sequence of the same length
(realizing an Input/Output transduction)

A different case is when we are interested only in the
network response at the end of the sequence, so as to
transform the sequence into a vector (supersource trans-
duction)

This approach can be used to associate each sequence to a
class in a set of predefined classes
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Learning Set

Let us consider a supervised learning scheme in 
which:

input patterns are represented by sequences

target values are represented by subsequences

Therefore, the supervised framework is supposed to
provide a desired output possibly with respect to a
subset of the processing time steps

In the case of sequence classification (or sequence coding

into vectors) there will be a single target value, at time Tp
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Cost function

The learning set is composed by sequences, each
associated with a target subsequence

 

 where ϵ stands for empty positions, possibly contained 

in the target sequence
The cost function, measuring the difference between the
network output and the target sequence, for all the
examples belonging to the learning set, is defined by

 where the instantaneous error eW(ti) is expressed as the

Euclidean distance between the output vector and the
target vector at time ti (but, other distances may also be

used)
27
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Backpropagation Through Time (BPTT, Rumelhart, 
Hinton, Williams, 1986)

The temporal dynamics of the recurrent network is
“converted” into that of the corresponding unfolded feed-
forward network

Advantage: very simple to calculate

Disadvantage: heavy memory requirements

Real−Time Recurrent Learning (Williams, Zipser, 1989)

Recursive calculation of the gradient of the cost function
associated with the network

The derivatives of states and outputs with respect to all
weights are computed as the network processes the
sequence, that is, during the forward step

No unfolding is performed or necessary

Disadvantage: computationally expensive

Learning in recurrent networks
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BackPropagation Through Time − 1

Given the targets to be produced, the network can be
trained using BackPropagation Through Time (BPTT)
Using BPTT means…

…considering the corresponding feedforward network un-
folded in time  the length Tp of the sequence to be 
learnt must be known 

…updating all the weights wi(t), t=1,…,Tp, in the feedfor-
ward network, which are copies of the same wi in the re-
current network, by the same amount, corresponding to 
the sum of the various updates reported in different lay-

ers  all the copies of wi(t) should be maintained equal
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Let N be a recurrent network that must be trained, 

starting from 1, on a sequence of length Tp

On the other hand, let N* be the feedforward network 
obtained by unfolding  N in time
With respect to N* and N, the following statements 

hold:
N* has a “hyperlayer” that contains a copy of N, corres-
ponding to each time step

Each hyperlayer in N* collects a copy of all the neurons 
contained in N

For each time step t[1, Tp], the synapse from neuron i in 
layer l to neuron j in layer l+1 in N* is just a copy of the 
same synapse in N

30
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BackPropagation Through Time − 3

N

N*

N

NN

Input at time t
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BackPropagation Through Time − 4

Feedforward network corresponding 
to a sequence of length T=4

Recurrent network



The gradient calculation may be carried out in a
BP−like style

The algorithm can be derived from the observation that
recurrent processing in time is equivalent to constructing
the corresponding unfolded feedforward network
The unfolded network is a multilayer network, on which
the gradient calculation can be realized via standard
BackPropagation
The constraint that each replica of the recurrent network
within the unfolding network must share the same set of
weights has to be taken into account (this constraint
simply imposes to accumulate the gradient related to
each weight with respect to each replica during the
network unfolding process)
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BackPropagation Through Time − 6

In other words…

We can think of the recurrent network as a feed-
forward architecture with shared weights and then 
train this unfolded network with weight constraints

The training algorithm works in the time domain:

The forward pass builds up a stack of the outputs of 
all the neurons at each time step

The backward pass pulls outputs off the stack to 
compute the error derivatives at each time step

After that, the derivatives at all the different times, 
for each weight, are added together 34



The meaning of backpropagation through time is
highlighted by the idea of network unfolding
The algorithm is non−local in time − the whole se-
quence must be processed, by storing all the
neuron outputs at each time step − but it is local
in space, since it uses only local variables to each
neuron
It can be implemented in a modular fashion,
based on simple modifications to the Back-
Propagation procedure, normally applied to static
MLP networks

35
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Let us consider a network constituted by only one 
neuron, equipped with a self−feedback; then:

Since a1 and y1 are functions of t, the neuron dynamics 

converges when they stop changing time after time
Depending on synaptic weigths and inputs, functions 

f(a1) and a1+ may intersect in one or more points − or 

may have no intersections (i.e., solutions) −, that are 
equilibrium points of the dynamic system
If a solution exists  information latching 36

Dynamics of a neuron with feedback − 1
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Dynamics of a neuron with feedback − 2

When using a step transfer 
function, there can be two 
solutions at most
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When using a step transfer 
function, there can be two 
solutions at most

=0.5, =1.5 (1 solution)
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When using a step transfer 
function, there can be two 
solutions at most

=0.5, =1.5 (1 solution)

=0.5, =0.5 (2 solutions)
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When using a step transfer 
function, there can be two 
solutions at most

=0.5, =1.5 (1 solution)

=0.5, =0.5 (2 solutions)

=0.5, =−0.5 (1 solution)
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When using a step transfer 
function, there can be two 
solutions at most

=0.5, =1.5 (1 solution)

=0.5, =0.5 (2 solutions)

=0.5, =−0.5 (1 solution)

=−0.5, =0.5 (0 solutions)
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In the case of continuous
transfer functions, at least
one solution always exists
It can be shown that the
same property holds true
for any recurrent network
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In the case of continuous
transfer functions, at least
one solution always exists
It can be shown that the
same property holds true
for any recurrent network

=0.5, =1.5 (1 solution)
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In the case of continuous
transfer functions, at least
one solution always exists
It can be shown that the
same property holds true
for any recurrent network

=0.5, =1.5 (1 solution)

=0.5, =0.5 (1 solution)
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In the case of continuous
transfer functions, at least
one solution always exists
It can be shown that the
same property holds true
for any recurrent network

=0.5, =1.5 (1 solution)

=0.5, =0.5 (1 solution)

=0.15, =0.5 (3 solutions)
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In the case of continuous
transfer functions, at least
one solution always exists
It can be shown that the
same property holds true
for any recurrent network

=0.5, =1.5 (1 solution)

=0.5, =0.5 (1 solution)

=0.15, =0.5 (3 solutions)

=0.15, =0.3 (1 solution)
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In the case of continuous
transfer functions, at least
one solution always exists
It can be shown that the
same property holds true
for any recurrent network

=0.5, =1.5 (1 solution)

=0.5, =0.5 (1 solution)

=0.15, =0.5 (3 solutions)

=0.15, =0.3 (1 solution)

=−0.5, =0.5 (1 solution)
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The inability to obtain closed−form solutions im-
poses to proceed in an iterative fashion
Given the weights and fixed the inputs, an initial
value y1(0) is assigned to the output vector

Starting from this initial condition, the network
then evolves according to a dynamic law for which
any solution represents an equilibrium point
Ultimately, the presence of cyclic paths “intro-
duces a temporal dimension” in the network be-
haviour

48

Dynamics of a neuron with feedback − 4
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The vanishing/exploding gradient problem − 1

When training a deep neural network − as the unfolded
network actually is − with gradient based learning and
backpropagation, partial derivatives are calculated by
traversing the network from the final layer to the initial
layer; using the chain rule, the deeper layers in the
network go through continuous matrix multiplications
to calculate their derivatives
If the derivatives are large then the gradient will
increase exponentially during backpropagation, even-
tually exploding
Alternatively, if the derivatives are small then the
gradient will decrease exponentially, possibly vanishing
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The vanishing/exploding gradient problem − 2

In the case of exploding gradients, the accumulation of
large derivatives results in the model being very
unstable and incapable of effective learning
Conversely, the accumulation of small gradients results
in a model that is incapable of extracting meaningful
information from data, since the weights and biases of
the initial layers, which tend to learn the core fea-
tures from the inputs, will not be updated effectively
Anyway, long−term dependencies, are difficult to be
learned due to the very deep architecture they
correspond to



Long−Short Term Memories − 1

Long−Short Term Memories, LSTMs for brevity, are a
variant of RNNs that introduce a number of special,
internal gates
Internal gates help with the problem of learning
relationships between both long and short sequences

Con: Many more internal parameters, which must be
learned, are introduced → Time consuming

Pro: Many more internal parameters, which must be
learned, are introduced → Flexible
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Long−Short Term Memories − 2
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All  are weights in single 
layer perceptrons

Hadamard product 
(element−wise product)



Long−Short Term Memories − 3
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(-1,1)



Long−Short Term Memories − 4

Each cell is responsible for keeping track of the de-
pendencies between the elements in the input
sequence

The input gate controls the extent to which a new value
flows into the cell

The forget gate controls the extent to which a value
remains in the cell

The output gate controls the extent to which the value in
the cell is used to compute the output activation of the
LSTM unit

LSTMs learn when to retain a state or to forget it
Parameters are constantly updated as new data
arrives
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RNN vs LSTM
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Transformers 
The RNN and LSTM neural models were originally designed to
process language and perform tasks like classification,
summarization, translation, and sentiment detection
In both models, layers get the next input word and have access
to some previous words, allowing it to use the word’s left
context
They used word embeddings where each word was encoded as
a vector of 100−300 real numbers representing its meaning
Transformers extend this to allow the network to process a
word input knowing the words in both its left and right context
This provides a more powerful context model
Transformers add additional features, like attention, which
identifies the important words in this context
Transformers typically use semi−supervised learning with:

Unsupervised pretraining over a very large dataset of general text

Followed by supervised fine−tuning over a focused data set of
inputs and outputs for a particular task
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Structured domains − 1
Even if temporal/sequential data are pervasive in real−
world applications, anyway there are also problems for
which the information is naturally collected in more
complex (possibly hierarchical) structures, like trees or
graphs
Such data have a hybrid nature, both symbolic and
sub−symbolic, and cannot be represented regardless
of the links between some basic constituent entities

Pattern recognition
World Wide Web
Natural language processing
Classification of chemical compounds
Analysis of DNA regulatory networks
Prediction of active sites on the protein surface
…

57



Recursive neural networks − that can be
viewed as a generalization of recurrent archi-
tectures − are modeled on the structure to be
learnt, producing an output that takes into
account both symbolic data, collected in the
node labels, and sub−symbolic information,
described by the graph topology 

58

Structured domains − 2



Example 1: 
Pattern recognition

Each node of the tree contains local features, such
as area, perimeter, shape, color, texture, etc., of
the related object, while branches denote inclusion
relations
Object detection and recognition
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Example 2: 
Logo recognition

60

The tree−representation 
is invariant with respect 
to rotations, translations 
and rescaling



Example 3: 
A different way for representing images

61

RAG 
transformation 
into a directed 
graph

Region Adjacency Graph 
(RAG) extraction

Segmentation



Example 4: 
An excerpt of the Web  

62

Social network analysis for:

Searching web communities or spam web pages

Web document classification

Traffic forecasting



Example 5: 
Understanding textual entailment and contradiction

Syntactic trees describing the premise−hypothesis
sentences for textual entailment 63

“t entails h” if a human reading t would infer that h is most likely true
or, alternatively, if a human reading t would be justified in inferring the
proposition expressed by h from the proposition expressed by t



Example 6: 
Inference of chemical properties

Chemical compounds are naturally represented as
graphs (undirected and cyclic)

Mutagenicity, genotoxicity, carcinogenicity, etc.
64



Example 7: 
Analysis of DNA regulatory networks

A gene regulatory net-
work is a collection of pro-
tein regulators that inter-
act with each other to
govern the gene expres-
sion levels of mRNA and
proteins

Regulatory network func-
tionality and interactions
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Example 8: 
Active site prediction 

Active sites are specific regions of enzymes where
chemical reactions occur

The 3D structure of the enzyme near active sites is
analyzed to design drugs which can fit into them 66



Graphs can be converted into vectors choosing a
visiting criterion of all the nodes, but…

…by representing a graph as a vector (or a sequence),
we will probably “lose” some potentially discriminating
information

If the “linearization” process produces long vectors/
sequences, learning can become difficult

Example: the representation of a binary tree using
brackets, or based on a symmetric, early, or post-
poned visit

dbeace

a(b(d,e),c(,e))

Symmetric visit

Newick format

Can we process graphs as they were vectors?

67



Instead of selecting a fixed set of features, a
network can be trained to automatically determine
a fixed−size representation of the graph

Heuristics and adaptive coding

68



Based on recursive processing, a fixed−size repres-
entation of the graph can be obtained just imposing
the supervision on a unique node of the graph
The recursive network unfolding happens in a spatio−
temporal dimension, based on the underlying struc-
ture to be learnt

At each node v, the state is calculated by means of a

feedforward network as a function of the node label
and of the states of the child nodes
Moreover, based on the state of the node and on its

label, also an output can be calculated at each v

Recursive neural networks − 1
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Recursive neural networks − 2
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The learning domain for recursive neural networks is
the set of Directed, Positional, Acyclic Graphs (DPAGs)

A directed graph G, with oriented edges, where

edg(G) denotes the set of arcs, is said to be positional

if, for each vvert(G), a total order relationship is

defined on the (possibly missing) arcs outgoing from v 

The learning environment: DPAGs − 1

71
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In the chosen framework, G is empty or it pos-

sesses a supersource, svert(G), such that, for 

each vvert(G), v can be reached following a path 

starting from s

If a DPAG does not have a supersource, s should be 

attached to it with a minimum number of outgoing

edges and such that every other node of G is

reachable from s

Given G and vvert(G), pa[v] is the set of the 

parents of v, whereas ch[v] is the set of its children

The indegree of v is the cardinality of pa[v], while its 

outdegree is the cardinality of ch[v]

72

The learning environment: DPAGs − 2



Graphs used to store structured information are
normally labelled:

each node contains a set of variables, namely a
record, that constitutes the label at that node

each field within the label is an attribute, numerical
(continuous−valued) or cathegorical (with values in a
discrete and finite set)

a graph G is uniformly labelled if all the records are
similar, that is, comprised of the same fields (in
number and type)

The presence of an arc (v,w) in a labelled graph
establishes the existence of a causal link between
the variables in v and w

73

The learning environment: DPAGs − 3



The state transition network
recursively calculates, the
state of the nodes in the
graph G

Xv = f (Xch[v], Uv, (f,v) )

Instead, the output network 
evaluates the output func-
tion g

Yv = g(Xv, Uv, (g,v) )

Uv is the node v label, Xch[v] collects the states of the child nodes 
of v, (f,v) and (g,v) are connection weights

The parametric representations of f and g can be realized 
through any neural architecture
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Recursive processing − 1

State transition 
network Output network



supersource

The recursive network real-
izes a function from the
space of directed, ordered,

acyclic graphs to ℝm, with m
number of output neurons
in the output network; in
this case, the recursive
network produces a super-
source transduction

The output at the super-
source is a vector repres-
entation of the information
content, both symbolic and
topological, of the whole
graph

If the output network is placed only in corres-
pondence of the supersource…
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Recursive processing − 2



Xv = f (Xch[v], Uv, (f,v))
Ys= g(Xs, Us, (g,s))

f and g may be 

realized using MLPs

The recursive architecture
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Output 
network

Encoding 
network

Recursive 

neural network

Spatio−temporal unfolding 

along the tree



BOTTOM−UP: we can follow any inverse topological
sorting of the graph − data flow processing scheme
Some vertices can be updated in parallel: sorting is
not unique!

Scheduling
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Recursive neural networks do not distinguish
between DPAGs and trees that are recursive−
equivalent

Actually, each DPAG can be encoded by a recursive−
equivalent tree

For each node v of the DPAG with pa[v]1, there exist 

pa[v] copies of v in the corresponding tree
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From DPAGs to trees



Recursive neural networks are a powerful compu-
tational tool for processing structured data, able to
bridge the historical gap between classical connec-
tionist techniques, tailored to poorly organized
data, and a wide variety of real−world problems in
which the information is “naturally” encoded in
basic entities and relationships among them

Recursive networks process information in the form
of directed, positional and acyclic graphs or, more
simply, of recursive−equivalent trees

Some comments…
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At each pseudo−time, a feedforward neural network
is “stimulated” with the label of a node of the
graph, and with the states calculated at its child
nodes, according to a training strategy similar to
that of recurrent networks

However, if the recurrent network processing is
carried out on the basis of the natural flowing of
data during time, recursive networks follow the
partial order imposed by the arcs of the graph, and
“unfold” in the spatio−temporal dimension under-
lying it

Some parallelism is permitted for those nodes
whose child states have been always calculated,
based on the reverse topological order processing

Some more comments…
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T ⎯ is a set of trees with labelled nodes, and with a 

maximum outdegree equal to k

Uv ⎯ represents the label at node v; it belongs to L, 

that can be constituted by a finite or an infinite set 
of elements

c(Uv): UvL, c(Uv) ℝl 

Useful notation for learning − 1
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Definition

 Let YFℝ
m be the encoding of the empty tree

 For f : ℝl+km→ℝm, the induced function f is recursively 
defined by

 where tT and t1,…,tk represent its k subtrees (ori-
ginating from the root)


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Useful notation for learning − 2



The function l:T→ℝq can be calculated by a 

recursive neural network if the following two 
functions, that can be realized via MLPs, exist:

f   : T→ℝm

g   : ℝm→ℝp

 together with an affine transformation, 

 A : ℝp→ℝq

 such that

l = A  g  f 


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Useful notation for learning − 3





Remarks

The weight updating process is performed by
means of the BackPropagation Through Struc-
ture algorithm, which corresponds to the stand-
ard BP on the unfolded network, also called the
encoding network

During learning, all the corresponding weights in
distinct hyperlayers of the encoding network are
forced to maintain the equality constraint

84

Useful notation for learning − 4



The encoding network: binary trees

85
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Structured data + recursive networks = 
encoding networks



So as in BPTT, the BackPropagation Through Structure
(BPTS) algorithm collects, for each structure, the
individual contributions of the gradients, corresponding
to all the copies of the same weight, in a unique
contribution, which will be used to update each copy
The error backpropagation procedure follows the paths
traced by the arcs of the graph, starting from the
output subnet, through the encoding network, up to
the leaves
If on−line learning is performed, the weights are
updated, structure by structure, after the presentation
of each structure to the network; otherwise, in batch
mode, the contributions to the gradient are stored with
respect to the entire training set and the weights are
updated only after all the structures have been
presented to the network
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Recursive network training − 1



The VC−dimension (or the Vapnik−Chervonenkis di-
mension) is a measure of the neural network ability 
to learn (to generalize to new examples)
Let f be a binary classifier depending on a set of 
parameters ; f is said to shatter the set of data 
points (x1,x2,…,xn) if, for all the possible assignments
of targets to those points, there exists a  such
that the model f makes no classification errors
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Recursive network training − 2

The VC−dim of a linear classifier is 3
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Recursive network training − 3
The VC−dimension of a classifier f is the
cardinality of the largest set of points that the
model can shatter
Based on the VC−dimension, a probabilistic
upper bound on the test error of a classification
model may be estimated

where D is the VC−dimension, (0,1], and N is 
the dimension of the training set

The formula is valid when D  N otherwise the 
test error may be much higher than the 
training error, due to overfitting
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Recursive network training − 4

Since there is a direct dependence, a high VC−
dimension should be a marker of a classifier
having poor generalization capabilities
Conversely, an efficient learning algorithm has
to ensure a well−trained network in a “reason-
able” amount of time



If a gradient method (such as BPTS) is used,
numerical problems may occur: because of the
error backpropagation, learning in deep
networks can have a prohibitive duration or
produce instability behaviours
Having no a priori knowledge on the probability
distribution of the training set, there are no
guarantees that the trained network provides
good performance when processing new
examples

The VC−dimension of recursive networks grows
quadratically with the dimension of the patterns
to be learnt, e.g., sequence length, tree height,
etc., rapidly tending to infinity
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Recursive network training − 5



Collisions
Definition

 Given a recursive neural network, trees t1 and t2 

collide if the root states, calculated by the network 
for both trees, are identical, i.e.,  

  f (t1) = f (t2) 

Remark

 Given an injective function l, do a function g exist 

such that l = g  f on T ?

If f  does not produce collisions on T, g exists

If f  causes collisions on T, g does not exist





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Hypotheses:

l=m=1 (label and state dimensions), k=3 (out-
degree); xv represents the state at node v

Network architecture: linear recursive network 
having equal weights w.r.t. each subtree, ak=a, 
k; b weighs the node label

Null frontier state, xf =0, for each leaf; Uv=1, v

Trees that share the same 
number of nodes at each 
layer do collide! 

A collision example

93x   =  x   = 4a2b+3ab+bs2s1

xv=b
xv=ab+b

xv=3ab+b

xs=a(3ab+b)+a(ab+b)+ab+b

     4a2b+3ab+b



Recursive computational power

Theorem 1
 Collisions occur when

am  kh  

 [actually (kh+1−1)/(k−1)] where a is the number of bits 
used to represent each component of the state vector, 
m is the state vector dimension, k is the maximum 
outdegree of the trees, and h their maximum height

Examples

 The following sets of trees cannot be codified using 
only four bytes (i.e. collisions occur):

Binary trees with h5 and m=1 

Binary trees with h10 and m=32  

Trees with outdegree equal to 5 with h2 and m=1  

Trees with outdegree equal to 10 with h1 and m=3  

Trees with outdegree equal to 10 with h2 and m=31
94



Linear recursive networks − 1

In linear recursive networks all the neurons have
linear activations (calculated as products between
connection weights and inputs) and a neuron out-
put function that coincides with the identity
Classical linear algebra tools can, therefore, be
used to establish conditions on their dynamical
properties and on their ability to encode and
classify structured information
Many of the detectable limits for linear networks
are intrinsically related to the recursive framework
and can be directly extended to the general model,
definitely establishing its computational capacity
and its applicability ambit
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In general, even if the number of the state neurons
exponentially grows with the height of the struc-
tures to be learnt, in order to avoid collisions,
however, significant classification problems on trees
can be solved with the use of a “reasonable”
amount of resources

In fact, in most of the problems, we do not pretend
to distinguish all the trees, but rather to highlight
some particularly significant classes

The root state must encode only that a certain tree
belongs to a given class
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Linear recursive networks − 2



Actually, linear recursive networks, with a limited
number of parameters, can still evidence interesting
properties of tree structures, distinguishing these
structures according to ...

…the number of nodes in each level

…the number of leaves

…the number of left and right children in binary trees

…
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Linear recursive networks − 3



If the frontier state is 

X0=0, we can calculate 

the network output as:

In linear recursive networks…
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Linear recursive networks − 4

Xc=2X0+Bc=Bc Xd=Bd

Xb=A1Bc+A2Bd+Bb 

Xa=A1(A1Bc+A2Bd+Bb)+Ba



Linear networks: how to avoid collisions

Definition

 Let p be a natural number and let I  ℝ; let Tp,I the 

class of trees with height p at most, and with labels 

belonging to I

Theorem 2

 Let us consider the class Tp,1, and let X0=0 be. For any p 

and any path enumeration of Tp,1, a recursive network 
exists for which no collisions occur; moreover:

1. The state Xsℝn, with

2. The recursive network calculates

99
otherwise

if the input tree contains the i−th path



Path enumeration
A way to achieve an enumeration of the paths of a
tree is that of ordering the nodes of the complete tree

of height p

Each tree can be represented by the set of its nodes 
({1,2,3,4,5,6,7,9})

An alternative representation uses a binary vector 
([1,1,1,1,1,1,1,0,1,0,0,0,0]), having the i−th element 
equal to 1 if the tree contains the i−th path, and 0 

otherwise 100



For Iℝ+, and for any p, a recursive network exists, 
for which no collisions occur, with (kp+1−1)/(k−1) state 
neurons, that calculates

Proof
By construction, each element ai,j must be equal to 1 iff the 
i−th path is composed by the arc between the root and its 
k−th child together with the j−th path within the k−th 
subtree, 0 otherwise

The entries bi will be equal to 1 iff the i−th path is empty, 
i.e. it contains only the root, 0 otherwise (namely only b1 is 
equal to 1)

In general… −1
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k

otherwise

if the input tree contains the i−th path



Example (cont.)
 Posing: 

 with Ak, k=1,2,3, 1313 matrices and b vector of 
length 13, we obtain the “binary” representation for 
ternary trees of height 2 at most

102

In general… −2



Example

 To calculate ai,j 

Choosing an appropriate output function g, such a
network can approximate any injective function on
trees (with positive real labels), with any degree of
accuracy
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In general… −3
The second path (i=2) connects 

the root with its first child (k=1) 

and, w.r.t. the leftmost subtree − 
renumbering its nodes − the node 
with label 2 becomes the first one
(j=1)4

1

32

k

The tenth path (i=10) connects 

the root with its second child (k= 
2) and, renumbering the central 
subtree, the node with label 10 
becomes the fourth one (j=4)

3

1

42



Recursive models for non positional graphs − 1 

In DAGs (Directed Acyclic Graphs) the position of 
the descendants of each node is not significant
DAGs can model many different kinds of informa-
tion, from gene interaction maps to combinational 
logic blocks in electronic circuit design
To properly process DAGs using a recursive model, 

if G1=DAG G2 then

104



Therefore, the recursive model must satisfy the 
following equation

 

 for each permutation : {1,…,k}→{1,…,k} and for any 
possible set of weigths and labels

f is insensitive to any reorganization of the descen-
dants of each node

Function f can be learnt from examples by a classical
recursive model (without constraints)

In practice, this training would require a very extens-
ive learning set and should be time−prohibitive

Vice versa, f can be implemented through a model
that naturally realizes (via constraints on the weights)
insensitivity to permutations
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Recursive models for non positional graphs − 2 



Recursive models for non positional graphs − 3 

Example
If the state transition function is realized by a 
two−layer neural network, with two inputs, 2q 
hidden neurons and a unique output neuron
Let x1, x2 be the inputs and let ai,1, ai,2, ci, vi be the 

network parameters w.r.t. the i−th hidden 

neuron; for the j−th hidden neuron, let aj,1=ai,2, 
aj,2=ai,1, and cj = ci, vj = vi be

The contribution to the output due to i and j is:

 with hi(x1,x2)=hi(x2,x1) 
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Remark
In the general case of networks with any number of

inputs and outputs, the hidden layer must contain q

sets of units, each of which consists of a number of
neurons equal to all possible permutations on the

inputs: o!, if o is the maximum outdegree of the

structures to be learnt
The original time complexity is moved to space
complexity (a very large architecture, anyway diffi-
cult to train)
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Recursive models for cyclic graphs − 1 

The general recursive model, in which the state
updating is carried out by

 cannot be used for cyclic structures
Actually, in this case, it would produce a sort of

recursion: the state Xv at node v, involved in a

cycle, depends on the same Xv calculated at

some previous pseudo−time, given that v is a

descendant of itself
108



The recursive network represents a dynamic
system, whose equilibrium points are the solu-
tions to the state update equation
How can we face this issue?

Collapse the cycle into a single node, summar-
izing the overall information in its label

Problem: The operation can be carried out with
graph−clustering techniques, but some informa-
tion will be lost
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Recursive models for cyclic graphs − 3 

Alternative solution: Let us represent cyclic graphs 
using recursive−equivalent trees

Let G=(V,E) be a directed, cyclic graph, having s as 

its supersource; the tree Tr=(Vr,Er), recursive−equi-

valent to G, can be constructed based on the 

following algorithm:

Visit G, starting from s, calculating a spanning 

tree Tc=(V,Ec), with root s; initially, let Tr=Tc

For each edge (v1,v2)E\Ec, a clone of v2, v2
new, is 

added in Tr, i.e., we update Vr=Vrv2
new and  

Er=Er(v1,v2
new)
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Recursive models for cyclic graphs − 4 

111

Rooted directed, cyclic graph  

Recursive−equivalent tree

Spanning tree

Encoding and output networks



Theorem 3

 Let G=(V,E) be a directed, positional cyclic 

graph, having a supersource s; let Tr=(Vr,Er) be 

its recursive−equivalent tree, with |Er|=|E|; G can 

be uniquely reconstructed starting from Tr

Cyclic graphs can be recursively processed after 
being preprocessed in order to extract the re-

lated recursive−equivalent tree Tr

Results and model limitations derived for trees
can be equivalently applied to cyclic graphs
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More generally, each cycle can be unfolded,
starting from the supersource, to form tree
structures of varying depth, obtained through
multiple visits to the nodes of the cycle
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Recursive models for cyclic graphs − 6
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Remarks
Recursive networks can actually be applied to
cyclic structures, at least after an appropriate
preprocessing
The phenomenon of vanishing errors for deep
backpropagations, in this particular case, en-
sures that it is not necessary to unfold the
structure “too much” in order to stabilize the
learning procedure
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A general solution: GNNs − 1 

Aim: Model and learn a function
w: GN→ℝn

where G is a set of graphs, N represents the set

of nodes and Rn is the n−dimensional Euclidean

space
Function w 

accepts a graph G and a node v as its input and 

calculates a real vector 

is a parametric function: w collects its parameters

Graph Neural Networks can face two main types 
of problems:

Node−focused

Graph−focused
115



Images can be represented by 
Region Adjacency Graphs (RAGs), 
where:

nodes represent homogenous re-
gions and are labelled by visual 
features (colour, texture, area)
edges define adjacency relation-
ships 

116

Object localization in images is a node−focused 
problem

The network can answer the question: 

 Does node v belong to the house?

Example 1
 In node−focused problems, w(G,v) depends both on

the whole graph and on a particular node

A general solution: GNNs − 2 



Molecules are represented by 
indirected and cyclic graphs:

nodes represent atoms and 
small molecules
edges stand for chemical bonds

117

The network can answer the question: 
 Is the chemical compound an active drug against 

cancer proliferation? 

Example 2
 In graph−focused problems w(G) depends only on

the graph G

HO

HO

OH
HN

A general solution: GNNs − 3 
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Edge−focused problems concern tasks in which the
targets are associated to the edges: the GNN must
classify, cluster, or even predict the existence of
relationships between patterns
Predicting the nature of chemical bonds between
atoms or small molecules represents an edge−
focused task

A general solution: GNNs − 4 

Example 3
 Actually a third type of problem to be solved on 

graphs exists, which is called edge−focused



Graph Neural Networks − 1 

At each node v, a state xv, and (possibly) the 

relative output ov, are calculated

fw, gw are feedforward networks that process local

information to v

The GNN shares the same topology of the input
graph
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Note: The state transition function fw may depend 

also on the labels of the neighboring nodes of v and 

on the labels of the edges originating from v (if any)

In order to ensure a correct processing mode for 
GNNs, it must be guaranteed that, for the state 
update equations

a unique solution exists

We also need to: 
provide an efficient method for calculating the states
define an efficient learning algorithm for the para-
meter optimization
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Graph Neural Networks − 2 



The choice of the transition function in GNNs  
is based on the Banach Theorem, to ensure the 
existence and the uniqueness of the solution

Actually, the Fixed Point Theorem guarantees
that the state update equations admit a unique

solution if and only if Fw is a contraction with

respect to X
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Graph Neural Networks − 3 



Definition

Let (X,d) be a metric space. Then a map F: X → X is called

a contraction mapping on X if there exists q∈[0, 1) such

that

d(F(x),F(y))qd(x,y)

for all x, yX

Banach Fixed Point Theorem

Let (X,d) be a non−empty complete metric space with a

contraction mapping F: X → X; then F admits a unique

fixed−point x* in X (i.e. F(x*) = x*); furthermore, x* can

be found as follows: start with an arbitrary element x0 in X

and define a sequence {xn} by xn = F(xn−1), then xn → x*
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GNNs: State calculation − 1

The states of all the nodes are initialized with a
default value; they are iteratively updated until
reaching an equilibrium point
The Banach Theorem ensures the convergence
of the iterative procedure with exponential
speed (and regardless of the initial state value)
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GNNs: State calculation − 2

124

are implemented by MLPs, the 
encoding network is a recursive 
network 
In the unfolding network, each 
layer corresponds to a time 
instant and contains a copy of 
all the units of the encoding 
network; connections between 
layers depend on the encoding 
network connectivity

When the  state transition 
and  the  output functions



In detail:
Each iteration produces a “synchronous activa-
tion” of the encoding network
…which corresponds to an iteration of the Jacobi
algorithm for the solution of nonlinear systems
The Jacobi algorithm is easily adapted to large
systems (millions of equations) and it is also
used for the calculation of the Google PageRank
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GNNs: State calculation − 3



GNNs: The learning algorithm

A gradient−descent strategy is used in order to 
minimize the error function

Learning proceeds through the repetition of the
steps…

…for updating the states xn(t) until convergence is 

reached
...for calculating the gradient      , based on updated 
states and weights

The gradient calculation is performed by combining 
the Almeida−Pineda algorithm (a particular version 
of BPTT) and BPTS
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GNNs: Universal approximation

So as recursive models (in terms of their
particular scope), GNNs are (almost) universal
approximators, i.e., they can approximate in
probability, and up to any degree of precision,
all the “practically useful” functions on the
graph space
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Long−term dependencies in GNNs − 1

Practical difficulties have been reported in
training dynamical networks to perform tasks
in which spatio−temporal contingencies present
in the input structures span long intervals
In other words… gradient based learning al-
gorithms face an increasingly difficult problem
as the duration of the dependencies to be
captured increases

There is a trade−off between efficient learning
by gradient descent and latching of information
for long “periods”



Localize the objects having
the same color

HO

H

O
C

O
C

Is this molecule mutagenic?

In GNNs, the long−term dependency problem is
observed when the output on a node depends
on far nodes (i.e. neurons connected by long
paths)

Long−term dependencies in GNNs − 2

A mutagenic compound is properly an
“agent” capable of inducing mutations in
a single gene, chromosome or genome
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Layered GNNs

GNN

+ GNN

+ GNN

GNNs can be cascaded

In each layer, the (i+1)−th GNN takes a graph in input
with the same connectivity of the original input graph
with node labels “enriched” by the information produced
at the previous layer, for instance:

the output(s) of the i−th GNN

the state(s) of the i−th GNN

both of them

Intuitively… each GNN solves the original problem, but
it can make use of the expertise acquired in the
previous layers
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Can layered GNNs help 
with long−term dependencies?

LGNNs can incrementally incorporate the dependencies into
the labels

The output of a given node can collect information extracted from
its neighborhood
At each layer, the label contains information about a larger
neighborhood

From a different point of view, the (i+1)−th GNN can concen-

trate its efforts only on those patterns incorrectly classified by
the previous GNNs

+
GNN

+ GNN

GNN
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Training layered GNNs

Training LGNNs using a BP−like algorithm would
reintroduce long−term dependencies
Other solutions?

The training phase is carried out layer by layer
Each layer is trained using the original target

GNN

+ GNN

+ GNN
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Experiments on four datasets − 1

B

D

A
A

B
C

A
A

B
C

S G

C

Subgraph localization (artificial dataset)
The GNN takes in input a graph G and, on each node 

v, returns −1/1 according to whether v belongs or not 

to a particular subgraph S

The subgraph S in unknown: it should be learnt by 

examples
The dataset contains 1000 random graphs, 15 nodes
each; the subgraphs are constituted by 7 nodes
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Experiments on four datasets − 2

Clique localization (artificial dataset)
Just the same problem, except that all the cliques 
(fully connected graphs) of a given size must be 
localized
The dataset contains 1000 random graphs, 15 nodes
each; the cliques are constituted by 5 nodes

B

D

A
A

B
C

A
A

B
C

C G

C
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Experiments on four datasets − 3

Supervision 

Classification of mutagenic molecules (publicly avail-
able dataset)

The goal is that of predicting whether a molecule is 
mutagenic

The molecule is represented by a graph where nodes 
stand for atoms, and edges denote chemical bonds
Node/edge labels collect properties of atoms/bonds
A unique supervised node, since mutagenicity is a 
property of the whole molecule
The dataset contains 230 molecules 

Is this molecule mutagenic?

HO

H

O
C

O
C
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helix,
strand
or coil?

helix,
strand
or coil?

helix,
strand
or coil?

helix,
strand
or coil?

helix,
strand
or coil?

Experiments on four datasets − 4

Prediction of the secondary structure of proteins
(publicly available dataset)

The goal is that of predicting, for each amino acid, if 
it belongs to a particular secondary structure (− 
helix, −sheet or random coil)

The protein is represented by its primary structure (a 
sequence of amino acids)
Node labels contain amino acid features
The dataset contains 2171 proteins, constituted by 
344653 amino acids
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Dataset Standard 
GNN

Layered 
GNN

Subgraph 
localization

81.4% 93.9%

Clique localization 88.2% 96.0%

Mutagenesis 89.5% 92.2%

Protein secondary 
structure

60.8% 64.2%

Accuracy results

Comparative results on average accuracy over 5 runs
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