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“Two quite opposite qualities equally bias our minds – habits and novelty.”  

(Jean de La Bruyère)
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Introduction − 1
Proteins are the molecular mechanism that oversees,
regulates and executes all biological functions in living
organisms

Structural proteins, such as collagen, maintain and strengthen
our connective tissues
Mechanoenzymes, such as skeletal muscle myosin, are re-
sponsible for movements, both on a microscopic and a macro-
scopic scale
Several different types of enzymes catalyze different chemical
reactions, activating and governing digestion and metabolism,
immune system, reproduction, and an astonishing assortment
of other functions

Protein interaction with DNA and RNA molecules allows
the production of new proteins and regulates their
expression levels, responding appropriately to changes
in both the internal and the external environment
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Proteins are synthesized as linear amino acid chains,

but, in vivo, they fold up quickly in a compact and

globular form
In the late ‘60s, C. B. Anfinsen was the first to prove
that, when unfolded, or denatured, proteins repeatedly
take the same conformation when they are left free to
fold

This native structure is essential for their biological
function: Only when they are folded into their native,
globular structure, proteins are biologically active
Problem: Only AlphaFold reliably predicts the three−
dimensional shape of a protein, starting from its amino
acid sequence, but it is computationally unaffordable,
apart from Google
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Introduction − 3

Tertiary or native 
structure: 3D 
folding of the 
polypeptide

Quaternary structure: Different peptides
bind together to form a larger protein

Secondary structure: 
The polypeptide is 
wound to form  
−helices and 
−sheets

Primary structure: The amino acid 
sequence of the polypeptide



Amino acids − 1

Amino acids are the basic building blocks of
proteins
Such as DNA and RNA, proteins are synthesized
as linear polymers (chains), composed by smaller
molecules
Unlike DNA and RNA, whose alphabet is consti-
tuted by four nucleotides, proteins are made up
by twenty amino acids, with various size, shape
and chemical properties
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Each amino acid has a main chain or a backbone, con-
sisting of an amino group (−NH2), an alpha−carbon, C,
and a carboxyl group (−COOH)
To the alpha−carbon, a side chain is attached (often
denoted by −R)
The side chain significantly changes from an amino
acid to another, a feature that confers unique stereo-
chemical properties to each of them
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Stereochemistry studies the spatial properties
of molecules (absence or presence of centers,
planes and axes of reflective or rotational
symmetry) and how these impact on the
behavior of chemical compounds

Amino acids − 2



Amino acids are grouped into three main categories
Hydrophobic amino acids have side chains composed for
the majority (or even entirely) by carbon and hydrogen;
rarely, they form hydrogen bonds with water molecules

Glycine, Alanine, Valine, Leucine, Isoleucine, Phenylalanine, 
Methionine

Polar amino acids contain oxygen and/or nitrogen in their
side chains; they easily form hydrogen bonds with water

Serine, Threonine, Tyrosine, Tryptophan, Cysteine, Aspar-

agine, Glutamine, Proline

Charged amino acids have a positive or a negative
charge at biological pH (pH=7)

Aspartic acid, Glutamic acid, Lysine, Histidine, Arginine
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Amino acids − 3
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Amino acids − 4



The amino acid order, in the primary sequence of
a protein, plays a key role in the determination of
its secondary and tertiary structure

The amino acid sequence properties and organiz-
ation are responsible for both the structure and the
biological function of proteins

Example: Excerpt from the GenBank entry of 
bacteriocuprein superoxide dismutase gene for 
the Photobacterium leiognathi
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Amino acids − 6
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Protein primary and secondary structure

Protein 3D structure

Nucleotide gene sequence



The composition of polypeptides − 1

Peptides are molecules of molecular weight less
than 5000 daltons (dalton: 1/12 of the 12C atom
mass), constituted by a chain of few amino acids,
linked together by peptide (or carboamide) bonds
Longer chains are called polypeptides or proteins
When two amino acids are covalently linked, one
of the two loses a hydrogen (H+) from its amino
group, while the other loses an oxygen and a
hydrogen (OH−) from its carboxylic group

A carbonyl group (C=O) and a water molecule

(H2O) are produced
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The result is a dipeptide − two amino acids joined
by a peptide bond − plus a water molecule
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The composition of polypeptides − 3

In a polypeptide, amino acids are sometimes called
residues, because some atoms of the original chemical
compounds are lost (in the form of water molecules) during
the formation of peptide bonds
As DNA and RNA molecules, polypeptides have a specific
directionality

The amino−terminal (or N−terminal) of the polypeptide has an
unbound amino group, while the carboxy−terminal (or C−
terminal) ends with a carboxyl instead of with a carbonyl group
Protein sequences are usually considered from the N−terminal
to the C−terminal

The amino acid sequence that constitutes a protein, its
primary structure, completely determines its three−dimen-
sional structure, its physical and chemical properties, and
finally, its biological function
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The composition of polypeptides − 4



Protein secondary structure
Backbone flexibility − 1

In a polypeptide chain, the amino acid atoms that do
not belong to the side chains form the protein back-
bone (or the main chain) 
The peptide group is rigid and planar, and the two
bonds of C with N and C belonging to the same
residue are the only points, on the backbone, on which
rotations can occur

The rotation angle around the bond between the nitrogen
of the amide and the alpha−carbon is called 

The rotation angle around the bond between the alpha−
carbon and the carbonyl carbon is called 

The backbone conformation of an entire protein can be
specified in terms of the angles ,  of each amino
acid
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Rotations around the bonds of C are
the only degrees of freedom allowed
to the backbone; the structure of
the peptide bonds forces the other
backbone atoms to assume a rigid
and planar configuration

Protein secondary structure
Backbone flexibility − 2



Not all the values of  and  are physically admissible
Some combinations of  and  give rise to steric colli-

sions, i.e. to a physical overlap of the space occupied by
the atoms of the side chain of a residue and by the main
chain of the next
Because of the lack of a side chain (different from
hydrogen), the glycine residues have a much broader
range of possible angles  and  compared to the other
residues
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Protein secondary structure
Backbone flexibility − 3
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
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R

L

Type II turns

Antiparallel −sheets

Levorotatory −helices 

Parallel −sheets

Dextrorotatory −helices

The Ramachandran plot shows the values of  and  which are physically allowed

without causing steric collisions (dark regions); the glycine can assume additional
conformations because of its small side chain (light regions)

Protein secondary structure
Backbone flexibility − 4



Most of the protein backbones contain secondary

structure elements, including −helices (−60°)

and −strands (−135°, 135°), which are associ-

ated with other −strands to form parallel or anti-
parallel −sheets
Given a protein sequence (or its primary structure),
the first step toward the prediction of the three−
dimensional structure consists in determining its sec-
ondary structure, that is in defining which backbone
regions are most likely to form helices, strands, and
−turns, U−bent structures obtained when a −strand
reverses its direction in an antiparallel −sheet
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Protein secondary structure 
Prediction accuracy − 1

Algorithms for the secondary structure prediction
employ a variety of computational techniques, that
includes neural networks, finite state automata, HMMs,
clustering techniques, and genetic algorithms
Most of the existing prediction algorithms are based on
a preliminary alignment of the amino acid sequences,
obtained by classical algorithms, such as BLAST,
FASTA and CLUSTALW
Based on the alignment, the degree of conservation of
each amino acid in the target sequence is estimated,
from which the secondary structure prediction can
start
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Having a protein sequence and the corresponding con-
servation levels as inputs, the most used prediction
methods (based on information gathered from proteins
whose secondary structure is already resolved) are:

Chou−Fasman method, a statistical approach that is based on
the observation that the twenty amino acids show significant
preferences for particular secondary structures (A,R,Q,E,M,L,K 
− helices, C,I,F,T,W,Y,V − sheets); average accuracy 56%

GOR method, a different statistical approach based on a window of
17 amino acids; average accuracy 65%

Stereochemical Lim method, that takes into account hydro-
phobic, hydrophilic and electrostatic properties of amino acids,
considering their role in the protein folding procedure
Neural networks, which are able to process both statistical and
chemico−physical information, in addition to the evolutionary
information coming from multiple alignments (f.i., software 
PSIPRED); average accuracy 70−75%

22

Protein secondary structure 
Prediction accuracy − 2



The ouptut of a secondary structure prediction 
algorithm is usually similar to the following:

APAFSVSPASGASDGQSVSVSVAAAGETYYIAQCAPVGGQDACNPAT

---------HHHHHHH-HHHhhh---EEEEEeee---EEEEee----

In this case, H and h represent predictions of a

helical conformation (respectively with high and
low confidence), while E and e represent pre-

dictions of sheets (“extended”, plain, surfaces)
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Protein secondary structure 
Prediction accuracy − 3



Protein secondary structure 
The Chou−Fasman method

The Chou−Fasman method is based on the PDB databank
It uses a simple statistical approach for predicting the
secondary structure of proteins
Many conformational parameters are assigned to each 

amino acid: P(a), P(b) and P(t) (where t means “turn”)

These parameters, which represent the propensity of each
amino acid to be part of, respectively, −helices, −sheets or
or −turns, are determined on the basis of observed
frequencies in a set of known protein samples (PDB)
Moreover, to each amino acid, four “turn” parameters are 

assigned, f(i), f(i+1), f(i+2), f(i+3), that correspond to the

frequency with which it is observed in the first, second, third
or fourth position of a hairpin turn
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Amino acid P(a) P(b) P(t) f(i) f(i+1) f(i+2) f(i+3)

Alanine 142 83 66 0.06 0.076 0.035 0.058

Arginine 98 93 95 0.070 0.106 0.099 0.085

Asparagine 67 89 156 0.161 0.083 0.191 0.091

Aspartic acid 101 54 146 0.147 0.110 0.179 0.081

Glutamine acid 151 37 74 0.056 0.060 0.077 0.064

Cysteine 70 119 119 0.149 0.050 0.117 0.128

Phenylalanine 113 238 60 0.059 0.041 0.065 0.065

Glutamine 111 110 98 0.074 0.098 0.037 0.098

Glycine 57 75 156 0.102 0.085 0.190 0.152

Histidine 100 87 95 0.140 0.047 0.093 0.054

Isoleucine 108 160 47 0.043 0.034 0.013 0.056

Leucine 121 130 59 0.061 0.025 0.036 0.070

Lysine 114 74 101 0.055 0.115 0.072 0.095

Methionine 145 105 60 0.068 0.082 0.014 0.055

Proline 57 55 152 0.102 0.301 0.034 0.068

Serine 77 75 143 0.120 0.139 0.125 0.106

Tyrosine 69 147 114 0.082 0.065 0.114 0.125

Threonine 83 119 96 0.086 0.108 0.065 0.079

Tryptophan 108 137 96 0.077 0.013 0.064 0.167

Valine 106 170 50 0.062 0.048 0.028 0.053

Chou−Fasman parameters for the 20 common amino acids



Protein secondary structure 
The Chou−Fasman algorithm − 1

Using the Chou−Fasman parameters, the algorithm for
the estimation of the secondary structure proceeds
according to the following steps

1. Identification of −helices:
a. Scan through the peptide and find the regions where 4 out 

of 6 contiguous residues have P(a)100

b. For each identified region, the region is extended in both 
directions until a sequence of 4 contiguous residues is 

found for which P(a)100

c. For each extended region, P(a) and P(b) − i.e. the sums 

of the P(a) and the P(b) values for all the residues in such a 

region − are calculated; if the region is longer than 5 

residues and P(a)  P(b), then it is predicted to be an 

−helix
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2. Identification of −sheets using the same algorithm as in 
point 1., but looking for regions where 3 out of 5 

residues show P(b)100; after having extended the 

regions (as in 1.b), a region is declared a −sheet if the 

average P(b), over all the residues, is grater than 100 

and P(b)  P(a)
3. If a certain −helix, assigned in 1., overlaps to a 

−sheet, assigned in 2., then the overlapped region is 

defined to be a helix if P(a)  P(b), or to be a −sheet 

if P(b)  P(a)

27

Protein secondary structure 
The Chou−Fasman algorithm − 2



4. Identification of −turns:
a. For each residue i, the propensity to bend, p(t), is 

calculated by p(t)=k=0,…,3  f(i+k)

b. A hairpin turn is predicted for each position i satisfying the 

following criteria

i. The propensity to bend should be p(t)  0.000075

ii. The average value of P(t) for the four residues in 

potisions i+k, k = 0,…,3, is greater than 100

iii.  P(a)  P(t)  P(b)  holds on the four residues in 

positions i+k, k = 0,…,3

28

Protein secondary structure 
The Chou−Fasman algorithm − 3



Exercise 1
Using the Chou−Fasman algorithm and its related para-
meters (calculated from PBD), predict the −helix and the
−sheet regions, for the following sequence

CAENKLDHVADCCILFMTWDYNGPCIFIDYNGP

Solution
 P(a)
 70-142-151-67-114-121-101-100-106-142-101-70-70-108-121-113-145-83-108-101
 -69-67-57-57-70-108-113-108-101-69-67-57-57

 P(b)
 119-83-37-89-74-130-54-87-170-83-54-119-119-160-130-138-105-119-137-54-147-

89-75-55-119-160-138-160-54-147-89-75-55

 P(a) = 2134    P(a) = 557

 P(b) = 2061    P(b) = 686

  helix      this is probably too short
                                                        to be a helix
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Exercise 1 (cont.)
Solution

 P(b)
 119-83-37-89-74-130-54-87-170-83-54-119-119-160-130-138-105-119-137-54-147-

89-75-55-119-160-138-160-54-147-89-75-55

 P(b)/16 = 112.875   P(b)8 = 113.5

 P(a) = 1659<1806 = P(b) P(a) = 683<908 = P(b) 
  sheet     sheet

Finally, we need to control what happens in positions from 6
to 20, where the two predictions overlap:

 P(a) = 1590    P(b) = 1659

  sheet
Therefore…

CAENKLDHVADCCILFMTWDYNGPCIFIDYNGP

HHHHHeeeeeeeeeeeeeeee-EEEEEEEE---
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A different statistical approach is the GOR method
(from the names of those who developed it:
Garnier, Osguthorpe and Robson), that predicts
the secondary structure based on a window of 17
residues

For each residue of the sequence, 8 N−terminal 
and 8 C−terminal positions are considered, to-
gether with such central residue

Protein secondary structure 
The GOR method − 1
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As in the Chou−Fasman method, a collection of
proteins of known secondary structure is analyzed
The frequencies with which each amino acid occupies
each of the 17 positions inside a window, being in a
helical, sheet, turn or random coil conformation, are
calculated

Four score matrices of dimension 1720 are evaluated

The values of these matrices are used to calculate the

probability that the central residue belongs to a helix,
a sheet, a turn, or a coil
The method is effective in predicting −helices
(>65%), whereas it is less precise in the case of
−sheets (36.5%)

32

Protein secondary structure 
The GOR method − 2



The best state−of−the−art methods for secondary
structure prediction employ neural networks
For evaluating neural network weights many samples
of non−homologous proteins are required

In order to make a prediction on the residue i of the 

protein, local information is used (f.i.: i−6, ..., i−1, i, 

i+1, ..., i+6) 

Each residue is represented by a one−hot encoding,
using an array of 21 elements, 20 for each type of
residue, one for its absence (gap)
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Protein secondary structure 
Neural networks − 1
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Protein secondary structure 
Neural networks − 2

Input sequences

Variable weigths

Prediction

Output layer

Input layer

Input groups



Obviously, instead of using a sliding window, moving
along the amino acid sequence, we can process the
sequence as it is based, for instance, on LSTMs
Also, Bi−directional recurrent neural networks can be
used

Bi−directional RNNs use a finite sequence to predict or
label each element of the sequence based on the
element’s past and future contexts
This is done by concatenating the outputs of two RNNs,
one processing the sequence from left to right and the
other from right to left
This technique has been proven to be especially useful
when realized based on LSTMs

35

Protein secondary structure 
Neural networks − 3



Tertiary and quaternary structure − 1

The secondary structure prediction process is only the
first step in predicting the complete three−dimensional
structure of a functional protein
The secondary structure elements of a protein are
packaged, along with less structured loop, so as to
form a compact and globular native conformation
The overall three−dimensional structure of a folded
polypeptide chain represents its tertiary structure
The quaternary structure describes the intermolecular
interactions that occur when multiple polypeptides are
associated, to form a functional protein (example:
protein−protein contacts, that occur in multienzymatic
complexes)
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Tertiary structure motifs: (a) beam of helices; (b) − barrel; (c) and (d) open −sheets

(b)

(d)

(a)

(c)

Tertiary and quaternary structure − 2



The protein folding problem includes the prediction of
secondary, tertiary and quaternary structure of poly-
peptides, based on their primary structure
Different types of forces guide the protein folding:

Electrostatic forces
Hydrogen bonds
Van der Waals forces (a kind of weak intermolecular
attraction caused by induced molecular dipoles)
Covalent bonds between cysteines

Moreover, the prediction of the tertiary structure is
made even more complex by the action of a special
class of proteins, called chaperones (escorts), which
act by altering the structure of the proteins (to favor
their folding) in an important but unpredictable way
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Tertiary and quaternary structure 
Hydrophobicity − 1

The hydrophobic effect is generally considered funda-
mental in the folding process, during which the protein
assumes a compact, globular structure
The native structure of most of the proteins comprises
a hydrophobic core, where the hydrophobic residues,
are “buried”, i.e. subtracted from the contact with the
solvent, while the protein surface, exposed to the
solvent, is composed primarily, or entirely, by polar
and charged residues

The process of folding into a compact conformation
that isolates the hydrophobic residues from the solvent
is called hydrophobic collapse
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Tertiary and quaternary structure 
Hydrophobicity − 2

40



Integral membrane proteins are an exception to
this rule

They contain one or more regions, often with a hel-
ical structure, which are inserted in the cell mem-
brane
They cross the lipid bilayer, “looking out” the two
membrane surfaces
They possess hydrophobic superficial regions loc-
ated inside the phospholipid bilayer
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Tertiary and quaternary structure 
Hydrophobicity − 3
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Tertiary and quaternary structure 
Hydrophobicity − 4



The importance of isolating the hydrophobic residues
from the solvent is clearly illustrated by the molecular
pathology called sickle cell anemia
The human hemoglobin, the protein responsible for the
oxygen transport in the blood, is biologically active as a
tetramer (an oligomer consisting of four subunits),
formed by two chains of −globin and two chains of
−globin

43
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Tertiary and quaternary structure 
Hydrophobicity − 5



The mutation of a single residue
on the surface of a chain of the
−globin, from a charged residue
of glutamic acid to a hydrophobic
valine residue (GAG→GUG), forces

the presence of a hydrophobic re-
gion on the protein surface ex-
posed to the solvent
The hydrophobic effect brings the
valine residues to avoid contacts
with the solvent, and causes the
involved −globin molecules to ag-
gregate to the others
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Tertiary and quaternary structure 
Hydrophobicity − 6



This results in long hemoglobin chains, which distort
red blood cells, converting them from their normal disc
shape to the characteristic sickle shape

The effect is particularly evident when the oxygen levels
are low (at the ends and under stress) and the sickle
cells become entangled with one another in the tiny
blood vessels and in the capillaries
Pain, anemia, gangrene
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Tertiary and quaternary structure 
Hydrophobicity − 7



The exact energy of the hydrophobic effect and its
contribution to protein folding are difficult to cal-
culate
However, most of the folding algorithms, which
base their calculations on molecular forces, in-
clude the hydrophobic collapse as one of the
central mechanisms for protein folding
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Tertiary and quaternary structure 
Hydrophobicity − 8



Tertiary and quaternary structure 
Disulfide bonds − 1

When the sulfhydryl groups −SH of (the lateral chain
of) cysteine residues are close, they can be oxidized to

form covalent disulfide bonds (or disulfide bridges)
Cross−links are formed between residues that may be distant in
the primary structure of the protein
The cystines, obtained by this chemical reaction, produce a
significant stabilizing effect on the folded structure of a protein
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Disulfide bond



When experimental methods require that a protein
must be denatured, reducing agents, such as the − 

mercaptoethanol (HOCH2CH2SH), are often used to

break the disulfide bridges
Actually, the original work by Anfinsen showed that
the structure of a protein is specified by its sequence

In fact, the ribonuclease was first denatured and then it was let
free to form disulfide bonds in presence of a high concentration
of urea (CO(NH2)2)
The urea was able to reduce the effect of hydrophobicity on the
conformation of the protein, allowing the formation of disulfide
bonds different from those of the native structure
The “messy” ribonuclease with its cystine residues linked

incorrectly, had only 1% of the enzymatic activity of the native
conformation ribonuclease
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Tertiary and quaternary structure 
Disulfide bonds − 2



Due to the large number of degrees of freedom in
the protein folding procedure, it is still impossible
to evaluate, in general, if the native state is
actually the most stable (or the energetically
most favorable) conformation for a protein

Natural selection favors those proteins that are
active and robust
It is likely that the protein primary structure
mutations that reduce the structural stability of a
protein are disadvantageous and thus that the
natural selection acts against them
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In his famous work of 1968, C. Levinthal noted that the
number of possible folds for a polypeptide chain (even for a
small one) is so vast that, performing an exhaustive search
of all possible conformations, would take many years
Therefore, if a protein were to attain its correctly folded
configuration by sequentially sampling all the possible con-
formations (10300), it would require a time longer than the
age of the universe to arrive at its correct native structure
This observation, known as the Levinthal paradox, suggests
that proteins fold following a path whose intermediate steps
are progressively more stable, until they have reached their
native state
However, that this path finishes (or not) in an absolute
minimum configuration for the energy is still a matter of
debate 
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Tertiary and quaternary structure 
Active and stable structures − 2

GCSF Protein Folding Illustration Movie.flv


Algorithms for protein folding modeling − 1

Numerous algorithms have been developed to un-
derstand how the amino acid sequence of a protein
determines its unique native conformation, none of
which shows an accuracy equal to purely experi-
mental methods, such as X−ray crystallography ⎯ at
least before the very recent and powerful AlphaFold
(now release 3), developed by Google DeepMind
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“…the first computational method that can
regularly predict protein structures with atomic
accuracy even in cases in which no similar
structure is known.”
“AlphaFold has revealed millions of intricate 3D
protein structures, and is helping scientists
understand how life’smolecules interact.”

(see also https://www.youtube.com/watch?v=gg7WjuFs8F4
https://www.youtube.com/watch?v=Mz7Qp73lj9o)

https://www.youtube.com/watch?v=gg7WjuFs8F4
https://www.youtube.com/watch?v=Mz7Qp73lj9o


Algorithms for protein folding modeling − 2
X−ray crystallography ⎯ The image, produced by the X−ray
diffraction through the atomic lattice of a crystal, is
recorded/analyzed to reveal the nature of the lattice

It allows the determination of the molecular structure of a
chemical compound at the atomic level

However, even the simplest protein folding algorithms have
provided new insights into the forces that determine the
protein structure and on the folding process itself
…while the accuracy and the power of these algorithms pro-
gressively improve, thanks to new optimization and machine
learning techniques, and to the deeper knowledge in the
field of experimental biochemistry, especially on those
forces which contribute to the stability of a folded protein
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Lattice models − 1
Even the most modern high−performance architectures
are hardly able to explicitly model all the interactions
involved in the folding of a polypeptide chain for more
than few femptoseconds (=10−15 seconds)
Having a limited computational power, very simplified
models of the folding process must be defined in order
to dominate its complexity

Restricting degrees of freedom for the protein conform-
ation: Instead of allowing all the physically possible con-
figurations, the C positions are constrained to lie on a
bi− or a three−dimensional grid (or lattice)

Number of adoptable protein conformations significantly
reduced
For polypeptides of modest size, an exhaustive search can
be realized, that identifies the conformation corresponding
to the absolute minimum of the energy
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In the two−dimensional space, by
convention, the N−terminal amino
acid is positioned at the origin of
the coordinate system and the
subsequent residue in (1,0)
The configuration score is based
on the number of hydrophobic
contacts in the grid
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The simplest and the most studied lattice model is the 
H−P model, where H−P stands for Hydrophobic−Polar

It simplifies the protein model by representing each
amino acid residue as a single atom of fixed radius, of
hydrophobic or polar type

2D (a) and 3D (b) representations of
the H−P model for a polypeptide of 12
residues; the hydrophobic residues
are shown in black, the polar residues
in white

Lattice models − 2



It is assumed that every contact H−H makes a contri-
bution to the energy equal to −1, except when the two
hydrophobic residues are contiguous in the primary
structure of the polypeptide (since they will contribute
to all possible configurations exactly in the same way)

The optimal conformation will be the one with the
greatest number of contacts H−H, which is normally
obtained forming a hydrophobic core containing the
maximum number of H residues, and relegating the P
residues on the surface of the protein
Example: The obtained score for both the 2D and 3D
conformations is equal to −3
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Lattice models − 3



Assuming that the hydrophobic collapse represents the
only significant factor in protein folding is a very
strong approximation, so as the conformational con-
straints imposed by a 2D or a 3D lattice
However, H−P models have provided interesting in-
formation on the mechanism of protein folding

K. Dill suggested the hydrophobic hinge as a possible
mechanism for the secondary structure formation
(U−turns in antiparallel −sheets)
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Lattice models − 4



As the size of the polypeptide chain increases, the
exhaustive search of all possible conformations
becomes an intractable problem (the problem has
been shown to be NP−complete in the ‘90s, from
Patterson and Prytycka)

Use of soft−computing methods: Monte Carlo meth-
ods, machine learning, genetic algorithms, branch
and bound, etc. to find a possible sub−optimal
solution
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An important consideration in the implementation of a
protein folding prediction algorithm on the lattice con-
cerns how to represent a particular configuration

Absolute representation of the direction: Put the first
residue at the origin and then represent the direction of
the motion for each subsequent residue

For the 2D model, the possible choices at each position are: 
Left (L), Right (R), Up (U) and Down (D)
For the 3D model: Left (L), Right (R), Up (U), Down (D), 
Backward (B) and Forward (F)
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Example
 (a) R, R, D, L, D, L, U, L, U, U, R
 (b) R, B, U, F, L, U, R, B, L, L, F 

Lattice models − 6



In fact, the number of choices at each step can be re-
duced by using a relative representation of the direction

Each residue, after the second one, has three/five options
In 2D: Left (L), Right (R), Forward (F)
In 3D: Left (L), Right (R), Forward (F), Up (U), Down (D)

In this approach, we have not only to keep track of the
current position, but also of the direction to which the
current residue points, defining what it considers as Up
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Example
 (a) F, F, R, R, L, R, R, L, R, F, R
 (b) F, L, U, U, R, U, U, L, L, F, L

Lattice models − 7



A key difficulty, which occurs using both representations,
lies in the fact that some of the generated configurations
will have two residues in the same position
Example: With the relative representation, any 2D configur-
ation that begins with (L, L, L, L) will take two residues at
the origin (0,0), resulting in a bump or a steric collision
In order to avoid collisions:

Assign a very high energy to any configuration showing a
collision
Since the optimization algorithm prefers low−energy configurations,
those containing collisions will be excluded from the subsequent
search steps
The search process may be hindered, eliminating favorable con-
formations that could lead to a low energy state

Local optimization strategies to resolve collisions before assign-
ing a score to the obtained configuration
Alternative representations that do not (often) lead to collisions
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Representation with a preference order
A permutation of all possible directions, instead of a
single direction, is assigned to each residue
Example: In a 2D model, the permutation {L, F, R} could
be assigned to a single residue  the preferred direction
is left but, in the event of a collision, also moving
forward is acceptable
Although this type of representation can again produce
bumps, when a collision occurs for each direction, they
actually happen with a significantly lower frequency

The use of representations with a preference order, in
conjunction with local optimizations, can be used to
obtain models that do not produce bumps
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The correspondence established between amino acids
and their occupied positions is called protein embed-
ding, and when the embedding is injective, the con-
formation that the protein assumes is called self−
avoiding
In summary:

The hydrophobic interaction is crucial for protein folding
and the hydrophobicity of amino acids is the driving force
for the development of the native conformation for small
globular proteins
The native structure of many proteins is compact and
shows a well−defined nucleus, formed by the hydro-
phobic residues that are minimally exposed to the
solvent, protected from the surface composed by polar
residues
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Exercise 2

Assuming a relative representation (L,
R, F), how can the configuration be
described?
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Solution
▪ The value of the energy is −4
▪ F,F,R,R,L,L,F,L,F,R,R,F,F,R,F,F,F,R,F

Assuming an energy contribution of −1 for each hydrophobic
contact that does not concern two contiguous backbone
residues, determine the energy for the following configur-
ation of the 2D H−P model



Off−lattice models − 1

Free moving in the 3D space allows a protein model to
assume more realistic configurations
Using a complete model of the main chain and allow-
ing  and  angles to assume any value in the admiss-
ible regions of the Ramachandran plot, the off−lattice
models have produced, for small polypeptides, config-
urations very similar to those experimentally observed
The error is measured by the Root Mean Square Devi-
ation (RMSD) between the predicted and the observed
configurations of C

Improvements in the realism of the protein models are
obtained at the cost of a greater complexity
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Off−lattice models may only include the C, all the
backbone atoms or even the side chain

The backbone conformations are represented by the
angles  and  for each C

Side chains, if included, may be rigid, semi−flexible
or completely flexible
In the case of rigid side chains, we consider the
resolved X−ray crystallographic structures and the
most common conformation, for each type of amino
acid, is taken as the only possible one for that
particular residue
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In the case of semi−flexible side chains, for each
amino acid, the side−conformation of all the re-
solved X−ray structures is considered; after that,
a clustering phase is carried out in order to cal-
culate the centroids, called rotamers

In a semi−flexible model, each side chain is allowed
to adopt any of the rotamers most commonly ob-
served
Different conformations allowed, with a modest
computational load
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Energy functions and optimization − 1

The off−lattice protein models require more soph-
isticated energy functions
Theoretical approach

In addition to hydrophobic contacts, energy func-
tions may consider the formation of hydrogen and
disulfide bonds, the presence of electrostatic inter-
actions and van der Waals forces, and the interac-
tions with the solvent

E = a1EHyd+a2EHbonds+a3ESbonds+a4ECoulomb+a5EvdWalls+a6ESolv

They should be defined so that the protein conform-
ations resolved by the X−ray crystallography rep-
resent minimum energy states
Relative contributions are difficult to be experi-
mentally calculated
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Even if modeling proteins using all the forces that

drive their folding is actually sensible, ab initio ap-

proaches have had a limited success, due to several
reasons:

The exact forces and their interactions have not been
fully understood yet
These approaches are computationally too expensive to
be used for polypeptides of a realistic size

Devise a semi−empirical energy function based on the
conformations observed in known proteins

The 3D neighborhood of each amino acid is examined in
order to create some scores based on the relative
positions of the different residues
Local conformations which are common in the reference
database are scored as low−energy, uncommon patterns
obtain high−energy values 68
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Examples
If a particular serine residue has three residues within a
neighborhood of 6Å, an aspartate, a histidine, and a
glutamate, and these amino acids are commonly found in
the vicinity of the serine in the reference database 

serine receives a low−energy score
Conversely, if SER and GLU are rarely found to be close

within the database, the serine residue will receive a
higher value for its energy

Local values are then summed over the entire protein

to calculate the total energy
Semi−empirical energy functions promote conform-
ations similar to those observed in known proteins and
penalize new or unusual ones
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Folding algorithms − 1
In summary, formulating an algorithm for the protein
folding prediction problem consists of the following
steps

Select a protein folding model
Lattice models allow fast calculations and exhaustive searches, but
are not able to reliably reproduce the true protein conformations
Off−lattice models require lengthy calculations to evaluate the
energy

Define how to describe every possible conformations
For lattice models, simple representations are sufficient, that
encode the direction in which the “next move” should occur
For off−lattice models,  and  angles for each C are used

Choose an energy function to evaluate how much a given
conformation is favorable
Select an optimization method to search, through all the
possible configurations, the structure that represents an
absolute minimum for the energy function chosen
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An interesting approach, to handle the computational

complexity of ab initio methods, has been devised by V.

Pande
Folding@Home, which acts as a screen saver, use the
idle CPU cycles to develop protein folding models
All the calculations, required to model the 3D structure
of a particular protein, are “parallelized” and distrib-
uted via Internet to computers that execute the
Folding@Home code
The obtained results are sent back to the remote
server, where they are recombined and analyzed
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Using the power of distributed computing, the

Folding@Home software can perform ab initio modeling

of long polypeptides, a task that would otherwise be
computationally intractable
To join the Folding@Home project, only a computer
(with Linux, Mac OS or Windows) and an Internet con-
nection are needed
For more information, the reference site is

https://foldingathome.org/

During the pandemic period, the site has been focused on 
COVID−19 and reported the following message: “Together
we have created the most powerful supercomputer on the planet
and are using it to help understand SARS-CoV-2/COVID-19 and
develop new therapies. We need your help pushing toward a
potent, patent-free drug. Use your PC to help fight COVID-19.”
Now, there is still a dedicated section to COVID-19

•
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Folding and misfolding

73

When proteins do not fold correctly, a misfolding
occurs, a situation which can lead to Alzheimer’s
disease, Parkinson’s disease, Bovine Spongiform
Encephalopathy (BSE), Huntington’s disease,
Amyotrophic Lateral Sclerosis (ALS), etc.
A deep understanding of the misfolding causes is
therefore essential to synthesize drugs and to
define treatment programs to combat these
neurodegenerative diseases



Tertiary structure prediction − 1

Though protein folding models actually support a
partial understanding of this phenomenon (and of

the involved forces), for ab initio algorithm is

anyway difficult to obtain a high degree of
accuracy (i.e., an RMSD on the main chain  3Å)
for large protein structures
On the other hand, for applications such as drug
discovery and ligand design (ligands are mo-
lecules capable of reacting with a receptor to
produce a given physiological response) a very
accurate model of the active site of a protein is
required
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Proteins often interact with ligands with a so high
specificity that a deviation  1Å of the position of
a key backbone atom can cause a substantial re-
duction in their binding affinity
Alternatively, when the tertiary structure of one
or more proteins, similar to the target protein
with respect to the primary structure, is known,
then the target protein can be modeled, often
with a high degree of accuracy, based on compar-
ative techniques
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Comparative modeling − 1

Comparative modeling, sometimes called homology
modeling, is able to predict the structure of a target
protein by comparison with the structures of some
related proteins

The fundametal hypothesis on which these techniques
are based is the “robustness of the folding code”
Small changes in the amino acid sequence of a protein
(usually) will cause changes equally small of its tertiary
structure
That is: In general, many changes in the primary struc-
ture must be accumulated before a significant distortion
in the native conformation occurs
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A generalized protocol for the comparative modeling of
a target protein is composed by the following steps
1. Identification of a set of protein structures related with

the target protein − Since the 3D structure of the target
protein is unknown, the similarity is based on the
primary structure, which can be detected with database
search algorithms, such as BLAST and FASTA; since the
selected structures will serve as a template for the
target protein modeling, they are just called template
structures (www.ncbi.nlm.nih.gov/BLAST/) 
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2. Alignment of the target sequence with the template
protein sequences

Classical tools are used for multiple alignments, such as
CLUSTALW
Multiple alignments allow to identify those regions within
the target protein that are highly conserved w.r.t. the tem-
plate structures
When the identity between the target sequence and the
template sequences is less than 30%, automatic multiple
alignment methods might not provide results of sufficient
quality  manual adjustments are needed

Move the gaps from secondary structure elements and place
them inside the superficial loops, where they assume a less
important influence, and where it is evolutionarily more likely
that indel events occur
However, for a sequence identity lower than 30%, the model
will be inaccurate
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3. Building the model
Overlap the template structures and find the structurally
conserved regions
The backbone of the target structure is then aligned with
the conserved fragments, forming the core of the model
When the template structures diverge, in order to select
the correct structure for the target protein, methods for
secondary structure prediction must be used
Since it is much more likely that the template structures
differ in loop regions, w.r.t. regions with a well−defined
secondary structure, loops are, in general, modeled separ-
ately, after building the core of the model
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4. Loop modeling
Select the better loop from a database of known conforma-
tions
Perform a conformational evaluation
Although there exists a wide variety of methods for mod-
eling loops, it is difficult to get an accurate shape for loops
longer than six residues

5. Side chain modeling − Once built the backbone model,
the positions of the side chain atoms must be determ-
ined

Searches in rotamer libraries and applications of simple
molecular dynamics approaches
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Comparative modeling − 7
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Side chain models

Loop database



6. Model evaluation − There are several software packages
for the quality assessment of 3D structures (PRO-
CHECK, WHAT_CHECK, Verify3D, etc.)

Model validation algorithms control abnormalities such as
 combinations that are not in the eligible regions of the
Ramachandran plot, steric collisions, and unfavorable bond
lengths or angles
After having identified any structural abnormalities, the
model is usually adjusted by hand to correct the detected
problems
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Threading: 
the inverse problem of protein folding − 1

84

The evolutionary studies have taught us that proteins
with a small sequence similarity can anyway fold in a
similar way
The number of protein topologies existing in nature is
finite and presumably small (104)
Formulation of the inverse problem w.r.t. that of 3D
structure prediction

Given a particular sequence, to which structural class
can it belong?
Compatibility between the sequence and the 3D
structure representative of a particular class

The process that consists in considering a particular
3D conformation and in estimating how much it is
beneficial for the target protein is called protein
threading
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Elements of a threading system
A library of 3D structures representative of the known
universe of proteins (obviously not exhaustive of the
entire universe)
An energy function to measure the compatibility
between the sequence and the structure
A threading algorithm that computes the minimum
energy alignment between the sequence and the tested
structures
A statistical evaluation criterion for the results

Various criteria have been developed, together with
many hierarchical databases that identify groups of
proteins folded in a similar manner (CATH, SCOP,
LPFC, pClass, FSSP, etc.)

Threading: 
the inverse problem of protein folding − 2
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Such databases group proteins with similar structure
into categories, such as families, superfamilies and
classes of folding

In general, libraries contain elements at the “super-
family” or “family” level, in order to limit the structural
variations within each folding
To identify to which folding family or superfamily a given
protein belongs, a medium structure that represents all
the peculiarities of a family can be considered, in order
to evaluate the quality of the structure obtained if the
target protein assume this conformation

Threading: 
the inverse problem of protein folding − 3
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The evaluation is repeated for each folding family, in
order to select the conformation with the most favor-
able score, which attests the membership of the target
protein to that particular family
To measure the threading compatibility between a
sequence and a template belonging to the library, an
energy function is used

Normally, empirical−statistical (knowledge−based) ener-
gies are employed, rather than physico−chemical ones

Threading: 
the inverse problem of protein folding − 4
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The assignment of a protein sequence to a particular family
not only provides a rough approximation of its native
structure, but also gives information about its possible
functions and on the relationships with other proteins and
other biological pathways

Threading: 
the inverse problem of protein folding − 5



RNA secondary structure prediction − 1

Unlike DNA, which usually assumes the well−
known double helix conformation, the 2D struc-
ture of a single−strand RNA is determined by the
sequence of its nucleotides, as well as the struc-
ture of a protein is determined by its amino acid
sequence
The RNA structure, however, is less complex than
a protein structure and can be well−characterized
by identifying the positions of the secondary
structure elements that commonly occur
For the RNA, the secondary structure elements
are different from those of proteins
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As for the DNA, the RNA complementary base
pairs form hydrogen bonds, inducing a helical
structure
However, in a single−strand RNA, base pairing
occurs within a single RNA molecule, forming re-
gions obtained by a sequence of bases coupled in
a stem
At the point in which the RNA chain reverses its
direction, to allow the base pairing, it forms a
hairpin turn

When a small number of bases along the RNA chain
is not complementary, a small bulge or a (larger)
loop can be formed
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The RNA structure most diffi-
cult to be predicted is the
pseudo−knot, where the bases
involved in a loop are coupled
with some bases that are out-
side the loop
Given the difficulty of predict-
ing pseudo−knots, most of the
RNA secondary structure pre-
diction algorithms ignore them
totally, searching only for sim-
pler structure elements
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Since RNA represents an intermediate language
between DNA and proteins, an accurate prediction of
the RNA secondary structure is important to under-
stand gene regulation and expression of protein
products
In fact, it is a recent discovery that many RNAs also
have catalytic properties

They are called ribozymes, and they are involved in the
splicing of tRNA molecules, in the activity of ribosomes,
in the eukaryotic hnRNA processing, etc.
While, usually, ribozymes are found in the context of a
protein−RNA interaction, it has been shown that, in some
circumstances, they may present a catalytic activity even
in the absence of their protein partners
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Moreover, the RNA acts as a structural scaffold for the
DNA, RNA and polypeptide reactions
In addition, because some viruses, such as HIV, are
encoded in the form of RNA, the RNA secondary struc-
ture understanding can support the process of discov-
ery and testing pharmacological agents against these
pathogens
Therefore, various approaches (most of all based on
machine learning) have been devised for the predic-
tion of the RNA secondary structure; the function to be
minimized is just the free energy of the folded macro-
molecule, which implies obtaining the most stable
configurations
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Concluding…
Proteins are complex macromolecules that fold in different
types of three−dimensional structures; however, a particular
amino acid sequence encodes a unique 3D native structure
The secondary structure of a protein can be predicted with a
significant accuracy (80%), using, for instance, recurrent
neural networks, hidden Markov models, etc.
The tertiary and quaternary structures are much more
difficult to predict

Folding algorithms
Comparative modeling
Threading

Also important is the prediction of the RNA secondary struc-
ture that, so as for proteins, can be obtained with good
accuracy by means of machine learning techniques
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