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Abstract—Cyber-Physical Systems (CPSs) are becoming widely
used in every application that requires interaction between
humans and the physical environment. People expect this
interaction to happen in real-time and this creates pressure onto
system designs due to the ever-higher demand for data processing
in the shortest possible and predictable time. Additionally, easy
programmability, energy efficiency, and modular scalability are
also important to ensure these systems to become widespread.
All these requirements push new scientific and technological
challenges towards the engineering community. The AXIOM
project (Agile, eXtensible, fast I/O Module), presented in this
paper, introduces a new hardware-software platform for CPS,
which can provide an easy parallel programming model and
fast connectivity, in order to scale-up performance by adding
multiple boards. The AXIOM platform consists of a custom
board based on a Xilinx Zynq Ultrascale+ ZUIEG SoC including
four 64-bit ARM cores, the Arduino socket and four high-speed
(up to 18 Gbps) connectors on USB-C receptacles. By relying on
this hardware, DF-Threads, a novel execution model based on
dataflow modality, has been developed and tested. In this paper,
we highlight some major conclusions of the AXIOM project,
such as the gain in performance compared to other parallel
programming models such as OpenMPI and Cilk.

Index Terms—Cyber-Physical Systems, Reconfigurable Sys-
tems, FPGA Programming, Thread Level Parallelization, Energy
Efficiency, Embedded Systems.

I. INTRODUCTION

Nowadays, with the fast improvements in science,
technology, and engineering, designers are gradually
redefining the capabilities of computing systems around us
to improve the so called “Embedded Intelligence” or “Smart
Things”. In fact, both “things” and people are becoming nodes
of the same network, creating a Cyber Physical domain [1]].
CPSs operate through intelligent interfaces to communicate
via web and social media and interact with the environment.
In our daily life, CPSs devices provide us with efficiency,
flexibility such as in the case of smartphones, smart home
and assisted/autonomous driving. Therefore, the growing
number of applications have created a huge fragmentation
in hardware platforms and software tools. Also, some of the
main challenges in designing a CPS architecture are data
management, proper software-hardware integration, real-time
management and hardware specialization. By building upon
successful examples of design-for-simplicity, like in the case
of Arduino [2] and UDOO [3]], the AXIOM platform (Agile,

eXtensible, fast /O Module) [4]-[11] aims to provide a
complete and general software development suite for easily
mapping applications into multi-board processing systems.

According to known road maps for future systems, the
crucial problems for a broader deployment of scalable
embedded systems are easy programmability, and inexpensive
ways to build a system based on the simpler components.
The AXIOM project has defined a simple but powerful
architecture that can possibly be deployed in CPS, since it
includes not only the conventional embedded components but
also the possibility to easily build CPS by using one, two or
more boards, without changing programming model.

A Single Board Computer (SBC), named “AXIOM-Board”,
has been developed at the beginning of the 2017, Figure [I}
to build up a heterogeneous system, which could be able
to combine ARM cores and enough programmable logic
(FPGA) for significant acceleration, providing a platform that
can be suitable for wide range of scenarios like Artificial
Intelligence, Smart Home Living, Smart Video Surveillance,
just to name a few.

In this paper, we will draw some conclusions of the
main achievements of the AXIOM project, such as the
programming model, based on a modified version of OmpSs
[12] and the Data-Flow Threads (DF-Threads) execution
model [13]-[24]]. We describe the fast link interconnect,
named “AXIOM-Link”, through which is possible to connect
multiple boards using inexpensive cables, such as USB-C
ones, while reaching up to 18-Gbps for each channel.

II. THE 64-BIT AXIOM PLATFORM

One of the main goals of the AXIOM project was to design
the hardware/software layers for multi-core, multi-board
and heterogeneous system that has been envisioned by
the project partners in order to fulfill the needs of future
Cyber-Physical Systems (CPS). In this respect, the partners
(BSC, EVIDENCE, FORTH, HERTA, SECO, University
of Siena, VIMAR) identified use case scenarios, analyzed
the AXIOM concept against possible exploitation paths,
evaluated the AXIOM board to assess its capabilities. The
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Fig. 1: The AXIOM board based on a MPSoC Zynq Ultrascale+
(ZU9EG platform, expandable DDR4 memory up to 32 GiB, with
four 2-lane 10Gbps gigabit transceivers that use USB-C cables, and
an Arduino socket.

inferred information has been translated into the definition
of the AXIOM architecture (i.e., the need for an SoC with
high-speed interconnects and FPGA), its external interface
and its functional requirements.

For instance, modular scalability is enabled by a high
throughput and low latency interconnect and the possibility
to interface the applications directly to such high speed inter-
connect via reconfigurable hardware. Moreover, the Arduino
UNO socket permits the use of a large set of tested so-called
“shield” containing, e.g., relays, sensors and actuators. The
Arduino software AVR-binary compatibility is ensured by a
custom AVR soft-IP. This led to the choice of using the Xilinx
MP-SoC Zynq Ultrascale+ (ZU9EG) platform [25]. Also, this
choice opens the possibility to reach a design that is capable
of being interfaced to the physical world and be used in smart
applications where critical operation could be offloaded to the
FPGA. The FPGA also provides a greater energy efficiency
compared to executing the same function in software [26]] and
an appropriate substrate for the integration of our key features
by providing customized and reconfigurable acceleration.

Therefore the design of the AXIOM hardware and software
has been driven by the following pillars:

1) MP-SoC FPGA, i.e., The combination of large Pro-
grammable Logic (PL) with the ARM-based General
Purpose Processors (GPPs), to support the Operating
System (OS) and for running tasks that make little sense
on the other accelerators,

2) Open-source software stack for a broader adoption,

3) Lower-Level Thread Scheduler for a higher predictability,

4) High-speed, inexpensive interconnects managed by an
efficient Network Interface (NI) [27]],

5) Efficient interfaces for the Cyber-Physical world, such
as Arduino [2]] connectors (to be able to interface with
sensors and actuators), USB, Ethernet.

A. Hardware Specification

For the sake of completeness, we briefly recall here the
main capabilities of our platform: the Xilinx ZU9EG platform
[25] includes four 64-bit quad ARM Cortex-A53 General
Purpose Processors (GPPs) working at a frequency of up
to 1.5GHz; 32KB L1 Cache and 1MB L2 Cache. This can
support a number of activities such as the OS (or system
tasks), but also whenever there is a sequential task that
invokes Instruction Level Parallelism (ILP) rather than other
forms of acceleration. Moreover, there is a Dual-Core ARM
Cortex-R5 processing unit specialized for Real-Time tasks,
working at a frequency of up to 600Mhz; 32KB L1 Cache
and 128KB of tightly coupled memory for each core. The
processors are encapsulated as part of the processing system
(PS) as well as general purpose interfaces such as: two UART,
two full-duplex SPI, two full CAN 2.0B-compliant CAN, two
USB, four 10/100/1000 tri-speed Ethernet, two 12C, ARM
Mali-400 GPU, a display Port, DDR4 Controller, 17-channel
10-bit ADC and up to 128 GPIOs. Furthermore, the PL covers
up to approximately 300K LUTs, 32 Mb Block-RAMs, up
to 2,520 DSP slices, and up to 24 bidirectional gigabit
transceivers with maximum 16.3 Gbps throughput. These
transceivers are exposed to the physical world through the
USB-C receptacle (using a custom AXIOM protocol, not the
USB-C protocol), which is more easy to be used due to its
two-fold rotationally-symmetrical connector. Moreover, the
board has a 250MHz trace port which has been used also in
other projects such as the H2020 HERCULES project [28]].

B. Soft-IP: DF-Threads Scheduler

Some of the functions cannot be performed in software as
they have an execution overhead which is too large.

The DF-Threads Scheduler serves to offload the manage-
ment of the thread descriptors either locally or across the
boards. For example, a load balancer unit is responsible to
distribute the thread to other boards when local resources
finish. In order to bypass the software stack, this scheduler
is capable of dispatching the descriptors directly to NI.

In order to have an efficient and scalable execution and
movement of threads across the AXIOM board, a low-level
finer grained data distribution technique based upon the
DataFlow-Threads (DF-Threads) [13], [14], [19] modality
has been adopted. DF-Threads make possible to perform a
more predictable real-time execution since the input data
of a thread is made available before the thread execution,
so the time to execute a thread can be estimated very precisely.

The DF-Thread memory model [18] makes it possible to
manage different communication patterns such as producer-
consumer (1-to-1 or N-to-1) but also generalized sharing of
mutable data such as in patterns 1-to-N or N-to-N [14].

C. Soft-IP: Network Interface (NI)

In order to avoid the overheads and costs of proprietary
existing communication protocols a NI has been designed



and implemented on the PL [27]]. This permits to achieve
an efficient and scalable program execution as well as a
seamless interconnection of systems spanning multiple boards
[11]. Such connectivity permits users to expand and scale-up
their system by interconnecting more boards in a flexible and
low-cost manner, without the need for expensive particular
cables, connectors or external switches.

AXIOM board has four bi-directional links providing
different network topologies such as ring, torus and 2D-mesh
and etc. The AXIOM routing algorithm is based on the
store-and-forward packet transmission with virtual circuits
(VCs). In order to fill up the routing tables by dedicated
node IDs, a discovery process is initiated at power-up by the
master node of the network. As such all the packets will be
transceived through the physical links based on corresponding
information stored in the routing table.

III. AXIOM SOFTWARE STACK

A simplified view of the main components running on the
PS are represented on the left side of Figure 2] In particular
the purpose of these components is:

i) AXIOM APPLICATIONS, written in OmpSs, including
the general runtime libraries, OmpSs library (Nanos++);
ii) AXIOM USER API, which includes AXIOM LI-
BRARIES and ALLOCATOR; the API is exposed to
the OmpSs library, not directly to the user, and serve to
manage from the user space the hardware resources, i.e.,
DF-Threads, NI and Memory;
iii) AXIOM DRIVERS, these are the kernel side software
components to manage hardware;

In the following discussed each of those components in
details.
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Fig. 2: The main components running on the PS and the Soft-IPs
in the PL. On the right, a possible topology of an AXIOM cluster
(2D-mesh). PS: Processing System, PL: Programmable Logic.

A. AXIOM Applications

The recent success of Single Board Computers (SBCs) such
as the UDOO [3]], and RaspberryPi [29]], further highlighted
the benefits of using open-source software, in order to simplify
the maintenance of complex software stacks and enlarge the
user communities. In AXIOM, we decided to rely on an
Ubuntu distribution and a standard compilation tool-chain of-
fered on such distribution. In order to parallelize the execution
one of the most accepted paradigms is nowadays OpenMP
[30]; we experimented with OmpSs [31]], [32]], which is now
converging into the OpenMP standard and future versions of
OpenMP are likely to include almost all the OmpSs features.
OmpSs offer an easy way (via “pragmas”) to identify the
code to be parallelized onto specific targets such as a cluster,
a GPU or an FPGA. Therefore, OmpSs is offering efficient
parallelization techniques, which are familiar to the HPC
programmer (i.e., OpenMP-like), to the Embedded System
community. In this respect, OmpSs provides a first level of
data distribution on a heterogeneous system.

In order to distribute tasks across the cluster, the program-
mer needs to specify the task plain in a higher-level code
(like C++), and the OmpSs automatically allows the runtime
system to spawn tasks across the remote notes. OmpSs permits
parallelizing applications on the AXIOM cluster and spawn
workloads on the FPGAs. OmpSs parallelizes the tasks in two
layers: i) parallelization on the available ARM processor resid-
ing on PS part, ii) expressed the tasks into the PL. The OmpSs
programming model is based on two main components: i)
The Mercurium compiler [33], takes the source code and
understands the OmpSs directives to transform the code to run
on heterogeneous platforms , ii) The Nanos++ runtime system
[[12f], which is the responsible to manage and schedule parallel
tasks, transferring the data needed to/from the accelerators
when needed. The OmpSs programming model provides a
higher-level tasks definition including OpenCL, CUDA, C or
C++ capable of being converted to the machine language used
in GPUs or to the bitstream to configure FPGAs. Furthermore,
the OmpSs provides runtime supports for the communications
within a cluster of a DSM machine.

B. AXIOM User API, Libraries and Allocator

The AXIOM software architecture [6], [7] includes the
techniques used for managing the memory in the cluster, the
node interconnections, and the software stack used to manage
the cluster, which is in turn composed of the device driver and
the libraries for board-to-board communication and memory
allocation.

The AXIOM user API offers the primitives to manage DF-
Threads, send/receive of “raw” messages, “RDMA” messages
and “long” messages [4] through the NI, and also the alloca-
tion primitives for both shared (meaning for more threads) and
private (meaning for a single thread) allocations. It is based
on dynamic libraries, which in turn use the IOCTL API and
mmap facility to interface with the Kernel.

In addition, this API handles data passing and notifications
between kernel and user space. In the user space, a set of



libraries and daemons are used to service to the AXIOM
application user space. As such, AXIOM allocator is
responsible to handle a part of the memory of each board in
the AXIOM cluster to support RDMA transactions provided
by AXIOM NI as well as reserving a dedicated range of
contiguous physical memory mapped to the various processes
composing an AXIOM application.

C. AXIOM Drivers

The AXIOM (Kernel) Drivers take care of lower-level allo-
cation of memory, making sure that the memory is consistent,
also across boards, implement the IOCTL calls, manage the
internal data structures such as software queues, handshaking,
filling descriptors, buffering. The Soft-IPs are made visible to
the applications through a set of registers and memory-mapped
I/0.

IV. METHODOLOGY OF DESIGN AND EVALUATION

The methodology used in AXIOM to develop the most
advanced concepts, which are related to the DF-Threads exe-
cution, consists in a co-design approach based on the COTSon
framework [9], [34] and the Xilinx Vivado HLS tools [25].

COTSon is useful for the rapid prototyping of functional-
ities: we can test the functional behavior in the full-system
execution, thus observing and measuring not only the impact
of the application but also the impact of the OS activities,
the runtime, and the libraries. Still on the COTSon simulator
is possible to define the desired architecture and its timing:
as a simple example, in the behavioral part one could model
a cache as a simple hit probability based on a random
variable (“OPERATION BEHAVIOR” in (Figure [3), while
in the timing part the cache is defined in terms of a precise
architecture made of tags, data, valid bit and the time to access
them. This permits to identify the appropriate architecture and
verify if the Key Performance Indicators/Metrics (KPIs) are
met (“OPERATION TIMING” in Figure [3).

In addition, the simulation tool-chain has been augmented
with tools for the Design Space Exploration [9]], [35]-[37]
(DSE) such as:

1) MYDSE tool: to launch a set of simulations (one for each

design point);

2) GTCOLLECT tool: to collect the data in a database so

that data analytics can be done;

3) GTGRAPH tool: to present in a graphical way a set of

performance metrics and generate experiment reports.

In particular the MYDSE tool enables the user to:

i) Specify a DSE experiment through a simple configuration

file;

ii) Automatically, distribute the simulations across a number
of hosts;

iii) Manage automatically cases when a simulations fails or
get stuck after a given time threshold by killing the
simulation and all related processes;

iv) Properly use the same binary across multiple hosts with
different GLIBC libraries and compilation tools binaries
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Fig. 3: The design and test methodology of AXIOM involved a mix
of simulation (via the COTSon simulator and other custom tools)
and FPGA-prototyping (via our custom AXIOM board and hardware
synthesis tools (like Vivado HLS).

(depending on the library and compilation tools the sim-
ulation results may differ due to a different benchmark
binary that get pulled into the guest);

v) Collect in an ordered way the several files from a sin-
gle simulation point and from several simulation points
belonging to the same experiment;

vi) Monitor and control the simulation loop;

vii) Interpret user formulas to extract aggregated information
from several basic statistics (e.g. calculating the miss rate
starting from the read miss and write miss);

viii) Automatically try to re-execute the simulations that even-
tually fail;

ix) Insert the code for marking the Region of Interest (ROI);

x) Parse and updating the configuration files of a simulation
starting from a given template;

xi) Support different execution models such as DF-Threads,
the standard one or others;

In Figure [3] a simplified design flow is illustrated. In our
case the tool-flow supported the design of the DF-Threads
execution model. Once the KPIs are met, the “OPERATION
TIMING” is translated into Vivado-HLS (the Xilinx tool for
High Level Synthesis) so that it can be tested with actual
hardware constraints on the FPGA. On this side, it has been
necessary also to build the tools for generating a full system
image (“SD-IMAGE”, since it is typically stored on an SD-
card, which can be directly plugged-in the board for booting
it, programming the FPGA and running the applications).
The “XGENIMAGE” tool, permits the configuration of the
necessary parameters, for the Board-Support-Package, for the
“Device-Tree”, which describes the system peripherals and
soft-IPs, and includes the needed additional libraries and
drivers (e.g., to pilot the soft-IPs) or system level configuration
(e.g., specific memory mapping for the applications).

The generated IP is then put besides other AXIOM related
IPs, such as the NI, the AVR and other accelerators.



V. EVALUATIONS AND RESULTS

During the AXIOM project, we analyzed two main real life

applications, Smart Video Surveillance(SVS) and Smart Home
Living (SHL). These applications are very computational
demanding, since they require to analyze a huge number of
scenes coming from multiple cameras located into airports,
home, hotels or shopping malls. After thorough analysis on
how to improve the performance of such case-studies, we
figured out that the Matrix Multiplication kernel has a central
role into the computation.
In this section, we want to analyze the performance of the
DF-Threads, comparing it with the well-known programming
model like OpenMPI [38] and Cilk [39]. As we described
into the section IV, we use COTSon simulator as a testing
environment and we present some of the obtained results.

A. Matrix Multiplication benchmark

Several versions of classic MM algorithm exist and we
selected the Block Matrix Multiply algorithm(BMM), where
a matrix is partitioned in multiple sub-matrices, or blocks,
according to the block size that is set. The core of the BMM
algorithm is the classical 3 nested loops and we decided to
use square matrix of size 512x512 with 8 as block size for
our evaluation. Also, we focused our measurement only on
the computational region avoiding the tasks that deal with the
preparation of data and the correctness of the output, because
they are irrelevant for a fair comparison [40].
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Fig. 4: Execution time comparison between DF-Threads, OpenMPI
(left), Cilk(right) . The performance scale up increasing the number
of nodes and core in comparison of both OpenMPI and Cilk.

B. Results

The Execution Time in seconds is presented in Figure [4]
where we direct compare DF-Threads, OpenMPI and Cilk.

Cilk is optimized of the multi-core platform, we are able
to compare it with DF-Threads just increasing the number of
cores. Results show that the execution time of DF-Threads
slightly outperform Cilk. In the comparison of OpenMPI,
we increased both the number of cores and nodes obtaining
better results in every configuration, with the maximum boost
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Fig. 5: Comparison of the Kernel cycles and bus utilization between
DF-Threads and OpenMPI. As we increase the number of core and
nodes the percentage of kernel cycles increase in OpenMPI, while
DF-Thread remains on low values in every condition. Also, the
overall bus utilization is lower in DF-Threads than OpenMPI.

of the performance in the configuration with 4 nodes and 2
cores. Thanks to the COTSon simulator we can analyze key
metrics like the percentage of the kernel utilization and the
bus utilization (Figure [), showing that the OpenMPI has a
huge kernel activity which increases proportionally with the
number of the nodes. Moreover, DF-Threads execution model
demonstrates a better bus utilization, proving the minimization
of the data exchange.

VI. CONCLUSIONS

In this paper, we presented some of the main achievements
of the AXIOM project. In particular, we highlighted the
realization of our own manufactured board (named AXIOM
board) and a complete software stack of more than one million
lines of source code entirely made available as open-source
software at https://git.axiom-project.eu/ .

We presented the tool-chain, which is based on both a full
system simulator (a modified version of HP-Labs COTSon,
also made public) and standard synthesizer for the Xilinx
Ultrascale+ platform.

Users of this platform can benefit from performance scala-
bility by just interconnecting more boards via USB-C cables
without the need of any other components (like external
switches). The performance is obtained thanks to a novel
execution model based on DF-Threads. DF-threads are dis-
tributed thanks to availability of a hardware scheduler, which
can directly exchange the hand-shake information and data
through the high-speed interconnection (which can achieve up
to 18 Gpbs per channel).

In real use cases like smart video surveillance and smart
home, we observed the need to offload part of the application
on the FPGA as well as distributing large workloads on several
AXIOM boards. We compared the performance of the DF-
Threads against OpenMPI and Cilk, and we found out that
DF-Threads can outperform OpenMPI by a factor of 10x in
the case of four-boards (nodes).
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