
HIGH PERFORMANCE COMPUTER ARCHITECTURE 23-06-2005 MATRICULATION NO.__________________

(FORMER “CALCOLATORI ELETTRONICI 2”) SURNAME____________________

REVISED 20-10-2025 FIRST NAME____________________

• (POINTS 14/40) Consider the following snippet of

code running on a processor that uses the

Tomasulo's algorithm to perform the dynamic

scheduling of instructions. The program performs

the operation Y=aX/Y on a vector of 100 elements.

Initially, R1 = 0 and F0 contains the value of the

constant ‘a’.

etic: L.D F2, 0(R1) ; read Xi

 MUL.D F4, F2, F0 ; multiply a*Xi

 L.D F6, 400(R1) ; load Yi

 DIV.D F6, F4, F6 ; a*Xi/Yi

 S.D F6, 400(R1) ; store Yi

 ADDI R1, R1, 8 ; update R1

 SGTI R3, R1, 800 ; R1 >? 800, result in R3

 BEQ R3, R0, etic; continue to loop if false

Working hypothesis:

• the pipeline implements a single-dispatch policy

• the instructions after a branch are executed speculatively and predicted ‘taken’
• high-performance fetch breaks after fetching a branch

• the issue stage (I) calculates the address of the actual read/write and push it into load/store queues; only 1 instruction is issued per cycle

• reads require 1 clock cycle; writes require 1 clock cycles
• when accessing memory (M), writes have precedence over reads and must be executed in-order

• there is a single CDB

• dispatch stage (D) and complete stage (C) require 1 clock cycle
• there are separated integer units for the calculation of the actual address, for arithmetic and logical operations, for the evaluation of the branch condition

• the functional units do not take advantage of pipelining techniques internally (reservation stations are busy until the end of CDB-write, except for Stores)
• the load buffer has 5 slots

• the store queue has 5 slots (writes wait for the operand in the store queue, i.e. in the execution stage)

• the rest of the processor and has the following characteristics

Type of Functional Unit No. of Functional Units Cycles for stage I+X No. of reservation stations

Integer (effective addr.) 1 1 2

Integer (op. A-L) 1 1 2
Integer (branch calc.) 1 1 2

FP Adder 1 4 3

FP Multiplier 1 8 3
FP Divider 1 15 2

Complete the following chart until the end of the third iteration of the code fragment above in the case of simple dynamic scheduling.
Iter. Instruction P disPatch

(start-stop)

I+X Issue

(start-stop)

M MEM

ACCESS

(clock)

W CDB-Write

(Complete)

(clock)

C Commit

(clock)

Comments

1 L.D F2,0(R1) 1-4 2 3 4 5

… …

… …

• (POINTS 10/40) For the same fragment of code of exercise 1, let’s assume a single-pipeline processor such that the branch condition is solved in

the decode stage, so that we have only 1 cycle for the delay slot. Moreover, let’s assume that:

• The dispatch and complete stage requires 1 cycle

• There are the following latencies between operations:
Producer Instruction Consumer Instruction Latency (clock cycles)

FP operation FP operation 4

FP operation Store double 2

Load double FP operation 2

Load double Store double 1

The pipeline is single-dispatch: calculate the execution time (in cycles) of a single loop and show where there are stalls with and without

static scheduling of the instructions (without unrolling techniques).

• (POINTS 8/40) Explain the operation and draw a diagram of a PAg branch 2-level predictor with a 12-bit BSHR and size 212 x 2 bit for the PHT.

• (POINTS 8/40) Given the sequence P1: R, P2: R, P3: R, P1: W, P2: W, P3: W (Px:R = read by the processor Px, Px:W write by the processor

Px), with respect to a certain variable 'a ', show for each processor the sequence of states, and transactions on the bus that occur in a

multiprocessor UMA with write-back caches for each processor and DRAGON coherence protocol.

REVISED 20-10-2025 SOLUTION 23-06-2005

EXERCIZE 1

Iter. Instruction P disPatch

(start-stop)

I+X Issue

(start-stop)

M MEM-

ACCESS

(clock)

W CDB-Write

(Complete)

(clock)

C Commit

(clock)

Comments

1 L.D F2,0(R1) 1-4 2 3 4 5

1 MUL.D F4,F2,F0 2-13 5-12 13 14 I waits F2 from 1/L.D

1 L.D F6,400(R1) 3-6 4 5 6 15

1 DIV.D F6,F4,F6 4-29 14-28 29 30 I waits F4 from 1/MUL.D

1 S.D F6,400(R1) 5-5 6 30 31 I waits F6 from 1/DIV.D

1 ADDI R1,R1,8 6-8 7 8 32

1 SGTI R3,R1,800 7-10 9 10 33 I waits R1 from 1/ADDI

1 BEQ R3,R0,etic 8-11 11 34 I waits R3 from 1/SGTI

2 L.D F2,0(R1) 9-12 10 11 12 35

2 MUL.D F4,F2,F0 10-21 13-20 21 36 I waits F2 from 2/L.D

2 L.D F6,400(R1) 11-14 12 13 14 37

2 DIV.D F6,F4,F6 12-44 29-43 44 45 I waits F4 from 1/MUL.D

e free DIV-FU

2 S.D F6,400(R1) 13-14 15 45 46 I waits F6 from 2/DIV.D; I waits issue

2 ADDI R1,R1,8 14-17 16 17 47

2 SGTI R3,R1,800 15-19 18 19 48 I waits R1 from 2/ADDI

2 BEQ R3,R0,etic 16-20 20 49 I waits R3 from 2/SGTI

3 L.D F2,0(R1) 17-21 19 20 22 50 CDB waits bus free

3 MUL.D F4,F2,F0 18-30 23-30 31 51
I waits F2 from 2/L.D e

3 L.D F6,400(R1) 19-23 21 22 23 52

3 DIV.D F6,F4,F6 30-59 44-58 59 60 D waits available DIV-RS,

I waits free DIV-FU

3 S.D F6,400(R1) 31-31 32 60 61 I waits F6 from 3/DIV.D

3 ADDI R1,R1,8 32-34 33 34 62

3 SGTI R3,R1,800 33-36 35 36 63 I waits R1 from 3/ADDI

3 BEQ R3,R0,etic 34-37 37 64 I waits R3 from 3/SGTI

