
HIGH PERFORMANCE COMPUTER ARCHITECTURE 20-11-2025 MATRICULATION NO.__________________

 SURNAME____________________

 FIRST NAME____________________

PLEASE REUTURN THIS SHEET ALONG WITH ALL

THE SHEETS YOU WERE GIVEN

Consider a bus-based multicore that supports a cache-coherence protocol called MEI, what was used in the PowerPC-755. Compared to

the well-known MESI protocol, the MEI protocol does not have the S state. There is no need for a BusUpgr transaction, only Flush*,

BusRd and BusRdX may happen.

1a) [Points 4/30] Draw the diagram of the MEI protocol according to the above description.

M E I

1b) [Points 18/30] Assuming a cost of 1cc (1 clock-cycle) for read/write operations, 90cc for BusRd or BusRdx

transactions, and 20cc for Flush*. Evaluate the total cost (in clock-cycles) for the following streams:

s
t
r
e
a
m
-
1

M
E
I

Core Operation C1 C2 C3 Bus Transaction Data from Cycles

PrRd1

PrWr1

PrRd1

PrWr1

PrRd2

PrWr2

PrRd2

PrWr2

PrRd3

PrWr3

PrRd3

PrWr3

TOTAL

s
t
r
e
a
m
-
2

M
E
I

Core Operation C1 C2 C3 Bus Transaction Data from Cycles

PrRd1

PrRd2

PrRd3

PrWr1

PrWr2

PrWr3

PrRd1

PrRd2

PrRd3

PrWr3

PrWr1

TOTAL

s
t
r
e
a
m
-
3

M
E
I
 Core Operation C1 C2 C3 Bus Transaction Data from Cycles

PrRd1

PrRd2

PrRd3

PrRd3

PrWr1

PrWr1

PrWr1

PrWr1

PrWr2

PrWr3

TOTAL

2) Let’s consider a cache-coherent multiprocessor system, in which each processor executes its code in program order (no reordering in

source), but the hardware may reorder memory operations according to the consistency model. The variable x, y, z, are initialized to 0.

We run the following program once:

P0: x = 1;

 r1 = y;

P1: y = 1;

 r2 = x;

2a) [4/30] Under Sequential Consistency (SC): i) list all possible combinations of final values for (r1, r2) and ii) for each

combination, say whether it is allowed or forbidden under SC.

2b) [4/30] Under a TSO model (store buffering but loads cannot be reordered with older loads, and stores become visible to others later):

i) is the outcome (r1=0, r2=0) possible? Explain informally how store buffers make this outcome possible even if each core

“respects program order” locally; ii) explain why coherence is not violated even if (r1=0, r2=0) occurs.

 HIGH PERFORMANCE COMPUTER ARCHITECTURE exam 20-11-2025

1)

M E I

PrWr/BusRdX

PrWr/-
PrRd/-

BusRdX/Flush*

BusRd/Flush*

BusRdX/Flush*
BusRd/Flush*

PrRd/BusRd

PrWr

PrRd/-

s
t
r
e
a
m
-
1

M
O
S
I

Core Operation C1 C2 C3 Bus Transaction Data from Cycles

PrRd1 E I I BusRd Mem 90

PrWr1 M - 1

PrRd1 M - 1

PrWr1 M - 1

PrRd2 I E BusRd/Flush* C1 90+20

PrWr2 I M - 1

PrRd2 M - 1

PrWr2 M - 1

PrRd3 I E BusRd/Flush* C2 90+20

PrWr3 I M - 1

PrRd3 M - 1

PrWr3 M - 1

TOTAL 319

s
t
r
e
a
m
-
2

M
O
S
I

Core Operation C1 C2 C3 Bus Transaction Data from Cycles

PrRd1 E I I BusRd Mem 90

PrRd2 I E I BusRd/Flush* C1 90+20

PrRd3 I I E BusRd/Flush* C2 90+20

PrWr1 M I I BusRdX/Flush* C3 90+20

PrWr2 I M I BusRdX/Flush* C1 90+20

PrWr3 I M BusRdX/Flush* C2 90+20

PrRd1 E I I BusRd/Flush* C3 90+20

PrRd2 I E I BusRd/Flush* C1 90+20

PrRd3 I I E BusRd/Flush* C2 90+20

PrWr3 I I M - 1

PrWr1 E I I BusRdX/Flush* C3 90+20

TOTAL 1081

s
t
r
e
a
m
-
3

M
O
S
I
 Core Operation C1 C2 C3 Bus Transaction Data from Cycles

PrRd1 E I I BusRd Mem 90

PrRd2 I E I BusRd/Flush* C1 90+20

PrRd3 I I E BusRd/Flush* C2 90+20

PrRd3 I I E - 1

PrWr1 M I I BusRdX/Flush* C3 90+20

PrWr1 M - 1

PrWr1 M - 1

PrWr1 M - 1

PrWr2 I M BusRd/Flush* C1 90+20

PrWr3 I M BusRd/Flush* C2 90+20

TOTAL 644

2a) Under Sequential Consistency (SC)

• (0,0) → Forbidden under SC

• (0,1), (1,0), (1,1) → Allowed

SC requires a single global interleaving that respects per-thread program order. (0,0) would require each read to happen “before” the

other thread’s write, creating a cycle in the implied order; this cannot be linearized.

2b) Under TSO (with store buffering) (0,0) is possible:

• Each core first does a store, which goes into a per-core store buffer.

• The subsequent load can bypass the buffered store and read from memory, which hasn’t yet seen the other core’s store.

So. P0: x = 1 goes into P0’s buffer (not yet visible globally). Then r1 = y reads y = 0 from memory. P1: y = 1 into its buffer. Then r2 = x

reads x = 0 from memory. Later, the buffers are drained, but the reads have already seen 0. Locally, each core respects its own program

order, but the visibility to other cores is delayed. Coherence is not violeted since it is per single location (e.g., just x, just y): For x: all

cores agree that there is a single total order of writes to x (x=0 then x=1), and reads observe values consistent with that order (they may

read either 0 or 1 depending on their position). For y: same story. In (0,0), both cores read the initial values before the other’s write

becomes visible. That is coherent: for x and for y there is a consistent order; what’s “strange” is the cross-variable pattern, which is about

consistency, not coherence.

