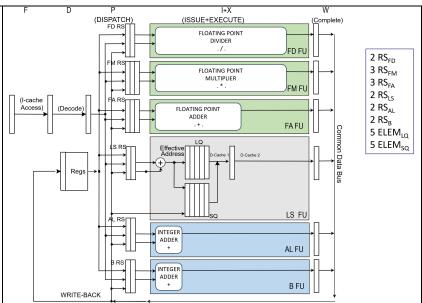
MATRICULATION NO.

(FORMER "CALCOLATORI ELETTRONICI 2")


SURNAME

REVISED 20-10-2025

FIRST NAME

• (POINTS 14/40) Consider the following snippet of code running on a processor that uses the Tomasulo's algorithm to perform the dynamic scheduling of instructions. The program performs the operation Y=aX/Y on a vector of 100 elements. Initially, R1 = 0 and F0 contains the value of the constant 'a'.

etic: L.D F2, 0(R1) ; read Xi MUL.D F4, F2, F0 multiply a*Xi L.D F6, 400(R1); load Yi DIV.D F6, F4, F6 ; a*Xi/Yi S.D F6, 400(R1); store Yi ADDI R1, R1, 8 ; update R1 SGTI R3, R1, 800; R1 >? 800, result in R3 R3, R0, etic; continue to loop if false BEO

Working hypothesis:

- the pipeline implements a single-dispatch policy
- the instructions after a branch are executed speculatively and predicted 'taken'
- high-performance fetch breaks after fetching a branch
- the issue stage (I) calculates the address of the actual read/write and push it into load/store queues; only 1 instruction is issued per cycle
- reads require 1 clock cycle; writes require 1 clock cycles
- when accessing memory (M), writes have precedence over reads and must be executed in-order
- there is a single CDB
- dispatch stage (D) and complete stage (C) require 1 clock cycle
- there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the branch condition
- the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write, except for Stores)
- the load buffer has 5 slots
- the store queue has 5 slots (writes wait for the operand in the store queue, i.e. in the execution stage)
- the rest of the processor and has the following characteristics

Type of Functional Unit	No. of Functional Units	Cycles for stage I+X	No. of reservation stations
Integer (effective addr.)	1	1	2
Integer (op. A-L)	1	1	2
Integer (branch calc.)	1	1	2
FP Adder	1	4	3
FP Multiplier	1	8	3
FP Divider	1	15	2

Complete the following chart until the end of the third iteration of the code fragment above in the case of simple dynamic scheduling.

Iter.	Instruction	1	P disPatch	I+X Issue	M MEM	W CDB-Write	C Commit	Comments
			(start-stop)	(start-stop)	ACCESS	(Complete)	(clock)	
					(clock)	(clock)		
1	L.D	F2,0(R1)	1-4	2	3	4	5	
	•••							
	•••							

- (POINTS 10/40) For the same fragment of code of exercise 1, let's assume a single-pipeline processor such that the branch condition is solved in the decode stage, so that we have only 1 cycle for the delay slot. Moreover, let's assume that:
 - The dispatch and complete stage requires 1 cycle
 - There are the following latencies between operations:

Producer Instruction	Consumer Instruction	Latency (clock cycles)					
FP operation	FP operation	4					
FP operation	Store double	2					
Load double	FP operation	2					
Load double	Store double	1					

The pipeline is single-dispatch: calculate the execution time (in cycles) of a single loop and show where there are stalls with and without static scheduling of the instructions (without unrolling techniques).

- (POINTS 8/40) Explain the operation and draw a diagram of a PAg branch 2-level predictor with a 12-bit BSHR and size 2¹² x 2 bit for the PHT.
- (POINTS 8/40) Given the sequence P1: R, P2: R, P3: R, P1: W, P2: W, P3: W (Px:R = read by the processor Px, Px:W write by the processor Px), with respect to a certain variable 'a ', show for each processor the sequence of states, and transactions on the bus that occur in a multiprocessor UMA with write-back caches for each processor and DRAGON coherence protocol.