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Global Controllers for a Class of Nonlinear Systems

Gianni Bianchini, Roberto Genesio, Alessandro Parenti, and
Alberto Tesi

Abstract—In this note, the problem of state feedback control for a
class of nonlinear systems is considered. The class under study is a gener-
alization of the well-known Lur’e systems. The problem is addressed
via a class of storage functions of the Lur’e–Postnikov type whose integral
term is parameterized by a nonlinear scalar function. The related con-
trollers consist of a linear term, which is designed for the underlying lin-
earized system, plus a nonlinear termwhich depends on the nonlinear func-
tion. A simple geometrical criterion is provided for the characterization of
the set of controllers which ensure a given level of -performance glob-
ally. Some guidelines for an effective design of the controller within this set
are discussed via two examples.

Index Terms—Control and optimization, nonlinear control, non-
linear systems, optimal control, robust control.

I. INTRODUCTION

Although the theory of state feedback nonlinear H1 control is now
completely understood (see [1] and the references therein), some dif-
ficulties still remain for a reliable design of nonlinear H1 controllers.
These difficulties are mainly related to the lack of efficient numerical
procedures for solving theHamilton–Jacobi–Isaacs (HJI) inequality. In-
deed, a typicalway is toemployastorage functioncontainingaquadratic
termplussomehigherorderpolynomial terms(see, e.g., [2]and [3]).The
quadratic term is chosen such that the related linear controllerworks sat-
isfactorily for the underlying linearized system, while the higher order
terms are designed in order to provide a nonlinear controller ensuring
a larger domain of validity. Unfortunately, the procedure is in general
completely numerical, thus making it difficult to compare the perfor-
mance provided by different controllers. Moreover, the important issue
of comparing the performance of linear and nonlinear controllers still
deserves a deeper understanding (see [1, pp. 219–222], [3], and [4]).

In this note, the domain of validity of state feedbackH1 controllers
is investigated for a class of nonlinear systems, which is a generaliza-
tion of the well-known Lur’e systems [5], [6]. A class of storage func-
tions depending affinely on one scalar memoryless nonlinear function
is considered. The related controllers have the same linear part, which
is designed for the underlying linearized system, and a nonlinear term
which depends on the free nonlinear function. Moreover, each con-
troller guarantees a given level 
 of L2-performance within its domain
of validity. A simple geometrical criterion is presented for the design
of the nonlinear part of the controller to ensure that the domain of va-
lidity is the whole state–space. Some guidelines for the selection of the
controller are illustrated via two numerical examples.

The remainder of the note is organized as follows. Section II contains
the problem formulation. The main results are given in Section III. Sec-
tion IV presents two examples. Finally, some concluding comments are
drawn in Section V. Preliminary versions of this note are presented in
[7] and [8].
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A. Notation

: real space; = [ f�1;+1g; n: real n-space;
x = (x1; . . . ; xn)

T 2 n: vector of n; p�n: real p � n-space;
A = [Aij ] 2

p�n: matrix of p�n; AT : transpose of A; A�1:
inverse of A; A > 0 (A � 0): positive–definite (semidefinite) matrix;
In: n � n identity matrix; h	;�iR = 	TR�: inner product of 	
and � (with weighting matrix R).

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Consider the following class of nonlinear systems:

_x = Ax � Fn(�) +Bu+Ed

� = GT x

y = Cx

(1)

where x 2 n is the state vector, u 2 is the control input, d 2
is the exogenous (unknown) disturbance, y 2 p is the system output,
� 2 is an auxiliary output variable, A 2 n�n, F 2 n, B 2 n,
E 2 n,G 2 n,C 2 p�n, andn : ! is a smooth memoryless
nonlinearity such that

n(0) = n
0(0) = 0: (2)

Condition (2) ensures that (1) admits the origin as an equilibrium point
for u = d = 0 and its linear part does not depend on the nonlinearity
n(�). Note that, when u = d = 0 and C = GT , (1) reduces to the
systems involved in the Lur’e problem (see [5] and [6]). In the sequel,
we find it convenient to rewrite n(�) as

n(�) = kn(�)�:

Note that (2) implies that the gain kn(�) satisfies kn(0) = 0.
We are interested in investigating the state feedback H1 control of

the above class of nonlinear systems. The standard way to deal with
this problem is to find a storage function associated with the origin of
(1), whose definition is recalled as follows.
Definition 1: Let V : n ! be a nonnegative smooth function

such that V (0) = 0 and let 
 be a positive scalar. Then, V (x) is said
to be a storage function if the HJI inequality

@V

@x
(x) Ax � Fn(GT

x)

+
1

2

@V

@x
(x)

1


2
EE

T �BB
T @TV

@x
(x)

+
1

2
x
T
C
T
Cx � 0 (3)

holds in some neighborhood of the origin. Moreover, the set W of all
x satisfying (3) is said to be the domain of validity of V .

Once a storage function has been found, the following well-known
result directly provides a state feedback H1 controller [2].
Theorem 1: Consider (1) and let 
 > 0. Suppose there exists a

storage function V (x) and let W be its domain of validity. Then, the
closed-loop system with the feedback control law

u = �BT @
TV

@x
(x)

has L2-gain from d to [y u]T less than or equal to 
 as long as its
trajectories are inside W .

Therefore, the key step in nonlinear H1 control consists in finding
a suitable storage function. A standard approach is to select a function
containing a quadratic term, which is chosen on the basis of the lin-
earization of (1) around the origin, plus some higher order polynomial
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terms (see, e.g., [2] and [3]). In this note, we consider the following
class of functions:

� = fVm(x) : Vm(x)

=
1

2
x
T
Px+

�

0

m(�)d� ; andm(�) 2M (4)

where P 2 n�n is a symmetric positive–semidefinite matrix andM
is the class of continuous functions m : ! , which can be written
as

m(�) = km(�)� (5)

where the gain km(�) is such that km(0) = 0. Note that the quadratic
term is the same for each function Vm(x), while the higher order terms
depend on the choice of the function m(�) 2M. In particular, Vm(x)
reduces to the quadratic term when m(�) � 0.

The class� has a structure which recalls that of the Lur’e-Postnikov
Lyapunov functions [6]. More specifically, once m(�) = �n(�), � 2

, � reduces to the Lur’e–Postnikov Lyapunov functions which have
a central role in the classical theory of Lur’e systems [5], [6]. The fol-
lowing result pertains to the class �.
Lemma 1: Let 
 > 0 and suppose P = P T > 0 is a solution of

the Riccati equation

A
T
P + PA + P

1


2
EE

T �BB
T

P + C
T
C = �Q (6)

for some Q = QT > 0. Let �n and �m be two scalar parameters and
define the matrix

�Q(�n; �m) = Q+�(�n; �m)G
T +G�T (�n; �m) (7)

where

�(�n; �m)=�nPF

+�m �ATG�
1


2
G
T
EPE+GTBPB

+GTF�n�mG+
1

2
(GTB)2�

1


2
(GTE)2 �

2

mG:

(8)

Then, for each m 2 M, the following statements hold.

1) Vm(x) is a storage function and its domain of validity is given
by

Wm = fx 2 n : xT �Q(kn(�); km(�))x � 0

� = G
T
x and Vm(x) � 0g: (9)

2) The state feedback controller

um(x) = �BTPx�m(GTx)BTG

guarantees that the L2-gain from d to [y u]T is less or equal to

 within Wm.
Proof: Statement 1) follows by observing that the HJI inequality

(3) reduces to the first inequality in (9) once V (x) = Vm(x) and P
is selected according to (6). Statement 2) is a direct consequence of
Theorem 1.

Lemma 1 provides a class of controllers fum(x); m(�) 2 Mg,
ensuring the level 
 of L2-performance within the related domain of
validity Wm in (9). Each controller consists of a fixed linear term plus
a nonlinear term, which depends on th functionm(�). In particular, the
linear controller u0(x) = �BTPx, which is obtained for m(�) � 0,

has been designed via the solution of (6) to work properly for the lin-
earized system of (1) around the origin. On the other hand, the domain
of validity W0 pertaining to u0(x) may be not as large as desired and,
therefore, a suitable nonlinear controller um(x) must be looked for.

Motivated by the previous discussion, we are interested in providing
criteria for the selection of the function m(�) in order for the related
controller um(x) to generate the level 
 of L2-performance globally,
i.e., Wm � n.

III. MAIN RESULTS

Let us consider the first inequality in (9). Clearly, such inequality
holds for all x 2 n if (kn(�); km(�)) belongs for all � 2 to the
region in the (�n; �m) plane where the matrix �Q(�n; �m) in (7) is
positive semidefinite. Hence, our first goal is to characterize the geo-
metrical shape of such a region. To this purpose, we need the following
auxiliary result.
Lemma 2: Consider the one-parameter family of n� n matrices

�R(�) = R+ �(	�T + �	T ) (10)

where R 2 n�n, R = RT > 0, � 2 n, 	 2 n and � 2 . Then,
�R(�) � 0 if and only if

1 + 2h	;�iR �

+ h	;�i2R � h	;	iR h�;�iR �
2 � 0: (11)

Proof: See the Appendix
Exploiting the previous lemma, we have a first result concerning

�Q(�n; �m).
Lemma 3: The following conditions are equivalent:

1) �Q(�n; �m) � 0 (12)

2) hG;GiQ h�(�n; �m);�(�n; �m)iQ

� 1 + h�(�n; �m); GiQ
2

� 0: (13)

Proof: It is easily verified that �Q(�n; �m) in (7) has exactly the
form in (10) once R = Q, 	 = �(�n; �m), � = G, and � = 1.
Hence, the proof follows by observing that in this case (11) reduces to
(13).

Lemma 3 provides a convenient equivalent expression for
�Q(�n; �m) � 0. The next step is to show that (13) defines a very
simple geometrical constraint on the parameters �n and �m. Indeed,
exploiting the expression of �(�n; �m) in (8), it turns out that (13)
simplifies to

�
2

n(h1h2 � h
2

3) + �
2

m(l1h2 � l
2

3) + 2�n�m(�h2l2 � h3l3)

+2�nh3 + 2�ml3 � 1 � 0 (14)

where

h1 = hPF; PF iQ

h2 = hG;GiQ

h3 = � hPF;GiQ

l1 = �ATG�
1


2
G
T
EPE +G

T
BPB;�ATG

�
1


2
G
T
EPE +G

T
BPB

Q

� (GTB)2 +
1


2
(GTE)2

l2 =G
T
F � hPF;�ATG�

1


2
G
T
EPE +G

T
BPBiQ

l3 = � hG;�ATG�
1


2
G
T
EPE +G

T
BPBiQ (15)
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are quantities which depend on the linear part only of (1).
Clearly, (14) can be written equivalently as

[�n �m 1 ]T

�n
�m
1

� 0 (16)

where

T = [Tij ] =

h1h2 � h23 �h2l2 � h3l3 h3
�h2l2 � h3l3 l1h2 � l23 l3

h3 l3 �1

: (17)

Consider the region of the (�n; �m) plane defined as


 = (�n; �m) : [ �n �m 1 ]T

�n
�m
1

� 0 (18)

and let

� = T 2
12 � T11T22: (19)

The next result follows directly from Lemma 3 and the equivalence of
(13) and (16).
Lemma 4: The following conditions are equivalent:

1) �Q(�n; �m) � 0 (20)

2) (�n; �m) 2 
: (21)

From (17) and (18), it follows that
 contains the origin of the (�n; �m)
plane. Moreover, its boundary @
 is described by a simple geometrical
curve, i.e., either an ellipse (� < 0), or a parabola (� = 0), or a
hyperbole (� > 0).

Let us now investigate the second inequality in (9), i.e., Vm(x) � 0.
Consider the half plane

� = (�n; �m) : �m > �
1

GTP�1G
(22)

which clearly contains the origin. The following result characterizes
the condition Vm(x) � 0.
Lemma 5: If (kn(�); km(�)) 2 � for all � 2 , then Vm(x) � 0

for all x 2 n.
Proof: Let km(�) = (�1=GTP�1G)+�m(�)where �m(�) > 0

for all � 2 . We have

Vm(x)=
1

2
xTPx+

G x

0

m(�)d�=
1

2
xTPx+

G x

0

�km(�)d�

=
1

2
xTPx�

G x

0

�

GTP�1G
d�+

G x

0

��m(�)d�

�
1

2
xTPx�

1

2

(GTx)2

GTP�1G
=

1

2
xT P �

GGT

GTP�1G
x:

To show that Vm(x) � 0 8x 2 n it suffices to prove that the matrix
P �GGT =GTP�1G is positive semidefinite. From a standard deter-
minantal result we have

det P � �
GGT

GTP�1G
= (1� �) det(P ):

Hence, since P > 0, the previous expression implies that
P �GGT =GTP�1G � 0.

Consider now the region

� = 
 \� (23)

which clearly depends on the linear part of (1) only and contains the
origin. Such a region plays a key role in the main result of the note.
Theorem 2: Let C be the curve in the (�n; �m) plane described

parametrically as

C =
�n = kn(�)

�m = km(�)
� 2 (24)

and suppose that

C � �: (25)

Then, the domain of validity of the controller

um(x) = �BTPx� km(GTx)GT x � BTG (26)

is the whole state–space, i.e., Wm � n.
Proof: Since C � �, Lemma 5 guarantees that the second in-

equality in (9) holds for all x 2 n. Since C � 
, Lemma 4 ensures
that �Q(kn(G

Tx); km(GTx)) � 0 for all x 2 n and, therefore, also
the first inequality in (9) holds globally.

Theorem 2 provides a simple geometrical criterion for determining
controllers which globally ensure the level 
 ofL2-performance. Given

 and Q and evaluated P according to Lemma 1, it is enough to com-
pute the region � exploiting (17), (18), (22), and (23). The controller
(26) is then obtained by looking for a function km(�) such that the curve
C in (24) satisfies condition (25).

A necessary and sufficient condition for the existence of such km(�)
is given next. The key to this result is the sector pertaining to the system
nonlinearity n(�). It is worth to recall that n(�) is said to belong to the
sector (�; �) (i.e., n(�) 2 sect(�; �)) if � � kn(�) � � for all � 2 .

Let us define the following quantities which belong to :

�n = inf
(� ;� )2�

�n �n = sup
(� ;� )2�

�n: (27)

Theorem 3: There exists km(�) such that (24)–(25) hold if and only
if

n(�) 2 sect(�n; �n): (28)

Proof: Since � is a connected region, from the definition of �n
and �n in (27) it follows that (28) is equivalent to pointwise existence
of some function km(�) such that (kn(�); km(�)) 2 � for all � 2 .
Since the region � also contains the origin of the (�n; �m) plane, such
a function can be chosen such that km(0) = 0, thus concluding the
proof.

It can be shown that �n and �n can be computed explicitly by ex-
ploiting the property that @
 \ @� = [9]. This property ensures
that to compute �n and �n it is sufficient to consider only the con-
straint (16), which defines 
. The explicit expressions of �n and �n
are summarized in the following table:

� > 0 � > 0 � > 0 � < 0

T22 < 0 T22 > 0 T22 > 0

T12 < 0 T12 > 0

�n �1 �+ �1 �+

�n +1 +1 �� ��

(29)

where � is as in (19) and

��=
�(T12l3�T22h3)� (T12l3�T22h3)2�(l23+T22)�

�
: (30)

Note that in the ellipse case (� < 0) the sector of the system nonlin-
earity n(�) is not allowed to be unbounded. Due to space limitations,
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Fig. 1. Graphical interpretation of Theorems 2–4 and Corollary 1. The two
quantities and are defined as = inf ( ), = sup ( ).

the parabola case (� = 0) and the hyperbole case (� > 0) when
T22 = 0 or T12 = 0 have been omitted and can be found in [9].

Let us define the following quantities:

�
0
n = inf

(� ;0)2�
�n; �

0
n = sup

(� ;0)2�
�n (31)

which can be easily computed from (16) and are such that �0n � �n
and �0n � �n. The next result allows for a direct comparison of linear
versus nonlinear controllers.
Corollary 1: The domain of validity W0 of the linear controller

u0(x) = �BTPx is the whole state–space if

n(�) 2 sect(�0n; �
0
n): (32)

Proof: It directly follows from Theorem 2 once the curve C in
(24) is replaced by the straight line in the (�n; �m) plane parametrized
by f(kn(�); 0); � 2 g, and observing that the region � is convex.

Fig. 1 provides a graphical interpretation of Theorem 2, Theorem
3, and Corollary 1 for � < 0. Note that in this case, condition (32)
fails since sn = inf kn(�) < k0n and, therefore, Corollary 1 cannot be
applied. On the contrary, (28) is satisfied and, hence, Theorems 2 and
3 hold.

Clearly, any curve C, which lies entirely in � and crosses the origin,
implicitly provides a solution for km(�). The next result provides a
closed form expression of km(�) for a piecewise linear curve.
Theorem 4: Let condition (28) be satisfied and compute km(�) as

km(�) =
�kn(�) 8� : kn(�) < 0

�kn(�) 8� : kn(�) � 0
(33)

where � and � are given by

� > 0 � > 0 � > 0 � < 0

T22 < 0 T22 > 0 T22 > 0

T12 < 0 T12 > 0

�
(�T +

p
�)

T

�

�

�T
T

�

�

�
(�T �

p
�)

T

�T
T

�

�

�

�

(34)

being �m and �m defined as

�m = �
T12�n + l3

T22
; �m = �

T12�n + l3

T22
: (35)

Then, the related controller (26) ensures the level 
 ofL2-performance
globally.

Proof: Since the region� is convex and contains the origin, there
exists a function km(�) such that C = f(kn(�); km(�)) : � 2 g is
a piecewise linear curve in � containing the origin. Indeed, exploiting
table (29), it is not difficult to verify that (33)–(34) yield one such func-
tion (see Fig. 1).

It is worth noting that Theorem 4 provides just one possible choice of
the free function km(�). Indeed, this degree of freedom can be exploited
to meet other performance indices (e.g., the transient behavior) of the
closed loop, as it is shown in the example section.

IV. EXAMPLES

Example 1: Consider the system of the form (1) defined by the ma-
trices

A=
0 1

�1 3

B=
0

1

C=[ 0:2 �2 ]

E=F =B

G=CT

and the nonlinearity

n(�) = 6(tanh � � �): (36)

Note that n(�) 2 sect(�6; 0).
Let us consider the H1 control problem for 
 = 1:3. It turns out

that for Q = I2 the Riccati equation (6) is solved for

P =
17:63 0:47

0:47 15:63

which yields the quadratic term of the storage function Vm(x) in (4).
From (15), it turns out that the region
 in (18) is defined by the matrix

T =

16:59 �17:04 31:16

�17:04 31:43 �13:45

31:16 �13:45 �1

and since � = �231:17, @
 is an ellipse [see Fig. 2(a)]. Moreover,
the half-plane� in (22) is defined by �m > �3:85 and, hence,� � 
.
Moreover, it turns out that both �n and �n are finite and, from (29), we
get

�n = �6:63 �n = 0:14:

Since (28) holds, Theorem 4 can be applied. From (35), we compute

�m = �3:17 �m = 0:50

and finally, from (33) and (34)

km(�) = 0:48kn(�) =
2:88(tanh� � �)

�
: (37)

Hence, the nonlinear feedback controller (26) with km(�) in (37) glob-
ally solves the considered nonlinear H1 control problem.

Clearly, other choices of km(�) can be exploited in order to im-
prove the performance of the closed loop. For instance, let us choose
km(�) = k̂m(�) where k̂m(�) is given as

k̂m(�) = 0:1056k2n(�) + 1:2500kn(�) 8� 2 : (38)

The corresponding curve Ĉ is entirely contained in � [see Fig. 2(a)]
and, therefore, the controller ûm(x) defined via (38) ensures the same
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(a)

(b)

Fig. 2. Example 1. (a) Representation of� (solid ellipse), curves (dash-dot)
and ^ (dashed). (b) Responses ( ( ) ) to initial state (0) = [20 0]
corresponding to ( ) (solid) and ^ ( ) (dashed).

level of L2-performance of the control law um(x) related to (37). On
the other hand, since jk̂m(�)j � jkm(�)j it is expected that (38) pro-
vides higher feedback gains than (37) and consequently a higher con-
vergence rate of the corresponding closed-loop system. This is indeed
confirmed by numerical simulations. As an example, the closed loop
responses from initial condition x(0) = [20 0]0 of ûm(x) and um(x)
are depicted in Fig. 2(b).

Finally, we note that (32) does not hold. Hence, Corollary 1 does not
guarantee the global validity of the linear controller u0(x) = �BTPx
defined by m(�) � 0. In this respect, it can be shown that the exact
domain of validity, which can be computed numerically via (9), is not
the whole state space. Therefore, in this case, the application of Corol-
lary 1 does not show any conservatism.
Example 2: Consider a system of the form (1) where

A=
0 1

�1 4
B=E=F =

0

1
C=GT =[�2 �5 ]

and

n(�) = �
3
:

Note that n(�) 2 sect(0;+1).
Let us consider the H1 control problem for 
 = 1:05. Solving (6)

for Q = I2 yields

P =
89:53 2:26

2:26 89:71
:

From (15) and (17) we get � = 1:48 � 106. Hence, in this case @
 is
a hyperbole. The half-plane � is defined by �m > �3:14 and @� can
be shown to reduce to the upper hyperbole branch. From (29), we get

�
n
= �0:06 �n = +1

and, therefore, (28) of Theorem 3 holds.

Since� > 0, T22 > 0, T12 < 0 and kn(�) is positive definite, from
Theorem 4 we get

km(�) = 85:82kn(�) = 85:82�2:

Concerning the linear contrroller u0(x), it is clear that Corollary 1
cannot be applied since �0

n
= �3:26 � 10�2 and �0n = 8:41 � 10�4.

Indeed, it turns out by numerical computation that also in this case the
domain of validity of u0(x) is not the whole state space.

V. CONCLUSION

A family of state feedback H1 controllers for a class of nonlinear
systems is singled out. These controllers, which have the same linear
part while the nonlinear part depends on a free scalar memoryless non-
linear function, ensure the same level of L2-performance on the cor-
responding domain of validity. A geometrical criterion for selecting
the free nonlinear function in order to provide controllers possessing
the whole state–space as domain of validity is given. Such a criterion
allows us to show that nonlinear controllers provide in general larger
domains of validity than linear ones and it makes it possible to take into
account also other performance indexes in the controller design.

APPENDIX

Proof of Lemma 2

Since �R(0) > 0 and �R(�) is continuous with respect to �, positive
definiteness of �R(�) can be investigated by examining its determinant.
In this respect, observe that the following matrix equivalence holds:

�R(�) � [ 	 � ]

0

0
I2

=

R � [ 	 � ]

��T

�	T
I2

In [ 0 0 ]

�T

	T
I2

and, therefore, it turns out that

det( �R(�)) = det

R � [ 	 � ]

��T

�	T
I2

= det I2 + �
�T

	T
R
�1[ 	 � ] det(R)

= det
1 + �h	;�iR �h�;�iR
�h	;	iR 1 + �h	;�iR

det(R):

(39)

Since R > 0, the structure of the last expression in (39) implies that
�R(�) is positive semidefinite if and only if (11) holds.
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A New Method for Singular Value Loop Shaping in Design
of Multiple-Channel Controllers

Amin Nobakhti and Neil Munro

Abstract—In this note, simple symmetric interval bounds on the singular
values of a matrix based on its Gershgorin disks are proposed. This allows
the Gershgorin theorem to be used not only to provide information about
the location of the eigenvalues of a matrix but also its singular values. This
is utilized for the proposition of a new design technique for singular value
loop shaping based on the diagonal dominance methodology for design of
linear multivariable plants. In return, this allows multiple-channel simply
structured controllers to be designed with a view to robustness and to meet
constraints and specifications on the behavior of its singular values. A de-
sign example is given demonstrating the effectiveness of this approach.

Index Terms—Diagonal dominance, linear multivariable controller de-
sign, loop-shaping, singular value decomposition (SVD) analysis.

I. INTRODUCTION

For a matrix A = [aij ] 2 C
m�m, the radius of its column Gersh-

gorin disks Cj(A) also referred to as the deleted absolute column sum
and row gershgorin disksRi(A) also referred to as the deleted absolute
row sum are defined, respectively, as

Cj(A) =

m

i=1

j aij j (1)

Ri(A) =

m

j=1

j aij j: (2)

Gershgorin’s theorem [1] states that the eigenvalues of A lie inside
the region defined by these disks centered on the diagonal entries of A

GR(A) �

m

i=1

fs 2 C : j s� aii j � Ri(A)g (3)

GC(A) �

m

j=1

fs 2 C : j s� ajj j � Cj(A)g: (4)

Note that bothGR(A) andGC(A)must include the eigenvalues, hence
their intersection G�(A) = GR(A) \ GC(A) is the only subset the

Manuscript received May 11, 2003; revised July 25, 2003. Recommended
by Associiate Editor P. A. Iglesias. This work was supported by the University
of Manchester Institute of Science and Technology (UMIST), EPSRC, and the
Insitution of Electrical Engineers (IEE).

The authors are with the Control Systems Centre, University of Manchester
Institute of Science and Technology (UMIST), Manchester M60 1QD, U.K.
(e-mail: multivariable@ieee.org).

Digital Object Identifier 10.1109/TAC.2003.822870

eigenvalues can truly exist in. G�(A) is referred to as a minimal Ger-
shgorin set [2] and other minimal sets may be obtained by considering
the intersection of all the Gershgorin sets corresponding to similar op-
erators to A (e.g., �A = S�1AS).

Rosenborck [3] used Gershgorin’s theorem to propose the first fre-
quency-based linear multivariable controller design technique based on
the concept of diagonal dominance. This is a design technique that con-
verts a linear multivariable design problem into several single-loop de-
sign problems which can then be solved using any number of available
single-loop design techniques. In the case of column dominance, for
a plant with transfer function matrix G(s) = [gij(s)] 2 C

m�m, this
involves finding a pre-compensator matrix K = [kij(s)] 2 R

m�m,
such that the resulting open-loop system with transfer function matrix
Q(s) = G(s)K satisfies the inequality

j qii(s) j �

m

j=1

j qij(s) j; (i = 1; . . . ;m) (5)

where, here, “�” denotes “at least equal to, but as much greater than as
possible.” Should the inequality become an equality the systemwill just
satisfy the diagonal dominance criteria. If such aK can be found,Q(s)
may be replaced by ~Q(s) = diagfQ(s)g = [qii(s)] 2 C

m�m. Next,
a diagonal controller matrix D(s) = [dii(s)] 2 C

m�m can be found
such that ~qii(s)dii(s) is as close as possible to mi(s)(1 � mi(s)),
whereM(s) = diagfmi(s)g is the desired transfer function matrix of
the closed-loop system, whose actual overall transfer function matrix
is T (s).

Note that, since ~qij(s)dij(s) = 0 (8 i 6= j), the design ofD(s) can
be broken down intom single-loop design problems; the transfer func-
tion matrix of the corresponding multivariable controller is C(s) =
KD(s). If the precompensator matrix K satisfies (5), then this in-
equality is also satisfied forQ(s)D(s) sinceD(s) postmultiplies each
column of Q(s) by the same gain at each frequency. There are many
established techniques of finding the matrix K such as the pseudodi-
agonalization algorithm of Hawkins [4] and the ALIGN algorithm [5].
More recently, techniques were developed for finding dynamic pre-
compensators [6], [7] which although are typically of first or second
order, are able to achieve much greater levels of diagonal dominance.

A major handicap with diagonal dominance is that the controller
design only focuses on very few properties of the system [8] and is-
sues such as robustness, disturbance rejection, etc. are implied from
the process and not inherently addressed by it. This makes the moti-
vations for this work very clear. By showing that the Gershgorin disks
can be used to bound the singular values as well, it allows the designer
to not only use the Gershgorin disks to asses the system’s interaction,
but also guaranteed bounds on the whereabouts of its singular values.
In turn, the design process can be made to cater for cases where, for
example, there are specifications on theH1 norm of the system or the
behavior of its singular values.

Needless to say, there are other techniques, which can produce high
performance robust controllers, which may satisfy some given con-
straint on the behavior of the singular values of the system. The most
well known of these techniques is theH1 mixed sensitivity approach.
However, the majority of these techniques are synthesis based, where
the designer has ultimately little control over many of the features of
the produced controllers, such as structure, complexity, and even some-
times realizability. For example, it is commonly acknowledged that in a
H1 design study, even if one overcomes the initial nontrivial problem
of designing the weighting functions [9], still the secondary problem
remains of a controller which is very complex and of a high order.
The technique outlined here is on the other hand a “design” technique,
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