HIGH PERFORMANCE COMPUTER ARCHITECTURE 04-02-2013 MATRICOLATION NO.

SURNAME
REVISED 25-10-2025 FIRST NAME
1) (POINTS 14/40) Consider a single-dispatch F D P X X w 7 RS
: . . (DISPATCH) (ISSUE+EXECUTE) s
(1 instruction per cycle) processor using 2 RSy,
Tomasulo's algorithm to perform the dynamic MRS L (Complete) | 2 RS,
scheduling of instructions on the pipeline shown (cache N Erteiive 5 ELEMq
. . C . . Access) | | (Decode) G D-Cache 1 D-Cache 2 5 ELEMyq
in the following figure. This pipeline is executing A= H
the following program, which performs a search U ! B g
within a vector (initially, R1=0). LSRS 3
> g
etic: LW R2, O(R1) ; read Xi g
ADDI R2, R2, 1 ; adds 1 to Xi sQ LS FU s
SW R2, O(R1) ; write Xi
ADDI R1, R1, 4 ; update R1 Integer
BNE R2, RO, etic ; continue to loop if false NN Ll ooer
—> | [T *
ALRS AL FU
Integer
B > | ADDER —>
—>| —T M
BFU
WRITE-BACK BRS

Working hypothesis:

« the loop executes speculatively in terms of direction (always taken) but not regarding the branch condition;
high-performance fetch breaks after fetching a branch;
case A) no-speculation on branch condition; case B) speculation on branch condition;

« the issue stage (I) calculates the address of the actual read/write and push it into load/store queues; only 1 instruction is issued per cycle

* reads require 2 clock cycles; writes take 1 cycle

*» when accessing memory (M), writes have precedence over reads and must be executed in-order

* there is a single CDB

« dispatch stage (P) and complete stage (W) require 1 clock cycle

* only 1 instruction is committed (C stage) per cycle

« there are separated integer units: one for the calculation of the actual address, one for arithmetic and logical operations,
one of the integer multiplication and one for the evaluation of the branch condition, as illustrated in this table:

Type of Functional Unit No. of Functional Units Cycles for stage [+X No. of reservation stations
LS: Integer (effective addr.) 1 1 2
A: Integer (op. A-L) 1 1 2
B: Integer (branch calc.) 1 1 2

» the functional units do not take advantage of pipelining techniques internally
* reservation stations are busy until the end of CDB-write, except for Stores)
« the load queue has 5 slots; the store queue has 5 slots (writes wait for the operand in the store queue, i.e., in the execution stage)

Complete the following chart until the end of the third iteration of the code fragment above, both in the case of simple
dynamic scheduling (case A) that in the case of dynamic scheduling with speculation (case B).

Instr. Instruction P: disPatch [+X:IssuetExec M: MEM.ACCESS ~ W: CDB-write C: Commit = Comments
No.. name (start-stop) (start-stop) (start-stop) (clock) (clock)
1 1@ R2,0(RL) |5 2 3-4 5 6

1) (POINTS 6/40) Given the sequence P1: R, P2: W, P3: R, P1: W, P2: R, P3: W (Px:R = read by the processor Px, Px:W
write by the processor Px), with respect to a certain variable 'a ', show for each processor the sequence of states, and
transactions on the bus that occur in a multiprocessor UMA with write-back cache of each processor and coherence
protocol DRAGON.

2) (POINTS 8/40) Explain the operation and draw a diagram of a PAp branch 2-level predictor with a 12-bit BSHR and
size 2!2 x 2 bit for the PHT.

3) (POINTS 6/40) Explain the operation of the Reorder Buffer by making reference to a superscalar processor with
dynamic scheduling as described in the question no.1 but with dual dispatch.

4) (POINTS 6/40) Write a CUDA program to perform in parallel the matrix multiplication of two square matrices of size
1024x1024.

HIGH PERFORMANCE COMPUTER ARCHITECTURE 04-02-2013
SOLUTION
REVISED 25-10-2025

EXERCISE 1
CASE A (no speculation on branch condition: dispatch WAITS for branch condition verification):
Iter. Instruction P: Dispatch [+X: M: MEM W: CDB-write ~ C: Commit Comments
(start-stop) Issuet+Exec ACCESS (start- (clock) (clock)
(start-stop) stop)
| 1D R2,0(R1) 1-5) 3-4 6
| ADDI R2, R2, 1 2-7 6 4 (7 8 I waits R2 from 1/LW
1 SD Rz, O(RI) 3-3 4-7 g £ 9 M waits R2 from 1/ADDI R2
1 ADDI R1, R1, 4 4-6 5 6 10
| BNE R2, RO, etic 58 (8)% . 11 I waits R2 from I/ADDI_R2
2 LD R2,0(R1) -13)* 10 11-12 13 14 P waits decision su I/BNE
7 ADDI R2, R2, 1 10-15 14 < 15 16 1 waits R2 from 2/LW
2 SD R2, O(RIL) 11-16 12-15 16 _— 17 M waits R2 from 2/ADDI R2
2 ADDI R1, R1, 4 12-14 13 - 14 18
2 BNE R2, RO, etic 13-16 (16 Py 19 I waits R2 from 2/ADDI R2
3 1D R2,0(R1) Q720" 18 19-20 21 22 P waits decision su 2/BNE
3 ADDI R2, R2, 1 18-23 20 4 24 I waits R2 from 3/LW
3 SD R2, O(R1) 19-24 20-23 24 &= N~ 25 M waits R2 from 3/ADDI R2
3 ADDI R1, R1, 4 20-22 21 22 26
3 BNE R2, RO, etic 21-24 24 = 27 I waits R2 from 3/ADDI R2

CASE B (speculation: dispatch DOES NOT WAIT for branch condition verification):

Iter. Instruction P: Dispatch I[+X: M: MEM W: CDB-write C: Commit Comments

(start-stop) Issuet+Exec ACCESS (start- (clock) (clock)
(start-stop) stop)

1 1D R2,0(R1) 1-5 2 3-4 6
| ADDI R2, R2, 1 27 6 +—— 7 8 I waits R2 from 1/LW
| Sb R2, O(RI) 3-3 4 Cs T = 9 M waits R2 from I/ADDI R2
| ADDI R1, RL, 4 4-6 5 =\ [l6) 10
| BNE R2, RO, etic 5-8 8§ * 11 Iwaits R2 from 1/ADDI R2
2 1D R2,0(R1) 6-10 7 “ (- Qﬂ 12 I waits R from 1/ADD_R1; conflict on M
) ADDI R2, R2, 1 7-12 C12)4 1 13 I waits R2 from 2/LW
5 SD R2, O(RL) 88 / 9 149y, 15 M waits R2 from 2/ADDI R2
5 ADDI RL, RI, 4 9-11 | 10 \ 12 16
2 BNE R2, RO, etic [(_[3 17 I waits R2 from 2/ADDI R2
3 LD R2,0(R1) 11_15(7 J \ 18 conflict on I; conflict on M
3 ADDI R2, R2, 1 13-17\ 18 1 20 I waits R2 from 3/LW; conflict on CDB
3 SD Rz, O(R1) 14-13 @) 20 5 5% 21 conflict on I; I waits R2 from 3/ADDI_R2
3 ADDI Rl, RI1, 4 15-16 16) (18) 22 conflict on I; conflict on CDB
3 BNE R2, RO, etic [6.18 20 =~ 23 I waits R2 from 3/ADDI R2

