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Sum-of-Norms Periodic Model Predictive Control

for Space Rendezvous
Mirko Leomanni, Gianni Bianchini, Andrea Garulli, Renato Quartullo

Abstract—Model Predictive Control is receiving increasing
attention in space applications, as a key technology for en-
hancing autonomy of the flight control system. Sum-of-norms
formulations are specifically suited to this context, because they
allow to optimize meaningful performance figures and to promote
control sparsity. This paper presents a sum-of-norms model
predictive control scheme for linear periodically time-varying
systems. Closed-loop stability is proven by suitably defining
periodic sequences of terminal weights and terminal sets. The
proposed solution is applied to a rendezvous case study involving
periodic dynamics due to geopotential effects and solar eclipses.

Index Terms—Satellites, Predictive Control for Linear Systems,
Time-varying Systems

I. INTRODUCTION

The quest for autonomy is a pervasive aspect of many

upcoming space missions. In-orbit operations such as ren-

dezvous, docking and spacecraft formation flying call for

complex tasks to be performed autonomously by the onboard

flight control system. In this context, a technology which

has gained increasing attention in recent years is Model

Predictive Control (MPC) [1]. With respect to other control

techniques, MPC is able to handle constraints on the state

and input signals which are of paramount importance in

aerospace applications. MPC schemes have been thoroughly

investigated for spacecraft proximity maneuvering, see, e.g.,

[2], [3], [4], [5]. In these works, a quadratic cost function

is employed within the framework of constrained linear-

quadratic optimal control theory. However, a quadratic cost

function is not always representative of the actual performance

requirements put forth by space missions, most prominently

fuel optimization. In fact, in many space applications, the

mission performance requirements turn out to be correctly

described by a sum of vector norms. Besides optimizing fuel

consumption, sum-of-norms MPC formulations are known to

promote control sparsity, which is instrumental to minimize

wear of the propulsion system [6], [7]. However, they typically

require a more complex stability analysis, in order to guarantee

both recursive feasibility of the MPC policy and the existence

of a suitable Lyapunov function [8], [9].

Another specific feature of spacecraft control problems is

that they involve periodically time-varying dynamics (see.

e.g., [10], [11], [12]). Periodicity may originate from different

factors, such as the orbital dynamics of elliptical formations,

geopotential effects, eclipses and many others. Linear time-

periodic (LTP) systems have been intensively investigated

in the literature [13]. Receding-horizon control techniques
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for unconstrained LTP systems have been initially studied

in [14], [15]. More recently, MPC solutions for constrained

LTP systems have been proposed in [16], [17]. These two

contributions adopt a standard quadratic cost function, in order

to enforce closed-loop asymptotic stability. In the former,

recursive feasibility is guaranteed by means of a periodically

time-varying ellipsoidal terminal set, which is computed via

linear matrix inequalities (LMI). In the latter, a polytopic

terminal set is employed, whose computation relies on the

theory of periodic controlled invariant sets [18].

This paper presents a sum-of-norms MPC solution for

systems with LTP dynamics, which is tailored to space ren-

dezvous control problems. Its main contribution is twofold. On

the theoretical side, closed-loop exponential stability of such

an MPC scheme is proven. The key feature of the stability

proof is the construction of a suitable periodic function, to be

used as terminal cost. The proposed terminal cost takes on the

form of a weighted 2-norm of the predicted final state, which

is defined by a periodic sequence of matrices, obtained from

the solution of a periodic Lyapunov equation. This is done

via a nontrivial extension of the results in [6] to the LTP case,

which allows one to include state constraints and to derive less

conservative LMI conditions for the design of the terminal set.

The second contribution is the application of the proposed

MPC scheme to a low-thrust rendezvous case study. The

considered dynamic model involves periodic effects due to

the second zonal harmonic of the geopotential and to solar

eclipses. Two different thrusting modes are considered, which

correspond to different choices of the input signal norm in

both the cost function and the constraints of the MPC problem.

Simulation results show the benefits of the new formulation, in

terms of convergence speed, sparsity of the thrust command

and disturbance rejection. Preliminary work leading to this

paper has been presented in [19].

The paper is organized as follows. The baseline sum-of-

norms periodic MPC problem is formulated in Section II.

Stability results for this problem are presented in Section III,

while in Section IV they are extended to the case of polyhedral

input norms. The rendezvous case study is described in Sec-

tion V. The results of the numerical simulations are discussed

in Section VI, and Section VII provides some concluding

remarks.

Notation and preliminaries

For a real vector x ∈ R
n, ‖x‖p denotes its p−norm (for

brevity, its 2-norm is written as ‖x‖ ), while for a matrix

P ∈ R
n×n, ‖P‖ denotes the induced matrix 2-norm. For

a symmetric real matrix P , λm(P ) indicates its minimum
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eigenvalue, while P > 0 (P ≥ 0) denotes (semi)positive

definiteness. The p−th row of a matrix M is denoted by M [p].

The following definitions are also in order.

Definition 1: For given N ∈ N, a matrix sequence Mk is

termed N−periodic if it satisfies Mk = Mk+N ∀k ∈ N.

Definition 2: An N−periodic matrix sequence Xk is said

to be a solution of the N−periodic LMI

L(Xk, Xk+1) ≤ 0 (1)

if (1) holds for all k ∈ N. Clearly, if matrices X0, . . . XN

with XN = X0 satisfy (1) for k = 0, . . . N − 1, then the

N−periodic sequence Xk such that Xk = X(k mod N) is

a solution for all k ∈ N. The same definition applies to a

N−periodic Lyapunov equation of the form AT
kXk+1Ak −

Xk −Qk = 0, where Qk is N−periodic.

II. PROBLEM FORMULATION

Consider the periodic discrete-time linear system of the

form

x(k + 1) = Ak x(k) +Bk u(k), (2)

where k ∈ N, x(k) ∈ R
n is the system state, u(k) ∈ R

m

is the control input, and system matrices Ak ∈ R
n×n and

Bk ∈ R
n×m are N−periodic for a given period N .

The objective of the control problem considered in this

paper is to exponentially stabilize the origin of system (2) via

an MPC scheme, in which a sum-of-norms objective function

and norm-bounded controls are employed. The 2−norm case

is discussed in this section, while polytopic norms are treated

in Section IV.

The proposed MPC design is based on the solution, at each

time instant k ∈ N, of the following optimization problem:

min
Ûk

Jk(Ûk)

s.t. x̂k(0) = x(k)

x̂k(j + 1) = Ak+j x̂k(j) +Bk+j ûk(j)

x̂k(j) ∈ Xk+j

‖ûk(j)‖ ≤ 1 j = 0 . . . H − 1

x̂k(H)TSk+H x̂k(H) ≤ 1,

(3)

where Xk = Xk+N is a periodic convex constraint set of the

form

Xk =
{

x ∈ R
n : xTΦl

kx+ F l
kx+ f l

k ≤ 0, l = 1 . . . L
}

(4)

with nonempty interior containing the origin, H is a given time

horizon length, x̂k(j) denotes the predicted state j steps ahead

of k, the decision variables are the elements of the control

sequence

Ûk = {ûk(0), . . . , ûk(H − 1)}, (5)

and the objective function J(Ûk) is chosen as

Jk(Ûk) =

H−1
∑

j=0

{

‖Q x̂k(j)‖+ ‖ûk(j)‖
}

+ ‖Wk+H x̂k(H)‖.

(6)

In (3),(6), Q is a full-rank matrix, while Wk+H and Sk+H

are full-rank matrices belonging to N−periodic sequences

Wk and Sk = ST
k , respectively. As it is well-known, the

characterization of the terminal set defined by Sk and of the

terminal cost defined by Wk is crucial for stability assessment

of the MPC scheme.

Problem (3) is a convex second order cone program (SOCP)

which is solved at each discrete-time step k. Then, in the

standard receding horizon fashion, the first element of the

optimal solution

Û∗
k = {û∗

k(0), . . . , û
∗
k(H − 1)} (7)

is applied to the system, i.e.,

u(k) = û∗
k(0). (8)

Let Vk(x(k)) denote the optimal cost of problem (3), i.e.,

Vk(x(k)) = Jk(Û∗
k ). (9)

The domain of the function Vk(x) is the set Fk ⊆ R
n of all

x ∈ R
n such that (3) is feasible for x(k) = x. Note that Fk

contains the origin.

Exponential stability of the closed-loop system (2) with

the control law (8) can be assessed within the Lyapunov

framework of [20], by ensuring that problem (3) is recur-

sively feasible and that its optimal cost Vk(x(k)) is strictly

decreasing along the closed-loop system trajectories. This can

be accomplished by suitably designing the N−periodic matrix

sequences Sk and Wk, as detailed in the next section.

III. STABILITY RESULT

Assume that system (2) is stabilizable via N−periodic

linear feedback [13], and consider an auxiliary asymptotically

stabilizing control law

u(k) = −Kkx(k), (10)

where the feedback gain Kk ∈ R
m×n is N−periodic. Such

control law can be computed, for instance, by solving a

periodic Riccati equation or an equivalent set of linear matrix

inequalities, see, e.g., [13], [16]. The resulting closed-loop

system is given by

x(k + 1) = (Ak −BkKk)x(k) = Acl
k x(k), (11)

which is clearly N−periodic. The auxiliary control law (10)

is instrumental to the design of Sk and Wk. In particular, the

following result characterizes a possible choice of Sk ensuring

that problem (3) is recursively feasible.

Proposition 1: Let Sk = ST
k ∈ R

n×n, αl
k ∈ R be a solution

of the periodic LMI set

(a) Sk > 0

(Acl
k )

TSk+1A
cl
k − Sk < 0

(b) Sk ≥ KT
k Kk

(c) αl
k

[

Φl
k

1
2 (F

l
k)

T

1
2F

l
k f l

k

]

≤
[

Sk 0
0 −1

]

αl
k > 0, l = 1, . . . , L.

(12)
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If problem (3) is feasible at time k0, then it is also feasible

for all k > k0.

Proof: Let us define the periodically time-varying region

Ck =
{

x ∈ R
n : xTKT

k Kkx ≤ 1
}

, (13)

i.e., the set of states x(k) for which the control law (10)

satisfies the constraint ‖u(k)‖ ≤ 1. From (12.a) it follows

that xTSkx ≤ 1 implies xT (Acl
k )

TSk+1A
cl
k x ≤ 1. Defining

the periodically time-varying region

Xk =
{

x ∈ R
n : xTSkx ≤ 1

}

, (14)

we get that x ∈ Xk implies Acl
k x ∈ Xk+1. Thus, (i) x(k) ∈ Xk

implies x(k + 1) ∈ Xk+1, i.e., Xk is a periodic sequence of

positively invariant sets under the control law (10).

Moreover, (ii) Xk ⊆ Ck by (12.b), and Xk ⊆ Xk by (12.c),for

all k ∈ N.

From properties (i) and (ii), it follows that if x(k0) ∈ Xk0
, then

the control law (10) ensures that the constraints ‖u(k)‖ ≤ 1
and x(k) ∈ Xk are satisfied for all k ≥ k0.

The proposition can now be proved by induction on k. By

assumption, (3) is feasible at time k0. Suppose (3) is feasible

at time k and let x̂∗
k(j) be the value of x̂k(j) at the optimum.

Then, x̂∗
k(H) ∈ Xk+H , which implies x̂∗

k(H) ∈ Ck+H and

x∗
k(H) ∈ Xk+H . Hence, the control sequence

Ūk+1 = {û∗
k(1), . . . , û

∗
k(H − 1),−Kk+H x̂∗

k(H)} (15)

is a feasible solution of (3) at time k + 1.

Remark 1: Note that, under the assumption that Xk has

a nonempty interior containing the origin, a solution of (12)

always exists. Moreover, the terminal sets Xk are ellipsoids in

R
n with nonempty interior containing the origin. Furthermore,

Xk ⊆ Fk.

The following proposition characterizes a possible choice of

Wk guaranteeing that the cost decrease condition is met.

Proposition 2: Let Y T
k Yk be a solution to the periodic

Lyapunov equation

(Acl
k )

TY T
k+1Yk+1A

cl
k −Y T

k Yk +(‖Q‖+ ‖Kk‖)Dk = 0, (16)

where Dk is a given N−periodic positive definite symmetric

matrix sequence. Define

Wk =

(

min
i∈{0,...,N−1}

λm(Di)

‖Yi+1Acl
i ‖+ ‖Yi‖

)−1

· Yk. (17)

Then,

‖Wk+1A
cl
k x‖−‖Wkx‖ ≤ −‖Qx‖−‖Kkx‖ ∀x ∈ R

n. (18)

Moreover, the sequence of optimal objectives Vk(x(k)) of

problem (3) satisfies

Vk+1(x(k + 1))− Vk(x(k)) ≤ −‖Qx(k)‖ (19)

along the the trajectories of system (2) under the MPC control

law (8).

Proof: The fact that Y T
k Yk solves (16) implies

xTAcl
k

T
Y T
k+1Yk+1A

cl
k x− xTY T

k Ykx

+ xT (‖Q‖+ ‖Kk‖)Dk x = 0
(20)

for all x ∈ R
n, which is equivalent to

‖Yk+1A
cl
k x‖−‖Ykx‖=

−xT (‖Q‖+‖Kk‖)Dkx

‖Yk+1Acl
k x‖+ ‖Ykx‖

. (21)

Using a standard upper bound for the expression on the right

hand side of (21), one gets

‖Yk+1A
cl
k x‖ − ‖Ykx‖≤

−λm(Dk)(‖Q‖+‖Kk‖)
‖Yk+1Acl

k ‖+ ‖Yk‖
‖x‖. (22)

Taking into account (17), it follows from (22) that

‖Wk+1A
cl
k x‖ − ‖Wkx‖ ≤ −(‖Q‖+ ‖Kk‖)‖x‖ (23)

which, being (‖Q‖ + ‖Kk‖)‖x‖ ≥ ‖Qx‖ + ‖Kkx‖, implies

(18).

Consider the feasible solution Ūk+1 in (15) at time k+1. One

has that

Jk+1(Ūk+1)− Vk(x(k)) = −‖Qx(k)‖ − ‖u∗
k(0)‖

+‖Qx̂∗
k(H)‖+ ‖Kk+H x̂∗

k(H)‖
+‖Wk+H+1A

cl
k+H x̂∗

k(H)‖ − ‖Wk+H x̂∗
k(H)‖.

(24)

By combining (24) with (18) evaluated at time k + H with

x = x̂∗
k(H), it follows that

Jk+1(Ūk+1)− Vk(x(k)) ≤ −‖Qx(k)‖ − ‖u∗
k(0)‖.

(25)

Finally, since Ūk+1 is in general suboptimal at time k+1, (19)

follows from (25).

The following result establishes bounds on the optimal

cost Vk(x(k)), which are instrumental to prove exponential

stability.

Proposition 3: There exist nonnegative constants c1 and c2
such that the optimal cost of problem (3) satisfies

c1‖x‖ ≤ Vk(x) ≤ c2‖x‖ ∀x ∈ Fk, ∀k ∈ N. (26)

Proof: The lower bound follows immediately from (6),(9)

taking c1 :=
√

λm(QTQ). By virtue of (18) and the dynamic

programming principle, it can be shown that

Vk(x) ≤ ‖Wkx‖ ∀x ∈ Xk (27)

(see Proposition 2.35 in [21]). Let X =
⋂N−1

i=0 Xi, and let B ⊆
X denote the largest ball centered at the origin and contained

in X , i.e.,

B = {x ∈ R
n : ‖x‖ ≤ ρ−1}, ρ = max

i∈{0,...,N−1}
‖Si‖.

From (27) it follows that

Vk(x) ≤ max
i=0,...,N−1

‖Wi‖ ‖x‖ := b1‖x‖ ∀x ∈ B, ∀k ∈ N.

(28)

Furthermore, given the form of the objective function (6), the

linearity of the system (2), and the constraint ‖ûk(j)‖ ≤ 1 in

problem (3), it follows that there exist b2 ≥ 0 and b3 ≥ 0 such

that Vk(x) ≤ b2‖x‖ + b3 ∀x ∈ Fk, ∀k ∈ N. Hence, being

ρ‖x‖ > 1 for x /∈ B,

Vk(x) ≤ (b2 + ρ b3) ‖x‖ ∀x ∈ Fk \ B, ∀k ∈ N. (29)

From (28) and (29), it turns out that Vk(x) ≤
(b1 + b2 + ρ b3) ‖x‖ := c2‖x‖ ∀x ∈ Fk, ∀k ∈ N.
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Finally, we are able to state the main stability result.

Theorem 1: The MPC scheme (3)-(8) with Sk and Wk

chosen as in Propositions 1-2 renders x = 0 exponentially

stable for system (2).

Proof: Given recursive feasibility established in Proposi-

tion 1 and the fact that Vk(x) in (9) is a time-varying Lyapunov

function by virtue of (19) and (26), the result follows from

Theorem 2.39 in [21]. In particular, (19) implies

Vk+1(x(k + 1))− Vk(x(k)) ≤ −c1‖x(k)‖, (30)

and, from (26) and (30), Vk+1(x(k + 1)) ≤ c3Vk(x(k))
with c3 = 1 − c1/c2 < 1, from which exponential stability

follows.

IV. EXTENSION TO POLYTOPIC INPUT NORMS

In this section, we discuss the extension of the results in

Section III to the case where the 1−norm of the control

input is considered in the cost function and an ∞−norm

input constraint is enforced. This formulation promotes control

sparsity among each individual input channel and is also of

interest in spacecraft rendezvous applications as detailed in

Section V. We consider the same MPC setting as in Section

II with the associated optimization problem defined as

min
Ûk

J ′
k(Ûk)

s.t. x̂k(0) = x(k)

x̂k(j + 1) = Ak+j x̂k(j) +Bk+j ûk(j)

x̂k(j) ∈ Xk+j

‖ûk(j)‖∞ ≤ 1 j = 0 . . . H − 1

x̂k(H)TS′
k+H x̂k(H) ≤ 1,

(31)

where the objective function is given by

J ′
k(Ûk) =

H−1
∑

j=0

{

‖Q x̂k(j)‖+ ‖ûk(j)‖1
}

+ ‖W ′
k+H x̂k(H)‖,

(32)

and the matrix sequences W ′
k and S′

k are full-rank and

N−periodic. The stability results in Section III can be ex-

tended to problem (31)-(32) as stated next.

Proposition 4: Let S′
k = (S′

k)
T ∈ R

n×n, αl
k ∈ R, β

p

k ∈
R, βp

k
∈ R be a solution of the periodic LMI set

a) S′
k > 0

(Acl
k )

TS′
k+1A

cl
k − S′

k < 0

b) β
p

k

[

0 1
2 (K

[p]
k )T

1
2K

[p]
k −1

]

≤
[

S′
k 0
0 −1

]

βp

k

[

0 − 1
2 (K

[p]
k )T

− 1
2K

[p]
k −1

]

≤
[

S′
k 0
0 −1

]

β
p

k > 0, βp

k
> 0, p = 1, . . . ,m

c) αl
k

[

Φl
k (F l

k)
T

F l
k f l

k

]

≤
[

S′
k 0
0 −1

]

αl
k > 0, l = 1, . . . , L.

(33)

where Kk is chosen as discussed after (10). Suppose problem

(31) is feasible at time k0. Then, it is also feasible for all

k > k0 along the trajectories of system (2) under the MPC

control law (7)-(8) stemming from the solution of (31)-(32).

Proof: Let X ′
k =

{

x ∈ R
n : xTS′

kx ≤ 1
}

. Similarly to

what observed in Proposition 1, x(k) ∈ X ′
k implies x(k+1) ∈

X ′
k+1 under the control law (10) by (33) (a). Moreover, (33)

(b) ensures that ‖Kkx‖∞ ≤ 1 for all x such that xTS′
kx ≤ 1.

The result is then proved by induction in the same fashion as

Proposition 1.

Theorem 2: The MPC design (31)-(32) with S′
k as in

Proposition 4 and

W ′
k =

√
mWk, (34)

where Wk is given by Proposition 2, renders x = 0 exponen-

tially stable for the closed-loop system (2),(8).

Proof: Recall from Proposition 2 that

‖Wk+1A
cl
k x‖ − ‖Wkx‖ ≤ −‖Qx‖ − ‖Kkx‖. (35)

By using (34)-(35) and standard norm inequalities, it follows

that

‖W ′
k+1Aclx‖ − ‖W ′

kx‖ ≤ −√
m(‖Qx‖+ ‖Kkx‖)

≤ −‖Qx‖ − ‖Kkx‖1.
(36)

By adopting the same reasoning as in Proposition 2, it can be

concluded that the optimal cost V ′(x(k)) of (31) satisfies

V ′
k+1(x(k + 1))− V ′

k(x(k)) ≤ −‖Qx(k)‖. (37)

Since recursive feasibility is guaranteed according to Proposi-

tion 4, exponential stability of x = 0 can be concluded along

the same lines as Proposition 3 and Theorem 1.

V. APPLICATION TO SPACE RENDEZVOUS

In this section, the proposed MPC methodology is applied to

a space rendezvous problem. The classical scenario in which

the spacecraft must reach a predefined rendezvous point, along

the target orbit, is considered. In this context, system (2)

describes the linearized relative motion dynamics and the

control objective consists of steering the relative trajectory

to the equilibrium point x = 0, while achieving a trade-off

between fuel consumption and state regulation performance.

Furthermore, limitations on the maximum thrust delivered by

the propulsion system must be taken into account. The fol-

lowing maneuvering modes are considered for the spacecraft,

according to standard design rules.

(A) Thrust vectoring: maneuvering is achieved by firing a

single thruster and steering the thrust vector via attitude con-

trol. In this approach, constraints on the maximum deliverable

thrust can be expressed as ‖u(k)‖ ≤ 1. The thruster fuel

consumption is proportional to
∑

k ‖u(k)‖.

(B) Thrust allocation: maneuvering is achieved by firing a set

of orthogonal thrusters producing thrust along the basis vectors

of a local orbital frame. In this setting, the control bounds can

be modeled as ‖u(k)‖∞ ≤ 1. The fuel consumption of the

propulsion system is proportional to
∑

k ‖u(k)‖1.

Clearly, the control mode (A) can be tackled by using the

formulation in Section II, while the formulation in Section
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IV fits case (B). In the following, additional details about

the relative motion dynamics are provided. In particular, it

will be shown that the considered LTP framework allows one

to effectively describe Earth’s oblateness and solar eclipse

effects.

A. Relative motion dynamics

For the purpose of control design, a linearized dynamic

model based on the relative motion parameterization intro-

duced in [22] is adopted. Such a parameterization provides a

nonsingular relative motion description and retains a simple

relationship with local orbital coordinates. The main steps

involved in the derivation of the linearized model are discussed

below. The rendezvous point is modeled as an orbiting point-

mass particle, which is denoted as satellite 1. The controlled

spacecraft is denoted as satellite 2. Let the relative line of

nodes be defined as the intersection of the orbital planes of the

two satellites. The angle between these planes is the relative

inclination γ. Moreover, let λj and θj be the angles formed

respectively by the periapsis of orbit j and the position vector

of satellite j with respect to the relative line of nodes. The

relative motion between the two satellites is parameterized by

the state vector x = [x1, . . . , x6]
T , defined by

x1 = θ2 − θ1

x2 = (n2 − n1)/n1

x3 = e2 cos(θ2 − λ2)− e1 cos(θ2 − λ1)

x4 = e2 sin(θ2 − λ2)− e1 sin(θ2 − λ1)

x5 = tan(γ/2) cos θ2

x6 = tan(γ/2) sin θ2,

(38)

where nj , ej are the mean motion and the eccentricity of

orbit j, respectively. In terms of the parameters (38), the

rendezvous condition is x = 0. We restrict our attention

to satellites in near-circular orbits (e1 ≈ 0). The separation

between satellite 1 and satellite 2 is assumed to be small

compared to the orbit radius. The Earth is modeled as an

oblate spheroid. Within this setting, the linearization of the

dynamics of the state vector (38) about x = 0 and u = 0
gives the continuous-time dynamic model

ẋ = A(t)x+B u, (39)

where u is the control acceleration delivered by satellite 2,

expressed in its own local orbital frame. The local orbital

frame adopted in this paper is the so-called Radial-Transverse-

Normal frame, see, e.g., [23]. The matrix A(t) in (39) turns

out to be structured as A(t) = AKep + AJ2(t), where

AKep models the contribution of spherical gravity, and AJ2(t)
describes the secular effects of the zonal harmonic J2 of the

geopotential (i.e., of Earth’s oblateness) on the relative orbit

configuration. The matrix AKep reads

AKep = n1

















0 1 2 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0

















.

The matrix AJ2(t) is given by

AJ2(t) = κ

















0 14c/3 2c 0 a15(t) a16(t)
0 0 0 0 0 0
0 0 0 −c 0 0
0 0 c 0 0 0
0 a52(t) 0 0 a55(t) a56(t)
0 a62(t) 0 0 a65(t) a66(t)

















,

where c = 3 cos2 i1 − 1, i1 is the inclination of satellite 1,

κ = 3J2 R
2
e n

7/3
1 /(4µ2/3) is a constant proportional to J2,

RE is the Earth radius, µ is the gravitational parameter, and

a15(t) = −14 sin(2i1) cosϕ(t)

a16(t) = −14 sin(2i1) sinϕ(t)

a52(t) = −7 sin(2i1) sinϕ(t)/6

a55(t) = sin2 i1 sin(2ϕ(t))

a56(t) = 2 sin2 i1[5− cos2 ϕ(t)]− 6

a62(t) = 7 sin(2i1) cosϕ(t)/6

a65(t) = 2 sin2 i1[sin
2 ϕ(t)− 5] + 6

a66(t) = − sin2 i1 sin(2ϕ(t)).

The angle ϕ(t) in the above equations is the argument of

latitude of satellite 1. It is T -periodic in t, where T =
2π/[n1 + 2κ(4 cos2 i1 − 1)] is the nodal period of satellite 1.

Hence, matrix AJ2(t) is T -periodic. The time-invariant input

matrix B in (39) is given by

B =
1

(µn1)1/3

















0 0 0
0 −3 0
0 2 0
1 0 0
0 0 1/2
0 0 0

















.

In order to apply the proposed MPC techniques, system

(39) is ZOH−discretized with a sampling interval ts such

that N = T/ts ∈ N, thus yielding a periodic discrete-time

model of the form (2). Moreover, the dimensional unit of the

state vector x(k) of system (2) is normalized by the constant

factor m2/Fmax, where Fmax is the maximum deliverable

thrust and m2 is the mass of satellite 2. In this setting, the

input vector u(k) is related to the actual thrust F (k) by the

identity u(k) = F (k)/Fmax. Hence, according to the chosen

thrusting mode, thrust constraints can be expressed as (A)

‖u(k)‖ ≤ 1 with Fmax = maxu ‖u‖ and (B) ‖u‖∞ ≤ 1 with

Fmax = maxu ‖u‖∞, which are consistent with the MPC

problem formulations (3) and (31), respectively.

B. Eclipse effects

Besides capturing the J2 contribution, the considered LTP

framework can be used to account for spacecraft power

limitations occurring periodically. In particular, in low-thrust

scenarios, on-board power is typically not sufficient to op-

erate the thruster when the spacecraft is shadowed from the

sun, i.e., during solar eclipses. Eclipses occur whenever the

angle θES between the Earth and the Sun, seen from the

spacecraft, is smaller than the apparent angular size θE of

the Earth radius plus the apparent angular size θS of the Sun
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radius.Therefore, the illumination condition can be formalized

as (I) θES > θE + θS [24]. A more restrictive condition

can be constructed as (I’) θES > θE + θS + d, where the

constant d > 0 is an assignable parameter. Given the small

inter-satellite separation, one can choose d so as to ensure

that if (I’) holds for satellite 1, then (I) holds for satellite

2. Since the occurrence of eclipses has approximately the

same period T of the satellite 1 orbital dynamics, which are

autonomous, (I’) can be treated as a time-periodic condition.

The error resulting from this approximation can be absorbed

in d. Therefore, one can estimate all time intervals in which

the controlled spacecraft (satellite 2) is illuminated, within the

rendezvous time scale, by just propagating the rendezvous

point (satellite 1) motion over a single orbital period. Note

that this can be done offline.

According to the above discussion, a conservative estimate

of satellite 2 shadow phases can be obtained by evaluating the

set of time instants E in which θES ≤ θE + θS +d is satisfied

along the trajectory of satellite 1, on the time interval [0, T ].
Then, thrust limitations due to eclipsing can be modeled by

setting the control input matrix to zero whenever t (modT ) ∈
E . For the discrete-time model (2), this amounts to enforcing

Bk = 0 ∀ k : kts (modNts) ∈ E . (40)

The constraint (40) clearly preserves the periodicity condition

Bk+N = Bk, and provides a convenient way to include eclipse

effects in the LTP description (2).

VI. SIMULATION CASE STUDY

In this section, the performance of the proposed MPC design

is evaluated through numerical simulations. The considered

simulation setting is as follows. The rendezvous point lies on

a circular orbit with a semi-major axis equal to 7387.1 km and

an inclination of 81 deg. At the beginning of the rendezvous

process, the spacecraft is located 1 km below the rendezvous

point, out-of-phase by -0.124 deg. The initial inclination

difference between the two orbital planes amounts to 0.002

deg. These parameters correspond to an initial displacement

of approximately 16 km, and are consistent with the specifica-

tions of a mid-range rendezvous maneuver in Low-Earth-Orbit

[25]. The characteristics of the spacecraft are representative

of a modern 100 kg class minisatellite equipped with Electric

Propulsion (EP). The maximum deliverable thrust of the EP

unit is set to Fmax = 15 mN, according to the specifications

of existing miniaturized Hall effect thrusters, see, e.g., [26]

and the µHETSAT mission [27], one of the first applications

of EP on board a multi-purpose microsatellite platform.

The rendezvous maneuver is simulated on a realistic non-

linear truth model accounting for all the significant orbital

perturbations, i.e., Earth’s Gravity, Atmospheric Drag, Lunar

Third Body, and Solar Pressure. The sampling interval for

the discretization of model (39) is taken as ts = T/32
(corresponding to about 3 minutes). The resulting LTP system

(2),(40) satisfies the standard controllability conditions [13].

The prediction horizon of the MPC controller is set to H = 48.

Such a long horizon is adopted to effectively deal with the

limited control authority provided by the EP system. A trial-

and-error procedure has been adopted to tune the weighting

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

5

10

15

Fig. 1. Thrust vectoring mode: Evolution of the state vector 2-norm.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.5

1

Fig. 2. Thrust vectoring mode: Evolution of the control input vector 2-norm
(eclipse phases are highlighted in red).

matrix Q, resulting in Q = diag{5, 2.5, 0.05, 0.05, 0.5, 0.5}.

The gain matrix Kk in (10) is set as the solution of the

standard periodic LQR problem [13] with weight matrices

QLQR
k = QTQ and RLQR

k = I . The matrix Sk+H in (3) is

chosen as in Proposition 1. The terminal weight Wk+H in (3)

is set as in Proposition 2, where for simplicity the matrix Dk

in taken as the identity matrix for all k. Note that the above

computations are performed offline. The LMIs and the MPC

problems are solved by using the package CVX [28] and the

commercial solver Gurobi [29].

The thrust vectoring control mode is demonstrated by

applying the MPC design (3). The evolution of the state vector

2-norm resulting from the rendezvous simulation is depicted

in Fig. 1. We observe that in this case the state converges to

zero in finite time. Although there is no theoretical guarantee

for this behavior, it is interesting to recall that this is the

same behavior that was observed in [6] for the LTI case.

The control input vector 2-norm is reported in Fig. 2. As

expected, the input constraint ‖u(k)‖ ≤ 1 is always satisfied,

and the command is idle during eclipse phases (highlighted in

red). The feedback policy displays a sparse control activation

pattern, which is a desirable feature in order to limit the EP

system wear. The target is reached in 3.8 h, incurring a fuel

cost of
∑

k ‖u(k)‖ = 28.8, which corresponds to a propellent

consumption of 7.2 g. This is a relatively modest figure

considering the amount of propellant that can be embarked

on a microsatellite. In order to illustrate the effect of state

constraints, the simulation has been repeated by enforcing a

lower bound on the radial separation between the spacecraft

and the rendezvous point in the MPC problem formulation. A

linearization of such constraint has the form (4) where L = 1,

F 1
k =

[

0 2/3 1 0 0 0
]

, Φ1
k = 0 and f1

k < 0. In this

case study, f1
k is set to −1.15. For a detailed description of

how constraints on the relative position can be expressed in

terms of the parameters (38), see [30]. The resulting in-plane

trajectory is compared with the unconstrained one in Fig. 3.
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Fig. 3. Thrust vectoring mode: radial and transverse error trajectories in the
constrained (solid blue line) and in the unconstrained (black dash-dotted line)
case. The constraint (red dashed line) is a lower bound on the radial error.
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Fig. 4. Thrust allocation mode: Evolution of the Radial, Transverse and
Normal components of the control input vector (eclipse phases are highlighted
in red).

As expected, the required bound is satisfied when included in

the formulation.

The thrust allocation control mode is demonstrated by

exploiting the results in Section IV. The resulting state vector

2-norm profile is not reported as it matches closely that in

Fig. 1. The evolution of the radial, transverse and normal

components of the control input vector are reported in Fig. 4. It

can be seen that the controller achieves control sparsity on each

input channel. Moreover, the input constraint ‖u(k)‖∞ ≤ 1 is

always satisfied. The maneuver completion time is 4.4 h and

the fuel cost is
∑

k ‖u(k)‖1 = 33.9, which corresponds to a

propellant consumption of 8.4 g. In both control modes, the

computing time for the solution of a single MPC problem

instance is in the order of 1 s (on a standard laptop), i.e., a

negligible fraction of the sampling time. A qualitative assess-

ment of the robustness of the MPC design (3) with respect

TABLE I
MEASUREMENT NOISE CHARACTERISTICS

Type GPS (absolute states) DGPS (relative states)

Position std 10 m 1 m
Velocity std 0.2 m/s 0.02 m/s

-16 -14 -12 -10 -8 -6 -4 -2 0

-1.5

-1

-0.5

0

-16 -14 -12 -10 -8 -6 -4 -2 0

-0.5

0

0.5

Fig. 5. Radial-vs-Transverse (top) and Normal-vs-Transverse (bottom) relative
position profiles, in the presence of measurement noise and parametric
uncertainty (trajectories in light gray, obtained for different initial conditions),
and under nominal conditions (trajectory in black, corresponding to the results
in Figs. 1-2).

to measurement noise and parametric uncertainty has been

carried out. To this aim, the absolute position and velocity

of the spacecraft, as well as its position and velocity relative

to the rendezvous point, have been corrupted by additive

white noise. The noise standard deviation is set as in Table I,

according to the characteristics of standard GPS and differ-

ential GPS (DGPS) measurements. The error states (38) have

then been computed from the corrupted position and velocity

states. Moreover, an imperfect mounting of the thruster has

been considered, by enforcing a 3 deg deviation (half-cone)

between the actual thrust vector and the commanded one (this

is in line with worst-case uncertainties affecting the actuation

mechanism). The controller has been tested for different initial

conditions close to that employed in the previous simulations,

thus accounting for an off-nominal displacement between

the spacecraft and the rendezvous point at the beginning of

the maneuver. Figure 5 depicts the trajectories obtained in

this setting. It can be seen that the spacecraft reaches the

rendezvous point in all realizations. This indicates a certain

degree of robustness of the design.

Finally, the vector norm-based MPC design (3) has been

compared to the standard linear periodic MPC design with a

quadratic cost [31], in order to highlight the main differences

between these approaches. Figure 6 depicts the evolution of

the state vector 2-norm obtained with the two controllers under

nominal conditions. Also in this simulation, the trajectory

obtained with the MPC design (3) converges in finite-time.

On the other hand, the standard MPC design achieves only

asymptotic regulation; the corresponding 2-norm of the input

vector is depicted in Figure 7. Observe that control activation

pattern lacks sparsity, as opposed to that in Fig. 2. The

resulting fuel cost is
∑

k ‖u(k)‖ = 44.2, which corresponds

to a propellant consumption of 11.1 g.

VII. CONCLUSIONS

An MPC strategy has been derived for linear time-periodic

systems involving a sum-of-norms objective function and
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Fig. 6. 2-norm of the system state vector: MPC design (3) (red, dashed) and
quadratic MPC (blue).
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Fig. 7. Evolution of the control input vector 2-norm for the quadratic MPC
(eclipse phases are highlighted in red).

norm-bound input constraints. Closed-loop exponential stabil-

ity is ensured via suitable periodic terminal sets and terminal

cost functions. The proposed control scheme is suitable for

orbit control applications featuring intrinsically periodic phe-

nomena such as eclipsing and orbital perturbations, and where

trading off fuel consumption and tracking performance is re-

quired. Validation on a simulated realistic rendezvous problem

has been carried out. Future research will focus on more

complex scenarios involving, for instance, the presence of

collision avoidance constraints. Furthermore, the optimization

of the tuning parameters of the controller will be investigated.
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