
Introduction to
Convolutional Neural Networks

1

Table of contents

Introduction

Layer description

How to overcome the lack of data

Deep network design

2

Introduction − 1

Computer vision is a branch within computer
science that enables computers to recognize the
visual world
Several machine learning and deep learning−based
algorithms are available that help with building
models to make predictions on images or videos
Convolutional Neural Networks (CNNs) has shown
excellent performance in this field ⎯ where they
are the de−facto standard ⎯ and in many other
machine learning tasks

3

Introduction − 2

The CNN connectivity model resembles the
organization of the animal visual cortex: individual
cortical neurons respond to stimuli only in a
narrow region of the visual field, known as the
receptive field
The receptive fields of several neurons partially
overlap such that they cover the entire visual field

4

Convolutions: Especially useful for networks that
analyze images or sequences
Pooling and/or convolutions with stride: to reduce
the size of the input
ReLU or derived activation functions: to increase
computational speed and alleviate the vanishing
gradient problem
Data augmentation: to artificially increase the
number of training data and to reduce overfitting
GPUs: to speed up training

5

CNNs in a nutshell

Layer description: Convolutional layers − 1

The input has a dimension 𝑤×ℎ×𝑑 and

is transformed into an output of a

size equal to w×h×𝑑’, at most, where

𝑑’ is the number of feature maps (or

the number of kernels)
Each feature map is the result of the
convolution of the input with a 3D

tensor (kernel) of dimensions 𝑢×𝑣×𝑑
(𝑢≪𝑤 and 𝑣≪ℎ)

The parameters are only (𝑢×𝑣×𝑑)×𝑑’,
(instead of (w × h × 𝑑) × (w × h × 𝑑′),
corresponding to a fully connected
layer)

6

Layer description: Convolutional layers − 2

0 1 0

1 0 1

1 0 1

Kernel

Considering 𝑑=1, in a fully−connected layer, 10,000 weights

would be required for processing an image of 100100 pixels;
however, with a 55 kernel, only 25 weights are required to
process 55 tiles

8

The stride of a convolutional layer specifies how
much the kernel is moved at each step

Normally, a unitary stride is used
A larger value can be employed to have less overlap
between the receptive fields
In this case, the resulting feature map will be
smaller than the input, since we are “skipping”
some positions

Stride in convolutional layers

How to manage the calculation of the elements on the
border of the image? If the kernel is centered on a
border element, part of it falls out of the image
Two possible solutions:

Padding Valid − Kernels are applied only in “valid”
locations; the output produced will have a smaller size
than the input

Padding Same − Extra values (often zeros) are added to
the outside in order to perform the calculation also on
the border; in doing so, the dimensions of the image
(with unitary stride) remain the same

9

Padding in convolutional layers

10

Sparse interactions in convolutional layers

In convolutional layers, fewer
units contribute to the input
of the neurons of the next
layer

Receptive field

Example

When using convolutions with
a size 3 kernel, only three
inputs affect 𝑆3 (top)

When using a fully connected
layer all inputs affect 𝑆3 (bot-

tom)

The application of multiple convolutional layers allows
to broaden the receptive field
Layer by layer, all inputs contribute to the calculation
of the elements of a given feature map
Higher−layer features are extracted from wider context
windows, compared to lower−layer features

11

Receptive field in convolutional layers

12

Weight sharing in convolutional layers

Fully connected model: no sharing of parameters; each
parameter is used only once (bottom)

In convolutional layers, weight
sharing is used as a “trick” to
reduce the number of para-
meters

Each kernel weight is used for
each input element

Example

Convolutional model with a
kernel with size 3: a single
parameter is used many times
(top)

13

Equivariant representation
in convolutional layers

Informally, a function is equivariant when applying a trans-
formation and then computing the function produces the
same result as computing the function and then applying
the transformation

Specifically, a function 𝑓 is equivariant to a function 𝑔 if

𝑓(𝑔(𝑥)) = 𝑔(𝑓(𝑥))

Weight sharing guarantees a
model which is equivariant to
translations
The kernel “learns to extract”
particular features of the im-
age, regardless of the position
considered within it

Definition − A function is said to be an equivariant map when its domain and
codomain are acted on by the same symmetry group, and when the function
commutes with the action of the group

14

Pooling

The size of the feature map is reduced by a factor of 𝑚
The most common pooling functions are:

Max pooling − the content of the window is summarized
considering its maximum value

Average Pooling − the content of the window is summarized
by averaging the values it contains

Often used after a series of convo-
lutional layers to reduce the size of
feature maps

Pooling with dimension 𝑛 × 𝑛 and

with stride 𝑚: place a window 𝑛×𝑛
every 𝑚 points

15

Activation functions



Sigmoidal activation functions generate gradients in the interval (0, 1)
BackPropagation calculates the gradients using the chain rule: for each
layer the gradient is multiplied by the gradients calculated on the previous
layer  the gradient progressively reduces and the error signal decreases

moving towards the deeper layers

They serves to construct non−
linear models
The use of the ReLU (Rectified
Linear Unit) function avoids
neuron saturation

It speeds up the calculation
and reduces the problem of
vanishing gradient

The calculation of the derivative is simpler (with respect, for
example, to a sigmoid or hyperbolic tangent)
The derivative is 0 or 1 and multiplying by 1 does not
decrease the error that is backpropagated
Non−differentiability in zero is, theoretically, a problem, but
in practice it never is

16

Rectified Linear Unit

How to overcome the lack of data

Frequently, in real problems (especially in the medical
field), the available data are not sufficient to train a
deep network
Transfer Learning − the basic premise of transfer
learning is simple: take a model trained on a large
dataset and transfer its knowledge to a smaller dataset;
the model trained on the task for which there are many
annotated data is reused as a “starting point” to be
subsequently refined for solving a different problem, for
which there are few examples
Data Augmentation − the examples of the training set
are increased, transforming the original data
Generation of synthetic data − a set of synthetic data is
generated together with the relative targets; generally,
synthetic data are used to pre−train the network

17

18

Transfer learning

Increasing the size of the training set by modi-
fying an image through rotations, symmetries
(mirroring), color modification, etc.
The target, in this case, derives directly from the
annotation of the original image

19

Data augmentation

There are specialized deep architectures to solve this
problem
GANs (Generative Adversarial Networks) are com-
posed of a “generator” network and a “discriminator”
network which serve, respectively, to generate new
data starting from a known distribution and to
evaluate their “fidelity to the originals”

20

Generation of synthetic data

Real
images

Generated
images

Deep network design
To create and train a deep network, the following
hyperparameters must be defined:

Network architecture (number of layers, type of
layers, number of units for each layer, etc.)

Activation functions (tanh, sigmoid, ReLU, or similar)

Output layer

Loss function (or cost function, or error function)

Optimizer

Learning rate

21

The role of the output layer is to apply a final
transformation to the data before producing the
model output
The most used output layers are:

Linear layer − It realizes an affine transformation

ො𝑦 = 𝑊𝑇ℎ + 𝑏

Sigmoid layer − It is used in classification tasks

ො𝑦 = 𝜎(𝑊𝑇ℎ + 𝑏)

Softmax layer − It is a “generalization” of the sigmoid
function, which can be used to represent a prob-

ability distribution on a discrete variable with n

possible values

22

Output layer

ො𝑦 =
𝑒𝑧𝑖

σ𝑗 𝑒
𝑧𝑗

 dove 𝑧 = 𝑊𝑇ℎ + 𝑏

The loss function quantifies the error between
predicted and expected outputs

It measures model performance

The error will be used by the optimizer to update
the parameters

Example: Mean Square Error (MSE)

𝑀𝑆𝐸 =
1

𝑛
σ𝑖=1

𝑛 (𝒚𝑖 − ෝ𝒚𝑖)2

23

Loss function

Optimizer
The most famous training technique for neural
networks is BackPropagation

The input patterns are propagated forward to calcu-
late the relative outputs

Based on the outputs, the error is calculated and
propagated backwards by updating the weight
values (Stochastic Gradient Descent − SGD)

Various techniques proposed to improve SGD:

Momentum − It keeps track of recent updates and
allows the attenuation of fluctuations in descending
the gradient

Adaptive Moment Estimation (Adam): It calculates
learning rates adaptively and separately for each
parameter 24

25

Example of a deep architecture

	Slide 1: Introduction to Convolutional Neural Networks
	Slide 2: Table of contents
	Slide 3: Introduction  1
	Slide 4: Introduction  2
	Slide 5: CNNs in a nutshell
	Slide 6: Layer description: Convolutional layers  1
	Slide 7: Layer description: Convolutional layers  2
	Slide 8: Stride in convolutional layers
	Slide 9: Padding in convolutional layers
	Slide 10: Sparse interactions in convolutional layers
	Slide 11: Receptive field in convolutional layers
	Slide 12: Weight sharing in convolutional layers
	Slide 13: Equivariant representation in convolutional layers
	Slide 14: Pooling
	Slide 15: Activation functions
	Slide 16: Rectified Linear Unit
	Slide 17: How to overcome the lack of data
	Slide 18: Transfer learning
	Slide 19: Data augmentation
	Slide 20: Generation of synthetic data
	Slide 21: Deep network design
	Slide 22: Output layer
	Slide 23: Loss function
	Slide 24: Optimizer
	Slide 25: Example of a deep architecture

