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and pairwise alignments
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“It is a capital mistake to theorize before one has data. Insensibly one

begins to twist facts to suit theories, instead of theories to suit facts.” 

(A. Conan Doyle, A scandal in Bohemia, Strand Magazine, July 1891)
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Introduction − 1

Each alignment between two or more nucleotide
or amino acid sequences is an explicit assumption
about their common evolutionary history

Comparisons among related sequences have facili-
tated many advances in understanding their infor-
mation content and their function

Techniques for sequence alignment and sequence
comparison, and similarity search algorithms in
biological databases, are fundamental in Bio-
informatics
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Sequences closely related to each other are usu-
ally easy to align and, conversely, the quality of
an alignment is an important indicator of their
level of correlation

Sequence alignments are used to:

Determine the function of a newly discovered
genetic sequence (comparison with similar sequen-
ces)

Determine the evolutionary relationships between
genes, proteins, and entire species

Predict the structure and the function of new
proteins based on known “similar” proteins
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Dot plots − 1
Probably, the simplest method to reveal analogies
between two sequences consists in displaying
their similarity regions using dot plots

The dot plot is a graphical method to display
pairwise similarities

Less intuitive is its close relationship with pairwise
alignments

The dot plot is represented by a table or a matrix
or, alternatively, in a Cartesian plane

The rows or the y−axis correspond to the elements
of a sequence, and the columns or the x−axis to the
elements of the other

The dots are posed in each position where the
elements of both sequences coincide 5



Dot plots − 2 
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Dot plots: (a) matrix representations and (b) graphical representation in the Cartesian plane

(a) (b)



The similarity regions will thus be viewed as diagonal
lines, that proceed from South−West to North−East;
repeated sequences will produce parallel diagonals

Therefore, dot plots capture, in a single image, not
only the overall similarity between two sequences, but
also the complete set and the relative quality of the
different possible alignments

Often, some similarity may be shifted, so as to appear
on parallel, but not collinear, diagonals

Dot plots − 3 

This indicates the presence of inser-
tion/deletion phenomena occurred in
the segments between the similarity
regions
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Example

Diagonal lines represent alignments

Horizontal lines between aligned sequences indic-
ate that “something is lost” in one sequence

The longest alignments are “This” and “sequence”,
while “is a” is lost in the horizontal sequence

Dot plots − 4 

The pink dots represent noise (i.e.,
spurious alignments)



Indeed, in the dot plot matrices, random iden-
tities produce a high background noise (especially
for long sequences)

This happens almost always in the alignments
between nucleic acids, due to the alphabet
composed by only four letters

Dot plots − 5

To reduce the noise, short sequ-
ences (in sliding windows)
should be compared instead of
single nucleotides

In this case, the dot is reported

only when s nucleotides coincide

within a window of dimension w 9



Dot plots − 6
Increasing the s value corresponds to increase

the requested precision (maximum for s = w)

Obviously, the variation of w and s has a signi-

ficant influence on the background noise

The best experimental values for w and s, with

respect to nucleotide and protein sequences, are
empirically determined by a trial−and−error pro-
cedure
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A complete dot plot comparing 
nucleotide sequences from the 
β−globin genes of human and 

orangutan (w=10, s=8)



Dot plots − 7

Particularly in the case of proteins, a dot plot
matrix, that actually considers only identities,
does not provide a true indication of the simil-
arity relations between sequences, since the
non−identity among amino acids can have very
different biological implications

In fact:

In some situations, the replacement of a residue with a
different one, but with very similar properties (e.g.:
leucine and isoleucine), can be almost irrelevant

In other cases, two non−identical residues can have very
different properties
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Simple alignments − 1

A simple pairwise alignment consists in matching
pairs of characters belonging to two sequences

The alignment of nucleotide or amino acid se-
quences reflects their evolutionary relationship,
namely their homology, i.e., the presence of a
common ancestor

A score for homology does not exist: At any given
position of an alignment, the two sequences may
share an ancestor character or not

The overall similarity can instead be quantified by
means of a fraction
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In Nature, insertions and deletions are significantly
less frequent than substitutions

Since there are no homologues of nucleotides inserted
or deleted, gaps are commonly added in the align-
ments, in order to reflect the occurrence of this type of
changes 13

Simple alignments − 2
In particular, in any given position
within a sequence, three types of
changes may occur:

A substitution that replaces one char-
acter with another

An insertion, which adds one or more
characters

A deletion, which eliminates one or
more characters



In the simplest case, in which gaps are not allowed, the
alignment of two sequences is reduced to the choice of the
starting point for the shorter sequence

 AATCTATA  AATCTATA  AATCTATA

 AAGATA   AAGATA    AAGATA

To determine which of the three alignments is “optimal”, it
is necessary to establish a score to comparatively evaluate
them

 where n is the length of the longest sequence 

For a score of mismatching/matching equal to 0/1, the three
alignments are evaluated respectively 4, 1 and 3
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{
n

i=1 Non−correspondence score, if seq1iseq2i

Correspondence score, if seq1i=seq2i

Simple alignments − 3



Gaps 

Considering the possibility that insertion and dele-
tion events can occur significantly increases the
number of possible alignments between pairs of
sequences

For example, the two sequences AATCTATA and
AAGATA that can be aligned without gaps in only

three ways, admit 28 different alignments, with
the insertion of two gaps within the shorter
sequence

Examples

 AATCTATA  AATCTATA  AATCTATA

 AAG−AT−A  AA−G−ATA  AA−−GATA
15



Simple penalties for gap insertion

Introduction, in the alignment evaluation score, of
a penalty term for a gap insertion (gap penalty)

Assuming a score of mismatching/matching equal
to 0/1 and a gap penalty equal to −1, the scores for
the following three alignments with gaps (out of 28)
would be 1, 3, 3

 AATCTATA  AATCTATA  AATCTATA

 AAG−AT−A  AA−G−ATA  AA−−GATA
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{
n

i=1 Non−correspondence score, if seq1iseq2i

Correspondence score, if seq1i=seq2i

Penalty for a gap insertion, if seq1i=“−” or seq2i =“−”



Penalties for the presence and the length of a gap − 1

Using a simple gap penalty, it is common to evidence
many “optimal” alignments (depending on the selected
criterion)

Choose different penalty values for single gaps and gaps
that appear in sequence

Concretely, any pairwise alignment represents a hypo-
thesis about the evolutionary path that two sequences
have undertaken from the last common ancestor

When several competing hypotheses are considered,
the one that invokes the fewest unlikely events is, by
definition, the most likely correct one
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Let s1 and s2 be two arbitrary DNA sequences of length 

12 and 9, respectively

Each alignment will necessarily have three gaps in the shorter
sequence

Assuming that s1 and s2 are homologous sequences, the differ-

ence in length can be caused by the insertion of nucleotides in
the longer sequence, or by the deletion of nucleotides in the
shorter sequence, or by a combination of the two events

Since the sequence of the ancestor is unknown, no methods
exist able to determine the cause of a gap, which is attributed
generally to an indel event (insertion/deletion)

Moreover, since sequential insertions/deletions are not un-
common, it is statistically more likely that the difference in
length between the two sequences was due to a single indel of
three nucleotides, rather than to three distinct indels

18

Penalties for the presence and the length of a gap − 2



The scoring function has to reward alignments that are
most plausible from the evolutionary point of view

By assigning a penalty on the length of the gap (which
depends on the number of sequential characters
missed) lower than the penalty for the creation of new
gaps, the scoring function rewards the alignments that
show sequential gaps

Example: Using a gap creation penalty equal to −2, a 
length penalty of −1 (for each missed character), and 
mismatching/matching values equal to 0/1, the scores 
in the three cases below are respectively −3, −1, 1

 AATCTATA  AATCTATA  AATCTATA

 AAG−AT−A  AA−G−ATA  AA−−GATA

19

Penalties for the presence and the length of a gap − 3



Score matrices − 1

Just as the gap penalty, that can be adapted to reward
alignments evolutionarily more plausible, so the mis-
matching penalty can be made non−uniform, based on

the simple observation that some substitutions are
more common (and less dangerous) than others

Example: Let us consider a protein sequence, which
has an alanine at a given position

A substitution with another small and hydrophobic amino
acid, such as valine, has a lower impact on the resulting
protein with respect to a replacement with a large and
charged residue such as, for example, lysine

20
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Lysine

Alanine

Valine

Score matrices − 2



Nucleotide matches are moderately rewar-
ded, while a small penalty is given to
transition events (substitution between
purines or pyrimidines, A-G/C-T); instead, a

more severe penalty is assigned for trans-
versions, in which a purine replaces a
pyrimidine or vice versa

22

A T C G

A 1 −5 −5 −1

T −5 1 −1 −5

C −5 −1 1 −5

G −1 −5 −5 1

Intuitively, a conservative substitution, unlike a more drastic
one, may occur more frequently, because it preserves the
original functionality of the protein

Given an alignment score for each possible pair of nucle-
otides or residues, the score matrix is used to assign a value
to each position of an alignment, except gaps

Example

 

Score matrices − 3
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Several criteria can be considered in setting up a score
matrix for amino acid sequence alignments

Physico−chemical similarity

Genetic similarity

Observed replacement frequencies

In physico−chemical similarity−based matrices, the
substitution between two amino acids, which, however,
have both functional aromatic groups (hydrophobic
amino acids, with a side chain containing a benzene
ring, such as phenylalanine, tyrosine and tryptophan)
could receive a positive score, while substituting
non−polar with charged amino acids could be penalized

 

Score matrices − 4
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Score matrices can be derived according to the
hydrophobicity, the presence of charge, the elec-
tronegativity, and the size of the involved residues

Alternatively, similarity criteria based on the en-
coding genome can also be used: the assigned
score is proportional to the minimum number of
nucleotide substitutions necessary to convert a
codon to another

Difficulty in combining, in a single “significant”
matrix, chemical, physical and genetic scores

 

Score matrices − 5
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The most common method to derive score
matrices consists in observing the actual fre-
quencies of amino acid substitutions in Nature

If a replacement which involves two particular
amino acids is frequently observed, their align-
ment obtains a favorable score

Vice versa, alignments between residues which,
during evolution, are rarely observed must be
penalized

Score matrices − 6



PAM matrices − 1

PAM matrices exploit the concept of Point − or Percent
− Accepted Mutations; they were proposed in 1978, by
M. Dayhoff et al., on the basis of a study on molecular
phylogeny involving 71 protein families
PAM matrices were developed by examining mutations
within superfamilies of closely related proteins, also
noting how observed substitutions did not happen at
random

Some amino acid substitutions occur more frequently
than others, probably because they do not significantly
alter the structure and the function of a protein
Homologous proteins need not to be necessarily
constituted by the same amino acids in each position
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PAM matrices − 2

Two proteins are “distant” 1 PAM unit if ⎯ on
average ⎯ they differ for a single amino acid out
of 100, and if the substitution is accepted, i.e., it
does not result in a loss of functionality

Therefore… two sequences s1 and s2 are distant 1

PAM if s1 can be transformed into s2 with a point

substitution per 100 amino acids, on average

Since the amino acid at a certain position may
change several times and then may return to the
original character, the two sequences that are 1
PAM may be the evolutionary product of a set of
unobservable substitutions that involved more than
one amino acid out of 100

27



PAM matrices − 3

In other words, the elements of a PAM 1 matrix
answer the following question

Suppose we have a polypeptide sequence S at time

t, and observe the evolutionary changes in the

sequence until 1% of all amino acid residues have

undergone substitutions at the time t+n

Let us call S’ the new sequence at time t+n

What is the probability that a residue j in S is

replaced by a residue i in S’?

The answer to this question corresponds to the

element Pij of the PAM 1 matrix

28



PAM matrices − 4

85%), for which an
alignment can be de-
rived without ambiguity

Protein families used for PAMs collect orthologous
proteins (which perform the same function in dif-
ferent organisms); instead, pathological changes,
that are associated to loss of functionality, are not
included in this collection

To generate a PAM 1 matrix, we consider pairs
of very similar protein sequences (with an identity

Speciation Duplication

Orthologous genes
Paralogous genes



PAM matrices − 5
Based on this set of proteins, a PAM 1 score matrix
can be defined as follows:

Calculation of an alignment among sequences with very
high identity

For each pair of amino acids i and j, calculation of Fij, the

number of times that the amino acid j is replaced by i

For each amino acid j, evaluation of the relative mutab-

ility nj (the number of substitution in which such amino

acid is involved, appropriately normalized)

Evaluation of Mij, the “mutation probability” for each

amino acid pair j → i

Finally, each PAM 1 element, Pij, is evaluated by applying

the logarithm to Mij, previously normalized w.r.t. the

frequency of the residue i
PAM 1 is also called the log−odds matrix 30



PAM matrices − 6

31

Example (to be continued)

1) Construction of a multiple sequence alignment:

 ACGCTAFKI   ACGCTLFKL

 GCGCTAFKI   ASGCTAFKL

 GCGCTGFKI   ACACTAFKL

 GCGCTLFKI



PAM matrices − 7
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Example (to be continued)

2) A phylogenetic tree is created, that indicates the order
in which substitutions may have been occurred during
evolution

ACGCTAFKI

ACACTAFKL

G→A

I→L

ACGCTAFKL

C→S

ASGCTAFKLGCGCTLFKI

A→L

A→G

GCGCTAFKI

A→G

GCGCTGFKI

ACGCTAFKI  ACGCTLFKL

GCGCTAFKI  ASGCTAFKL

GCGCTGFKI  ACACTAFKL

GCGCTLFKI



PAM matrices − 8
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Example (to be continued)

3) For each amino acid, we calculate the number of re-
placements with respect to any other amino acid

It is assumed that the substitutions are symmetric, that is
they occur with the same probability with respect to a
given pair of amino acids

For instance, in order to determine the substitution fre-

quency between A and G (alanine and glycine), FG,A=FA,G, 
we count all the branches A→G and G→A

FG,A= 3



PAM matrices − 9
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Example (to be continued)

4) Calculation of the relative mutability nj of each amino

acid

The mutability mj is the number of times an amino acid is

replaced by any other in the phylogenetic tree

This number is then normalized by the total number of
mutations that may have some effects on the alignment

...that is, the denominator of the fraction is given by the
total number of substitutions in the tree, multiplied by
two, multiplied by the frequency of the particular amino
acid, multiplied by a scale factor equal to 100

The scale factor 100 is used because the PAM 1 matrix
represents the “substitution probability” per 100 residues



PAM matrices − 10
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Example (to be continued)
Let us consider the amino acid A: There are 4 substitu-

tions involving A in the phylogenetic tree (mA= 4)

This value must be divided by twice the total number of
substitutions (62=12), multiplied by the relative fre-

quency of the residue fA (1063=0.159), multiplied by 100

nA=4(120.159100)=0.0209



Example (to be continued)

5) Let us calculate the “mutation probability” Mij, for each 

pair of amino acids

Mij=njFij/k Fkj

and then…

MG,A=(0.02093)4=0.0156

where the denominator k Fkj represents the total num-
ber of substitutions that involves A in the phylogenetic

tree

total replacements  j  i

PAM matrices − 11

36

total replacements 
involving j

relative mutability of j



PAM matrices − 12
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Example

6) Finally, each Mij must be divided by the frequency of 

the residue i; the logarithm of the resulting value 

constitutes the corresponding element of the PAM 

matrix, Pij

For G, the frequency  fG is equal to 0.159 (1063)

For G and A, PG,A=log(0.01560.159)−1.01 

7) By repeating the above procedure for each pair of
amino acids we can obtain all the extra−diagonal

values of the PAM matrix, whereas Pii are calculated 

posing 

 Mii =1−ki Mki 

 and executing 6) 



PAM matrices − 13
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High order PAM matrices are generated by successive
multiplications of the PAM 1 matrix, since the prob-
ability of two independent events is equal to the
product of the probabilities of each individual event

While for the PAM 1 matrix it holds that a mutational
event corresponds to a difference of 1%, this is not
true for higher order PAM matrices

Indeed, subsequent mutations have a gradually
increasing chance to happen in correspondence of
already mutated amino acids

The degree of difference increases with the increase in
the number of mutations, but while the number of
mutations can tend to infinity, the difference tends
asymptotically to 100%



PAM matrices − 14
The choice of the most suitable PAM matrix with respect to a
particular alignment of sequences, depends on their length
and on their correlation degree

PAM 2 is calculated from PAM 1 assuming another evolu-
tionary step

PAM n is obtained from PAM n−1

PAM 100, therefore, represents 100 evolutionary steps, in
each of which there was a 1% of substitutions more
compared to the previous step

The most used matrix, in practice, is PAM250, which stands
for an overall change of 250%; at this level, however, the
amino acid sequences still retain a 40% similarity 39

PAM 1 PAM 100 PAM 250

phylogenetically 
close sequences

phylogenetically 
distant sequences



PAM matrices − 15

40

Dayhoff’s PAM 250 matrix



PAM matrices − 16

41

It is worth noting that:

Each PAM matrix element Pij describes how much 

the substitution of the amino acid Aj with the amino 

acid Ai is more (or less) frequent than a random 

mutation

Therefore:

  Pij  0 more frequent than a random mutation

  Pij = 0 frequent as a random mutation

  Pij  0 less frequent than a random mutation



BLOSUM matrices − 1
BLOSUM matrices (BLOcks amino acid SUbstitution 
Matrices) were introduced in 1992 by S. Henikoff and J. G.
Henikoff to assign a score to substitutions between amino
acid sequences
Their purpose was to replace the PAM matrices, making use
of the increased amount of data that had become available
after the work of Dayhoff
They were supposed to work better than PAMs especially
with respect to poorly correlated sequences
The BLOCKS database contains multiply aligned ungapped
segments corresponding to the most highly conserved
regions of proteins
Each alignment block contains sequences with a number of
identical amino acids greater than a certain percentage N

From each block, it is possible to derive the relative
frequency of amino acid replacements, which can be used to
calculate a score matrix

42



BLOSUM matrices − 2
The elements of the BLOSUM matrix, Bij, are evaluated 
based on the following relation

           Bij = klog(M(Ai,Aj)/C(Ai,Aj)),  k costant

– M(Ai,Aj) is the substitution frequency of the amino acid Aj 

with the amino acid Ai, observed in the block of the 

considered homologous proteins

– C(Ai,Aj) is the expected substitution frequency, repres-

ented by the product of the substitution frequencies of 

amino acids Ai and Aj in the totality of the considered 

blocks of  homologous proteins

Even in this case, the matrix element (i,j) is propor-
tional to the substitution frequency of the amino acid 
Aj with the amino acid Ai

43

BLOSUM35 BLOSUM62

phylogenetically 
close sequences

phylogenetically 
distant sequences



Example: BLOSUM62
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PAM or BLOSUM − 1

The two types of matrices start from different
assumptions

For PAM matrices, it is assumed that the observed amino
acid substitutions for large evolutionary distances derive
solely by the summing of many independent mutations;
the resulting scores express how likely it is that the
alignment of a particular pair of amino acids is due to
homology rather than to randomness
The BLOSUM matrices are not explicitly based on an
evolutionary model of mutations; each block is obtained
from the direct observation of a family of related proteins
(so probably also evolutionarily related), which show a
given degree of similarity

45



PAM or BLOSUM − 2

An increasing PAM index describes a suitable score for
“distant” proteins, expressing also an evolutionary dis-
tance; instead, an increasing BLOSUM index represents a
suitable score for protein similar to each others, ex-
pressing the minimum conservation value for the BLOCK
PAM matrices tend to reward amino acid substitutions
resulting from single base mutations, also penalizing
substitutions involving more complex changes in the
codons; instead, they do not reward the conservation of
structural amino acid motifs, as the BLOSUMs do

46



PAM or BLOSUM − 3

The correlation between PAM and BLOSUM, to a
comparable level of substitutions, indicates that the
two types of matrices produce similar results

47

Equivalent PAM and BLOSUM matrices

PAM1    → Blosum100
PAM100 → Blosum90
PAM120 → Blosum80
PAM160 → Blosum62
PAM200 → Blosum52
PAM250 → Blosum45



PAM or BLOSUM − 4

Typically, the BLOSUM matrices are deemed most
suitable to search for sequence similarity

The BLOSUM62 matrix is normally set as the default in
the similarity search software (like BLAST)

In any case, it is important to choose the most
suitable matrix based on the phylogenetic distance
between the sequences to be compared

For phylogenetically close sequences (and organisms)
low index PAM or high index BLOSUM must be chosen

For phylogenetically distant sequences, high index
PAM or low index BLOSUM are suitable

48



Dynamic Programming:
The Needleman-Wunsch algorithm − 1

Once having selected a method for assigning a score
to an alignment, it is necessary to define an algorithm
to determine the best alignment(s) between two
sequences
The exhaustive search among all possible alignments
is generally impractical

For two sequences, respectively 100 and 95 nucleotides long,
there are 55 millions possible alignments, just only in the case
of five gaps inserted in the shorter sequence

The exhaustive search approach becomes rapidly
intractable

Using dynamic programming, the problem can be divided into
subproblems of more “reasonable” size, whose solutions must
be recombined to form the solution of the original problem

49



S. B. Needleman and C. D. Wunsch, in 1970, were the
first who solved this problem with an algorithm able to
find global similarities, in a time proportional to the
product of the lengths of the two sequences
The key for understanding this approach is to observe
how the alignment problem can be divided into
subproblems

50

Dynamic Programming:
The Needleman-Wunsch algorithm − 2
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Dynamic Programming:
The Needleman-Wunsch algorithm − 3

Example (to be continued) 
 Align CACGA and CGA with the assumption of uniformly

penalizing gaps and mismatches
Possible choices to be made with respect to the first
character:

1) Place a gap in the first place of the first sequence (coun-
terintuitive, given that the first sequence is longer)

2) Place a gap in the first place of the second sequence
3) Align the first two characters 

In the first two cases, the alignment score for the first
position will be equal to the gap penalty
In the third case, the alignment score for the first
position will be equal to the match score
The rest of the score will depend, in all the cases, on the
way in which the remaining part of the two sequences
will be aligned
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Dynamic Programming:
The Needleman-Wunsch algorithm − 4

Example (to be continued): Align CACGA and CGA

If we knew the score of the best alignment for the
remaining parts of the sequences, we could easily
calculate the best overall score relative to the three
possible choices

First position Score Sequences to be aligned

C 

C

+1 ACGA

        GA

−

C

−1 CACGA

        GA

C

−
−1 ACGA

        CGA



53

Dynamic Programming:
The Needleman-Wunsch algorithm − 5

Example
 Starting from the assumption of aligning the two initial

characters (without inserting gaps), it remains to
calculate the alignment score for the sequences ACGA

and GA

In this operation, it will often be necessary to calculate
scores for subsequences
Dynamic programming is based on constructing a
table, in which the partial alignment scores are stored,
in order to avoid to recalculate them many times



Example: Table for the
alignment of ACAGTAG and
ACTCG, with a gap penalty

of −1 and a score of mis/
matching equal to 0/1

54

A C T C G

0 −1 −2 −3 −4 −5

A −1

C −2

A −3

G −4

T −5

A −6

G −7

The dynamic programming algorithm computes the
optimal alignment between two sequences filling a
table with partial scores

The horizontal and vertical axes describe, respectively,
the two sequences to be aligned

Dynamic Programming:
The Needleman-Wunsch algorithm − 6
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The alignment of the two sequences is equivalent to
build a path that goes from the upper left to the lower
right corner of the table

A horizontal shift represents a gap inserted in the
vertical sequence and vice versa
Moving along the diagonal means aligning the
corresponding nucleotides in the two sequences

The first row and the first column of the table are
initialized with multiples of the gap penalty (in fact,
each gap adds a penalty to the total alignment score)

Dynamic Programming:
The Needleman-Wunsch algorithm − 7
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The maximum value among those ob-
tained for the three options (−2,−2,1) is 
then assigned to the element in position
(2,2)

Dynamic Programming:
The Needleman-Wunsch algorithm − 8

How can we calculate the other elements in the table?
The element in position (2,2) is calculated by exploring the
following three possibilities:
1) Adding up the gap penalty to the entry in position (2,1),

which corresponds to consider a gap in the vertical sequence
2) Adding up the gap penalty to the entry in position (1,2),

which corresponds to consider a gap in the horizontal
sequence

3) Adding up the mis/match score to the entry in the diagonal
position (1,1), which corresponds to the alignment of the
related nucleotides

(0/1) →
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We can then proceed to fill the entire second row, then
move on to the next row, up to complete the table

A C T C G

0 −1 −2 −3 −4 −5

A −1 1 0 −1 −2 −3

C −2 0 2 1 0 −1

A −3 −1 1 2 1 0

G −4 −2 0 1 2 2

T −5 −3 −1 1 1 2

A −6 −4 −2 0 1 1

G −7 −5 −3 −1 0 2

Example
 N(3,5) = max{(+1−1),(−2−1),(−1+1)}

     = max{0,−3,0)} = 0

Dynamic Programming:
The Needleman-Wunsch algorithm − 9
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After completing the table, the value in the lower right
corner is the score for the optimal alignment between
the two sequences (2, in the example)
Remark: The score was determined without having to
assign a score to all the possible alignments between
the two sequences
The table of the partial scores allows to reconstruct
the optimal alignments (generally more than one)
between the two sequences

Tracing a path from the lower right to the upper left
position

Dynamic Programming:
The Needleman-Wunsch algorithm − 10
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Again, for the value N(7,5) 
exists only one possibility,
which leads to the element
N(6,4)=1 (with a 0 as the
mismatch score between the
two nucleotides)
The process must be re-
peated until all the possible
paths are completed, to
reach the final position (1,1)

A C T C G

0 −1 −2 −3 −4 −5

A −1 1 0 −1 −2 −3

C −2 0 2 1 0 −1

A −3 −1 1 2 1 0

G −4 −2 0 1 2 2

T −5 −3 −1 1 1 2

A −6 −4 −2 0 1 1

G −7 −5 −3 −1 0 2

Example
 The value N(8,6)=2 may have been obtained following three

different routes, but the only one that can produce a value
of 2 is that coming from N(7,5)=1 (alignment of G in both 

the sequences)

Dynamic Programming:
The Needleman-Wunsch algorithm − 11
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If n and m represent the lengths of the two sequences

to be aligned, to convert a path in an alignment, each

path from (n+1,m+1) to (1,1) must be traveled 

backwards, recalling that:
a vertical movement represents a gap in the sequence
along the horizontal axis
a horizontal movement represents a gap in the sequence
along the vertical axis
a diagonal movement represents an alignment of the
nucleotides, belonging to the two sequences, at the
current position

Dynamic Programming:
The Needleman-Wunsch algorithm − 12



Example
 G

 G

 CG

 AG

 TCG 

 TAG
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A C T C G

0 −1 −2 −3 −4 −5

A −1 1 0 −1 −2 −3

C −2 0 2 1 0 −1

A −3 −1 1 2 1 0

G −4 −2 0 1 2 2

T −5 −3 −1 1 1 2

A −6 −4 −2 0 1 1

G −7 −5 −3 −1 0 2

−TCG

 GTAG

−−TCG

 AGTAG

C−−TCG

 CAGTAG

AC−−TCG

 ACAGTAG

Remark: Following all the paths (n+1,m+1)→(1,1) 

in the table of the partial scores, all the possible
optimal alignments between the two sequences 
can be reconstructed

Dynamic Programming:
The Needleman-Wunsch algorithm − 13



The Needleman-Wunsch algorithm
Example − 1
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C G A

0 −1 −2 −3

C −1 1 0 −1

A −2 0 1 1

C −3 −1 0 1

G −4 −2 0 0

A −5 −3 −1 1

Alignment of the sequences CACGA and CGA

 

N(5,2) = max{(−4−1),(−1−1),(−3+0)} = max{−5,−2,−3)} = −2

N(5,3) = max{(−2−1),(0−1),(−1+1)} = max{−3,−1,0)} = 0

N(5,4) = max{(0−1),(1−1),(0+0)} = max{−1,0,0)} = 0

N(6,2) = max{(−5−1),(−2−1),(−4+0)} = max{−6,−3,−4)} = −3

N(6,3) = max{(−3−1),(0−1),(−2+0)} = max{−4,−1,−2)} = −1

N(6,4) = max{(−1−1),(0−1),(0+1)} = max{−2,−1,1)} = 1

N(2,2) = max{(−1−1),(−1−1),(0+1)} = max{−2,−2,1)} = 1

N(2,3) = max{(1−1),(−2−1),(−1+0)} = max{0,−3,−1)} = 0

N(2,4) = max{(0−1),(−3−1),(−2+0)} = max{−1,−4,−2)} = −1

N(3,2) = max{(−2−1),(1−1),(−1+0)} = max{−3,0,−1)} = 0

N(3,3) = max{(0−1),(0−1),(1+0)} = max{−1,−1,1)} = 1

N(3,4) = max{(1−1),(−1−1),(0+1)} = max{0,−2,1)} = 1

N(4,2) = max{(−3−1),(0−1),(−2+1)} = max{−4,−1,−1)} = −1

N(4,3) = max{(−1−1),(1−1),(0+0)} = max{−2,0,0)} = 0

N(4,4) = max{(0−1),(1−1),(1+0)} = max{−1,0,1)} = 1
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C G A

0 −1 −2 −3

C −1 1 0 −1

A −2 0 1 1

C −3 −1 0 1

G −4 −2 0 0

A −5 −3 −1 1

Alignment of the sequences CACGA and CGA
 

Two optimal alignments with score equal to 1

−−CGA

CACGA

C−−GA

CACGA

 Two admissible paths

The Needleman-Wunsch algorithm
Example − 2



Global and local alignments − 1
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Global alignment: obtained by trying to align the maximum
number of characters between two sequences; ideal candid-
ates are sequences of similar length
Local alignment: obtained by trying to align “pieces” of se-
quences with a high degree of similarity; the alignment ter-
minates when “the island of pairing” ends; ideal candidates
are sequences with (possibly) significantly different lengths,
which contain highly conserved regions
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The Needleman-Wunsch algorithm performs global align-
ments, i.e., it compares sequences in their entirety

The gap penalty is fixed, without weighing the gap position
(located inside or at the ends of the sequences)

It is not always the best way to perform the alignment
Example: let us suppose to search for an occurrence of the
short subsequence ACGT within the longer sequence
AAACACGTGTCT (this is a pattern matching approach)

Among several possibilities, the alignment of interest is:
 AAACACGTGTCT

 −−−−ACG T −−−− 

When searching for the best alignment between a short
sequence and a whole genome (to isolate a gene, for
instance), penalizing the gaps that appear at one or both the
ends of a sequence should be avoided

Global and local alignments − 2
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The flanking gaps are usually the result of an incomplete
data acquisition and have no biological significance

it is appropriate to treat them differently from internal gaps
semiglobal alignment

Global and local alignments − 3
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How can we change the dynamic programming algorithm to
wire this new behavior?
Let us consider again the two sequences ACTCG and 
ACAGTAG: we can first move vertically towards the bottom

row of the table, and then horizontally to the last column,
until we reach the last entry, obtaining:

    −−−−−−− ACTCG

    ACAGTAG−−−−− 

Global and local alignments − 4

Indeed, from the upper left of the table, each downward
movement adds an additional gap at the beginning of the
first sequence...
...and, since each gap adds a gap penalty to the total score
of the alignment, the first column is initialized with the gap
penalty multiples
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Conversely, if we want to allow the presence of initial gaps
in the first sequence without assigning any penalty

The first column entries should be set to zero

Likewise, initializing the first row of the table with all zeroes,
we allow the presence of initial gaps in the second sequence
without assigning penalties
Moreover, to admit no gap penalties at the end of a
sequence, the meaning of some movement within the table
must be differently reinterpreted

Global and local alignments − 5
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Example: Let us suppose to have the following alignment:
    ACACTGATCG

    ACACTG −−−−

Using Needleman-Wunsch algorithm to build a path in the
table of partial scores, after aligning the first six nucleotides,
we reach the bottom row
Then, to reach the lower right corner, we should perform four
horizontal movements
Allow horizontal movements in the last row to have no gap
penalties
Similarly, vertical movements on the last column should not be
penalized

Global and local alignments − 6
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A C A C T G A T C G

0 0 0 0 0 0 0 0 0 0 0

A 0 1 0 1 0 0 0 1 0 0 0

C 0 0 2 1 2 1 0 0 1 1 0

A 0 1 1 3 2 2 1 1 0 1 1

C 0 0 2 2 4 3 2 1 1 1 1

T 0 0 1 2 3 5 4 3 2 1 1

G 0 0 0 1 2 3 6 6 6 6 6

Global and local alignments − 7
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In summary:
By initializing the first row and the first column of the
table with all zeroes…
…and allowing non−penalized horizontal and vertical
movements, respectively, in the last row and in the last
column of the table
A semiglobal alignment is performed

Unfortunately, not even semiglobal alignments offer
sufficient flexibility to address all the possible issues
related to sequence alignments

Global and local alignments − 8
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In 1981, T. F. Smith and M. S. Waterman developed a new
algorithm capable of detecting also local similarity
Example: Let us suppose to have a long DNA sequence and
want to isolate each subsequence similar to each part of the
yeast genome

A semiglobal alignment is not sufficient because it will however
penalize each non−correspondence position
Even if there were an interesting subsequence, partly coincid-
ent with the yeast genome, all non−correspondent nucleotides
will contribute to generate an unsatisfactory alignment score
Local alignment
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Example: Let us consider the two sequences AACCTATAGCT 
and GCGATATA

By using a semiglobal alignment with a −1 gap penalty and 
non/correspondence scores equal to −1/1, we will obtain the 
following alignment:

 AAC−CTATAGCT

 −GCAATATA−−−

 
 which is pretty poor, given that four of the top five positions

are mismatches or gaps, as well as the last three positions
However, there is a “correspondence region” within the two
sequences: the TATA subsequence

Change the algorithm in order to identify matches between
subsequences, ignoring mismatches and gaps before and after
the region(s) of correspondence

The Smith-Waterman algorithm − 2

With the name TATA box, or Goldberg-Hogness box, a canonical
sequence (i.e. common to all organisms) is defined, which can be
localized on a DNA strand and which forms, together with other
canonical sequences such as the CAAT Box or the GC Box, a
particular site called the “core” promoter of a gene.
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For the local alignment of two sequences: 
Initialize the first row and the first column to zero (as in
the semiglobal alignment)
Set the mismatch penalty to −1
Enter a zero entry in the table wherever all the other
routes return a negative score

After having built the table:
Find the maximum partial score
Proceed backwards, to rebuild the alignment, until a zero
entry is reached
The resulting local alignment represents the best match-
ing subsequence between the two given sequences

The Smith-Waterman algorithm − 3

(-1/1)
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A A C C T A T A G C T

0 0 0 0 0 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0 0 0 1 0 0

C 0 0 0 1 1 0 0 0 0 0 2 1

G 0 0 0 0 0 0 0 0 0 1 1 1

A 0 1 1 0 0 0 1 0 1 0 0 0

T 0 0 0 0 0 1 0 2 1 0 0 1

A 0 1 1 0 0 0 2 1 3 2 1 0

T 0 0 0 0 0 1 1 3 2 2 1 2

A 0 1 1 0 0 0 2 2 4 3 2 1

In summary… when working with long sequences, of several
thousands, or millions, of nucleotides, local alignment
methods can identify common subsequences, impossible to
be found by means of global or semiglobal alignments

The Smith-Waterman algorithm − 4
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A comparison between different alignment algorithms 

Local alignmentGlobal alignment
(mismatch score =−2)

ATATGGT−

AT−TCGTA

ATAT

AT−T



Biological data − 1
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1965: Margaret Dayhoff defines an atlas of
all known proteins, studying the relation-
ships among their primary sequence; the
collected data were distributed in 1970, in
the database NBRF (National Biomedical
Research Foundation)
Early ‘70s: The recombinant DNA techno-
logy (based on restriction enzymes and
fundamental for cloning) is established,
which allows the manipulation of the nuc-
leotide sequences, guaranteeing the com-
prehension of the DNA structure, function
and organization
Late ‘70s: Publication of the first genomic
data (F. Sanger), with a small number of
nucleotide encoding sequences, freely
accessible via the network (restricted to
few universities)



Biological data − 2
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1980 [Kurt Stueber]: Birth of the first genomic database,
at the European Molecular Biology Laboratory (EMBL) in
Heidelberg
1982 [Walter Goad]: Birth of a similar database in the
USA, which will converge later in GenBank
1986: A mirror of GenBank, DDBJ (DNA DataBank of
Japan), was set up at the National Institute of Genetics in
Mishima (Japan)
2001: The International Public Consortium and Celera
Genomics provide the complete human genome



Biological databases − 1
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Over the past few decades, major advances in the
field of molecular biology, coupled with advances
in genomic sequencing technologies, have led to
an explosive growth in biological information gen-
erated by the scientific community
Biological databases are designed as containers,
constructed to store data in an efficient and
rational way, and to make them easily accessible
to the users
Their ultimate goal consists in collecting data and

providing ad hoc tools, available within each data-

base, to analyze them



Biological databases − 2
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Biological databases are libraries of life science
information, collected from scientific experiments,
high−throughput technologies, computational ana-
lyses, and published literature
Information contained in biological databases in-
cludes “raw data”, such as gene and protein se-
quences, but also protein 3D structures, reports
on clinical effects of mutations as well as on simil-
arities among biological sequences and struc-
tures, etc.



Biological databases − 3
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Numerous biological databanks exist today:
Primary Databanks

Nucleotide and amino acid sequences

Specialized databanks 
Genes
Protein structures
Protein domains and motifs − protein domains are compact
semi−independent regions with distinctive functions, linked
to the rest of the protein by a portion of the polypeptide
chain that serves as a hinge
Transcriptome expression profiles − transcriptome (a term
analogous to genome, proteome or metabolome) means
the set of all transcripts (messenger RNAs) of a given
organism or cell type
Metabolic pathways − a metabolic pathway (or simply a
pathway) is the set of chemical reactions involved in one or
more processes of anabolism or catabolism within a cell
…
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Therefore, in biological databases, collected informa-
tion and “raw” data are derived from:

laboratory analyses (in vivo and in vitro)
bioinformatic analyses (in silico)
the literature

Many biological data are freely downloadable in flat
format, i.e. in the form of sequential file in which each
record is described by one or more consecutive text
lines, identified by a particular unique code (a key)
These files are therefore text files, that can be
analyzed by means of suitable tools, able to extract
the information of interest
Alternative: data in HTML or XML format, easy to be
consulted via browsers

Biological databases − 4
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Each database is characterized by a central biological
element that constitutes the object around which the
database records are built
Therefore, each record collects the information that
characterizes the central element (i.e., its attributes)
A record of a DNA database may contain, in addition
to the sequence of a DNA molecule,

the name of the organism to which the sequence
belongs
its functional characteristics (i.e., if it corresponds to a
gene or to a non−coding sequence)
a list of scientific papers reporting analyses performed
on that sequence
other interesting information, f.i., in eukaryotes, to
which chromosome it belongs

Biological databases − 5
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Biological databases also provide tools for pro-
cessing the data they contain, including:

Query systems (ENTREZ, associated with GenBank, 
SRS − Sequence Retrieval System, for EMBL, 
DBGET, for DDBJ)
Screening tools (BLAST, FASTA)
Multiple sequence alignment tools (ClustalW, 
Clustal Omega, T−Coffee, ProbCons)
Tools for the identification of exons and regulatory 
elements that characterize a gene (GenScan, 
Promoser)
…

Biological databases − 6



Primary biobanks − 1
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Primary databases contain nucleotide (DNA and RNA)
or amino acid (protein) sequences
The main primary databases are:

GenBank (NCBI − National Center for Biotechnology 
Information, founded in 1982 in Bethesda, USA, 
http://www.ncbi.nlm.nih.gov); the standard database 
contains 3675462701077 bases belonging to 251998350
sequences (August 2024, genbank/statistics)
EMBL datalibrary (founded in 1980 at EMBL − European 
Molecular Biology Laboratory, in Heidelberg, Germany, 
http://www.embl.de)
DDBJ (DNA DataBase of Japan, constituted in 1986 by 
the National Institute of Genetics in Mishima, Japan, 
http://www.ddbj.nig.ac.jp/index-e.html)

http://www.ncbi.nlm.nih.gov/
http://www.embl.de/
http://www.ddbj.nig.ac.jp/index-e.html
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Among the three main biological databanks, an
international agreement has been established to
ensure that DNA data are kept consistent (daily
updates made in each bank are automatically

transferred to the others)

Moreover, the three institutions cooperate to
share and make publicly available all the data
they collect, that differ only in the format in which
they are released

Primary biobanks − 2



NCBI − 1 
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NCBI is a database of genetic sequences, owned by
the USA National Institute of Health; it contains an
annotated collection of all publicly available DNA
sequences
Access to data through ENTREZ−Global Query Cross−
Database Search System, the query system used for
all the different databases managed by NCBI, which
therefore constitutes a complete hub to search for
information

Available via web, for the search and the extraction of
information from databases of nucleotide and protein
sequences, from the bibliographic database PubMed, the
database of Mendelian diseases OMIM, and any database
developed by NCBI
Closed system: the software that runs the system
cannot be downloaded



NCBI − 2
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Main databases in NCBI
Nucleotide: It contains the nucleotide non/coding
sequences of all the characterized species
Gene: It contains data related to the genes of all the
characterized species, such as gene structure and
genomic context, ontologies, interactions with other
genes and links to related sequences and scientific
publications
Protein: It shares the same structure of Nucleotide, but
it contains amino acid sequences
PubMed: It is the database of scientific biological and
biomedical publications; the abstract is available for
each paper; PubMed Central contains full−text articles
available for free download



NCBI − 3 
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Entrez also provides the possibility to make cross−
searching, for collecting information from the various
NCBI databases (sequence−structure−genetic map−lit-
erature)



NCBI − 4 
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The AGC1 deficit is a neuro-
degenerative syndrome that
causes a reduction of the
content of myelin, the sheath
surrounding nervous cells in
the brain. Since the very first
months of life, it implies
severe psychomotor problems,
seizures and difficulties in
breathing and in movements
controlling.
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Protein data may be obtained in the following 
ways:

Directly determining the protein sequence
Translating the nucleotide sequences for which the 
function of the encoding gene has been identified 
or predicted
Studying gene expressions
Via crystallography, by the determination of sec-
ondary and tertiary structures
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SWISS-PROT (Protein knowledgebase, 1986): refer-
ence database developed at the Swiss Institute of 
Bioinformatics (SIB) in Geneve, Switzerland; it con-
tains carefully annotated protein information (often 
hand−made) 
TrEMBL (Translated EMBL): it results from the auto-
matic translation − into amino acid sequences − of all 
the DNA sequences belonging to the EMBL database 
and annotated as genes encoding proteins; supple-
mentary to SWISS-PROT
PIR (Protein Information Resource): mainly devoted to 
define the annotation standards
TrEMBL and PIR together (with the European 
Bioinformatics Institute, 2002) formed the UniProt 
consortium, the centralized repository of all the protein 
sequences (http://www.uniprot.org)

Protein databanks − 2

http://www.uniprot.org/
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Specialized databases have been developed later
They collect sets of homogeneous data from the taxo-
nomic and/or functional point of view, available in 
primary databases and/or in literature, or derived from 
experimental approaches, revised and annotated with 
more information
Examples:

wwPDB (world wide Protein Data Bank), the reference 
database for 3D protein data, equipped with the atomic 
coordinates determined through X−ray cristallography, NMR 
analysis, etc.
Database of genomic sequences: GDB (man), MGI (mouse), 
SGD (yeast)
Database of Genotypes and Phenotypes (dbGaP) developed to
archive and distribute the data and results from studies that
have investigated the interaction of genotype and phenotype in
humans
…



Database search − 1
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Sequence alignments can be a valuable tool for com-
paring two known sequences
A more common use of alignments, however, consists 
in the search within a database, containing biological 
data, of the sequences that are similar to a particular 
sequence of interest
The search results (target sequences), which consist of 
other sequences that align well with (and thus are 
similar to) the query sequence, may in fact provide 
suggestions on the functional role of the sequence at 
hand
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Example: Sequencing of a part of the human genome 
that could constitute a gene not previously identified

comparison of the “putative” gene with millions of 
sequences deposited in the database Gene at the NCBI
clues about its regulation and expression in connection 
with similar sequences in other species

During searching in a biological database, the size of 
both the database and individual data often precludes 
the obvious approach to align the query sequence to 
all other sequences, in order to obtain the highest 
alignment scores

Special indexing and search techniques, guided by 
heuristics, are normally employed

Database search − 2
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Most of the commonly used algorithms do not guar-
antee to obtain the best alignments, but they do 
provide some statistical confidence on the retrieval of 
the majority of the sequences that align well with the 
query sequence

BLAST (Basic Local Alignment Search Tool)
FASTA (Fast−All, an extension of FAST−N and FAST−P, 
respectively dedicated to alignments in nucleotide and 
polypeptide chains)

The efficiency is a prerequisite and a fundamental 
feature for these bioinformatic methods, which are of 
essential support to molecular biologists

Database search − 3



BLAST and its variants
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Probably the most popular and commonly used tool to
search for sequences in biological databases is BLAST,
introduced by S. Altschul et al. in 1990
The original BLAST software looked for long local alignments
without gaps, detecting subsequences belonging to the
database similar to subsequences of the query sequence
BLAST can run hundreds of thousands comparisons between
sequences in few minutes and, in a short time, a query se-
quence can be compared with the entire database to search
for all the similar sequences
There are different variants and versions of BLAST, to search
for nucleotide and protein sequences

BLASTN, BLASTP, BLASTX, TBLASTN (Translated BLAST 
Nucleotide), BLAST+, Magic−BLAST, etc.



BLASTN
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It searches for correspondences among nucleotide
sequences, using the simple score matrix: 

 with uniform penalties for transitions and transver-
sions, in order to assign scores to alignments without
gaps

A T C G

A 5 −4 −4 −4

T −4 5 −4 −4

C −4 −4 5 −4

G −4 −4 −4 5



BLASTP − 1
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It searches for correspondence between protein
sequences, using PAM or BLOSUM matrices to
assign a score to alignments without gaps

It divides the query sequence into words, or sub-
sequences, of fixed length (4 being the default
length)
It uses a sliding window, with size equal to the
word length, along the entire sequence

Example: the query sequence AILVPTV produces four 
different words − AILV, ILVP, LVPT, VPTV 

The words consisting mainly of common amino
acids are not considered for searching
The remaining words are searched in the database



BLASTP − 2
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When a correspondence is found, the matched sub-
sequence is extended in both the directions until the
alignment score drops below a given threshold

The extension corresponds to the addition of new residues
to the matching subsequence with the recalculation of the
alignment score in accordance with the scoring matrix
The choice of the threshold value is an important para-
meter because it determines the probability that the
resulting sequences are biologically relevant counterparts
of the query sequence
Example: Search for AILVPTV

                         AILV
 MVQGWALYDFLKCRAILVGTVIAML…

               AILVPTV

 MVQGWALYDFLKCRAILVGTVIAML…



BLAST and its variants (cont.)
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Numerous algorithms for sequence alignment and database
search have been developed for specific types of data

BLASTN, BLASTX allow, respectively, to search in nucleotide
databases and to translate the nucleotide sequence into the
protein sequence before searching
TBLASTN compares the query protein with the nucleotide
sequence database; in order to make this kind of comparison,
the database sequences are dynamically translated into amino
acid sequences and then compared with the query protein
BLAST from 2.0 on (now 2.16.0, June 2024) inserts gaps to
optimize the alignment
BLAST+ a suite of command−line tools to allow users to run
BLAST on their own server without size, volume and database
restrictions
Magic−BLAST is a tool for mapping large next−generation RNA
or DNA sequencing runs against a whole genome or
transcriptome



FASTA and its variants − 1
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FASTA algorithms constitute a different family of align-
ment and search tools

They perform local alignments with gaps between
sequences of the same type
They are more sensitive than BLAST−like algorithms,
especially for repetitive query sequences
They are computationally more expensive

Also, in this case the sequence is divided into words
of length 4−6 for genomic sequences
of length 1−2 for polypeptide sequences 

Successively, a table for the query sequence is con-
structed, that shows the positions of each word within
the sequence
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Example (to be continued)
 Let us consider the (query) amino acid sequence

FAMLGFIKYLPGCM
 

 which, for a word of length 1, produces the following table:

 
 The column relative to phenylalanine (F), for instance,

contains the values 1 and 6, which correspond to the
positions of F in the query sequence

 

 

A C D E F G H I K L M N P Q R S T V W Y

2 13 1 5 7 8 4 3 11 9

6 12 10 14

FASTA and its variants − 2
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Example (to be continued)
 To compare the query sequence with the target sequence 

TGFIKYLPGACT, a second table is built, with respect to this 

sequence, that correlates the respective positions of the amino
acids

 Consider the position 2, relative to the first glycine residue (G)
In the query sequence, G occupies the positions 5 and 12

The distances between 5 and 12 and the position of the
first G in the target sequence (2) produce the two values 3

and 10
Similarly, in correspondence of the second G in position 9,

we obtain the values (5−9)=−4 e (12−9)=3
 

1 2 3 4 5 6 7 8 9 10 11 12

T G F I K Y L P G A C T

3 −2 3 3 3 −3 3 −4 −8 2

10 3 3 3

FASTA and its variants − 3
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Example
 Amino acids that are not found in the query sequence, such

as threonine (T), have not assigned values (the columns in

the target table can be deleted)

 The high number of elements with a distance equal to 3
suggests that a shifting of three positions to the left for the
query sequence (or of three positions to the right for the
target sequence) can produce a reasonable alignment

 

    FAMLGFIKYLPGCM

        TGFIKYLPGACT

 

FASTA and its variants − 4
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Comparing the tables, after the ad hoc shift of one of

the sequences, the identity areas can be found quickly
These areas constitute an anchor between the query
sequence and target sequences found within the
database, which are then aligned using the Smith-
Waterman algorithm
However, since the alignment starts from a known
region within two similar sequences, FASTA is much
faster than the direct use of dynamic programming,
which implies to find a complete alignment between
the query sequence and all the possible targets

FASTA and its variants − 5
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Although a database search will always produce a
result, without additional information, the extracted
sequences cannot always be considered to be related
with the query sequence
The alignment score is the main indicator of how much
the search results are similar to the query sequence

The alignment scores vary according to the particular
search tool
Alignment scores do not represent, by themselves, an
adequate indicator to establish the actual (evolutionary)
correlation between the extracted sequences
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If the search result gives an alignment score S, we can

then ask:
Given a set of sequences unrelated to the query sequence,

which is the probability to randomly find a match with an

alignment score equal to S?

To address this problem, search engines in biological

databases provide additional scores, known as E (or

E−value) and P, for each output

E and P are different because:

E is proportional to the expected number of random

sequences with an alignment score  S

P represents the probability that the database contains one

or more random sequences with score  S

They are closely related and often they have “similar” 
values

Alignment scores − 2
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Small values for E and P indicate a very low probability

that the result of a search has been obtained casually

Values of E  10−3 are considered indicative of statist-

ically significant results

Often, alignment algorithms provide results with E  

10−50

There is a strong likelihood of evolutionary relationship
between the query sequence and the search results

Alignment scores − 3
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Multiple alignments are useful when observing a certain
number of “similar” sequences, for example to determine
the frequencies of substitution
A multiple alignment can summarize the evolutionary
history of a protein family

Therefore, we can obtain information about:
The conservation of residues dependent on the protein function
The conservation of residues dependent on the protein structure

Examples of functional/structural information that can be
obtained from a multiple alignment:

In enzymes, the most conserved regions probably correspond to
the active site
A conserved pattern of hydrophobic residues alternating with
hydrophilic residues suggests a −sheet
A conserved pattern of hydrophobic residues every four residues
suggests the existence of an −helix

Multiple alignments are also extremely useful for creating
score matrices, like PAM and BLOSUM
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Evolutionary significance of a multiple alignment

An example of a multiple alignment among sequences

Multiple alignments − 2
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The simplest multiple alignment techniques are logical
extensions of the dynamic programming methods (like
Needleman-Wunsch)

In order to align n sequences an n−dimensional grid is 

needed
The computational complexity of multiple alignment
methods grows rapidly with the number of sequences to
be aligned
Even with a considerable computing power based on
massive parallelism, multiple alignments of a few dozen
sequences, of medium length and complexity, represent
an intractable problem
Alignment methods guided by heuristics

Clustal

Multiple alignments − 3
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The Clustal algorithm, proposed by Higgins and Sharp
in 1988, implements a progressive alignment, trying to
match closely related sequences first, and then adding
sequences with growing divergence

A phylogenetic tree is constructed to determine the
degree of similarity among the sequences to be aligned
Using the tree as a guide, closely related sequences are
aligned in pairs via dynamic programming, to reach the
complete multiple alignment

Multiple alignments − 4
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The selection of an ad hoc score matrix is fundamental

in the case of multiple alignments
The use of an inappropriate score matrix will generate a
poor alignment
Use of a priori knowledge on the similarity degree of the
sequences to be aligned

In ClustalW, the sequences are weighed according to
their divergence from the pair of sequences most
closely related and the gap penalties and the choice of
the score matrix are based on the weight related to
each sequence
Another strategy for multiple alignment is that of not
penalizing aligned gaps

Multiple alignments − 5
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Multiple alignments, as well as simple alignments, are
based solely on the similarity between nucleotide or
amino acid sequences
The similarity between sequences is an important
indicator of functional similarities, even if molecular
biologists often have additional knowledge about the
structure or the function of a particular gene or protein

Information on the secondary structure, on the presence
of superficial loops, on the localization of active sites
may be used to adjust multiple alignments “by hand”, in
order to produce biologically significant results

Multiple alignments − 6
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An alignment of two or more genetic or polypeptide
sequences represents a hypothesis on the pathway
through which homologous sequences have evolved by
diverging from a common ancestor
While the evolutionary path cannot be deduced with
certainty, alignment algorithms can be used to identify
“similarities” that have a low probability to occur at
random
The choice of the score function is crucial for the
quality of the resulting alignment

Use of score matrices, such as PAM and BLOSUM
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The Needleman-Wunsch algorithm, for realizing global
alignments, and the Smith-Waterman technique, for
local alignments, constitute the fundamental basis on
which numerous database search algorithms were built

BLAST 
FASTA
Clustal

These algorithms use indexing techniques, heuristics,
and fast comparative methods to get a quick com-
parison between a query sequence and an entire
database

Concluding… − 2
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