

**PLEASE RETURN THIS SHEET ALONG WITH ALL
THE SHEETS YOU WERE GIVEN**

SURNAME _____

1) (POINTS 8/30) Consider a bus-based multicore that supports a new cache-coherence protocol called MESIF. Compared to the well-known MESI protocol, the MESIF protocol adds a 5th state called F (Forward). A copy in F state is like an S copy but the cache which holds it has the responsibility to provide (forward) the copy once a BusRd transaction involves that copy; at the same time, the S state is now simplified, as it doesn't have to respond to cache-to-cache transfers (Flush* transactions) due to a BusRd. There will be at most one cache holding a copy in the F state; on a PrRd miss, if there are other shared copies, the state will be F, whilst if another F copy observes the BusRd will go to S. Both F and S states are clean shared states. If the copy in F state is eventually evicted, there will be no copy in the F state: in this case the copy will be provided by the memory.

1a [Points 8/30] Draw the diagram of the MESIF protocol according to the above description.

M

E

S

F

1b) [Points 22/30] Assuming a cost of 1cc (1 clock-cycle) for read/write operations, 90cc for BusRd or BusRdx transactions, 60cc for BusUpgr, 20 cc for Flush* and 30cc for Flush. Evaluate the total cost (in clock-cycles) for the following streams: