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Abstract
This paper presents a learning algorithm for tuning the parameters of a family of 
stabilizing nonlinear controllers for orbital tracking, in order to minimize a cost 
function which combines convergence time and fuel consumption. The main 
feature of the proposed approach is that it achieves performance optimization 
while guaranteeing closed-loop stability of the resulting controller. This property is 
exploited also to restrict the class of admissible controllers and hence to expedite the 
training process. The learning algorithm is tested on three case studies: two different 
orbital transfers and a rendezvous mission. Numerical simulations show that the 
learned control parameters lead to a significant improvement of the considered 
performance measure.
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1  Introduction

Recent years have witnessed an increasing interest towards the use of learning 
techniques in aerospace applications. The steadily growing research activity 
in this area is testified by several surveys, classifying a variety of solutions for 
guidance [1, 2], navigation [3] and control [4]. In particular, rendezvous and 
docking (RVD) problems have been tackled by machine learning techniques 
in combination with model-based methods [5–7], as well as by reinforcement 
learning approaches [8–11]. A common feature of these works is that the control 
scheme includes an artificial neural network, possibly coupled with other types 
of controllers, which is trained by using experimental or simulation data. Among 
the motivations behind these techniques, there is the potential of neural networks 
to approximate complex maps and the possibility of designing the controller 
even without an explicit model of the physical system. Moreover, they allow 
one to optimize meaningful cost functions involving state and input variables. 
Unfortunately, providing a rigorous stability analysis of Neural Feedback 
Loops (NFLs), i.e., closed-loop schemes including neural networks as feedback 
controllers, is a hard task. In most works, stability and performance are evaluated 
only a posteriori, by means of simulation campaigns. Furthermore, the training of 
the neural controller may not consider some relevant points of the flight envelope, 
thus leading to unexpected behaviors of the control scheme or even instability.

Current research trends are tackling the above problem from different 
perspectives. Several works apply Lyapunov analysis to guarantee closed-loop 
stability of a control scheme combining a nonlinear feedback controller (based, 
e.g., on sliding mode or backstepping) and a neural network. This type of 
approach has been explored for aerospace control problems like attitude control 
[12], formation flying [13] and rendezvous and docking [14]. However, in these 
works the neural network is used only to adapt the controller parameters against 
model uncertainty and external disturbances. More recently, a remarkable effort 
has been devoted to studying closed-loop stability of NFLs, by resorting to 
classical control analysis paradigms (see, e.g., [15–17]). A limitation of these 
approaches is that the involved computational burden tends to grow considerably 
with the number of neurons and layers of the neural controller. A third line of 
research exploits learning tools to select the parameters of a controller belonging 
to a pre-specified class, whose structure is designed in order to guarantee the 
desired stability properties. In this context, [18] is one of the first works enforcing 
specific parameterizations of the controller (including the Youla-Kucera one) and 
then estimating the control parameters using the REINFORCE algorithm [19], a 
classical tool in machine learning. The Youla parameterization is also adopted in 
[20], while PID controllers are considered in [21]. Learning within a family of 
robustly stabilizing controllers has been addressed in [22].

A key feature of spacecraft control systems is that well-established and reliable 
models of the orbital dynamics are available [23, 24]. Therefore, a large body 
of literature is focused on the design of model-based control schemes for such 
problems (see, e.g., [25–31] and references therein). A common challenge these 
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techniques have to face is that it is by no means trivial to tune the controller 
parameters in order to optimize specific performance indexes, such as fuel 
consumption and maneuver completion time. This motivates the adoption of a 
two-step design procedure, along the lines suggested in works such as [18] and 
[21]: first, a class of control laws guaranteeing closed-loop stability is chosen; 
then, learning techniques are employed to tune the parameters of the control law 
so as to optimize performance. This type of strategy has been already adopted in 
the aerospace field, either to optimize the parameters of feedback control laws for 
powered descent landing [32] or to tune a Lyapunov-based Q-law for trajectory 
design [33]. Such works adopt actor-critic reinforcement learning algorithms, 
whose training process is usually computationally demanding.

In this paper, the approach outlined above is adopted in the context of orbital 
tracking. The objective is to design an optimal control law that achieves closed-
loop stability while minimizing a mixed time-fuel performance index. This is 
a challenging problem, being the orbital tracking dynamics nonlinear and the 
cost function nonsmooth. To this aim, the family of almost globally stabilizing 
feedback controllers proposed in [34] is considered. A specialized version of the 
REINFORCE algorithm, known as Augmented Random Search (ARS) [35], is 
employed to learn the values of the controller parameters which minimize the 
desired cost function. The learning procedure requires only the computation of the 
cost value associated to each episode within a batch of simulations of the closed-
loop control system. The novelty of the proposed approach with respect to control 
schemes based on NFLs is that closed-loop stability is always guaranteed during 
the exploration of the parameter space, and hence also for the optimized controller. 
This allows one to remarkably speed-up the training process, by avoiding to consider 
parameter combinations that would lead to system instability. Numerical simulations 
on three different missions, involving orbital transfer and rendezvous maneuvers, 
confirm that the learning algorithm converges to a control law that optimizes a trade-
off between settling time and fuel consumption. In particular, it is shown that the 
proposed technique can be exploited to tune the control system performance with 
respect to a set of initial mission configurations. Moreover, thanks to the simplicity 
of the ARS learning algorithm, the parameter tuning process takes seconds for a 
single mission, thus making the proposed approach computationally attractive with 
respect to other learning techniques proposed in the literature.

The paper is organized as follows. Section  2 reviews the dynamic model used 
for orbital tracking. The considered class of stabilizing controllers along with 
the performance optimization problem is introduced in Sect.  3, and the learning 
algorithm is presented in Sect. 4. The results of numerical simulations are discussed 
in Sect. 5, while Sect. 6 contains conclusions and future developments.

1.1 � Notation

The symbol 0n×m denotes a null n × m matrix, while the identity matrix of order n is 
denoted by In . The partial derivative �f∕�x is expressed as a row vector. To save space, 
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cos(⋅) and sin(⋅) are abbreviated with c(⋅) and s(⋅) , respectively. Moreover, we define the 
rotation matrix

Finally, for v ∈ ℝ
n , � ∈ ℝ , max{v, �} denotes the vector whose components are the 

maximum between the components of v and �.

2 � Orbital Tracking

In this paper, the dynamics of an orbiting spacecraft are described in terms of the six 
Equinoctial Orbital Elements

where L is the true longitude, p is the orbit semi-parameter, eX , eY are the components 
of the eccentricity vector, and hX , hY are the components of the inclination vector 
[36]. The dynamics are given by

where u =
[
ur, u� , uh

]T is the control vector (radial, transverse and normal forcing 
accelerations, respectively),

with

R(�) =

[
c(�) − s(�)

s(�) c(�)

]
.

� =
[
�1 … �6

]T
=
[
L, p, eX , eY , hX , hY

]T
,

𝜓̇ = f (𝜓) + g(𝜓)u,

f (�) =

�
�

�3
2

�
(1 + �X)

2 0 0 0 0 0
�T
,

g(�) =

√
�2√

�(1 + �X)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 �

0 2�2 0

(1 + �X)s(�1) qX − � �4

−(1 + �X)c(�1) qY � �3

0 0
(1 + h2)

2
c(�1)

0 0
(1 + h2)

2
s(�1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�X = �3c(�1) + �4s(�1),

qX = �3 + (2 + �X)c(�1),

qY = �4 + (2 + �X)s(�1),

� = �5s(�1) − �6c(�1),

h2 = �2
5
+ �2

6
,
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and � is the gravitational parameter of the central body. On any unforced orbit, only 
the true longitude �1 varies in time.

The considered control task is to track a target reference trajectory 
� r(t) = [� r

1
(t), � r

2
, � r

3
, � r

4
, � r

5
, � r

6
]T where � r(t) satisfies the unforced periodic 

dynamics 𝜓̇ r = f (𝜓 r) with given initial conditions � r(0) . In order to ease the control 
design, the dynamics of the tracking error 𝜓̃ = 𝜓 − 𝜓 r are modeled as in [34] using 
the transformed variables:

where [� r
X
, � r

Y
]T = R(� r

1
)[� r

3
, −� r

4
]T . The transformation (1) is such that x = 0 if 

and only if 𝜓̃ = 0 . The corresponding dynamic model is given by:

where � = [x1 … x4]
T,

with

(1)

x1 = 𝜓̃1

x2 =

�
1 +

𝜓̃2

𝜓 r
2

− 1

�
x3
x4

�
=

⎡
⎢⎢⎢⎣

𝜓 r
2
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r
2

0

0

�
𝜓 r
2
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r
2

⎤
⎥⎥⎥⎦
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1
)

�
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3
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4

�
+

�
−
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r
2

0

�
−

�
𝜁 r
X

𝜁 r
Y

�

x5 = 𝜓̃5

x6 = 𝜓̃6,

(2)ẋ =

[
F(𝜒 ,𝜓 r)

02×1

]
+

[
G(𝜒 ,𝜓 r)

02×2

][
ur
u𝜃

]
+ H(x,𝜓 r) uh,
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⎡
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It is worth noticing that the vector fields in (2) are periodically time-varying, with 
the same period as the reference trajectory.

3 � Controller Class and Performance Assessment

By using the results in [34], we define a parametric family of stabilizing 
controllers for system (2), as follows:

where K = [K1,… ,K5]
T is a vector of constant parameters,

and

The explicit expressions of 𝜉̇ and �V
�x
H in (3) are not reported for brevity. The control 

law introduced above exploits backstepping and damping control techniques. In par-
ticular, � in (5) plays the role of a virtual input to the dynamics of � in (2), while the 
last equation in (3) represents a damping term. The following result states the stabil-
ity properties of the control law (3), which can be proved by adopting V(x) in (4) as a 
Lyapunov function (see [34] for details).

Proposition 1  Let Ki > 0, i = 1,… , 5 . Then, the origin of closed-loop system (2)-(5) 
is almost globally asymptotically stable.

F12 =
√

�

(� r
2
)3

(
x3 + 1 + � r

X

)2
,

F13 =
√

�

(� r
2
)3

(
x3 + 2 + 2� r

X

)
,
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√

�

(� r
2
)3

(
x2 + 2

)(
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X

)3
,

F33 = F13 �
r
Y
,

F43 = F13 �
r
X
,

G22 =

√
� r
2

�

1

(x3+1+�
r
X
)
,

G41 =

√
� r
2

�
.

(3)

ur(x,𝜓
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(
F43 x3 − 𝜉̇
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6
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This result defines the set of parameters K guaranteeing that the proposed control 
law stabilizes the tracking error system. However, it is well known that tuning the 
performance of nonlinear control laws is far from trivial. Indeed, a misguided choice 
of the control parameters of the closed-loop system (2)-(5) may lead, for example, to 
extremely slow tracking of the reference trajectory or to an excessive control effort. 
The goal of this paper is to tune the parameters K of the stabilizing control law (3) 
so as to optimize the performance of the closed-loop system in terms of a trade-
off between the settling time and the fuel consumption. To this purpose, we denote 
by y the distance between the actual and reference spacecraft position, expressed in 
Cartesian coordinates. This can be seen as an output signal of system (2), i.e.,

where the mapping Y is obtained from (1) and the transformation which relates the 
satellite Equinoctial elements to the corresponding inertial cartesian states [37]. In 
order to learn the controller parameters K from the input–output behavior, system 
(2), (6) with control law (3) is simulated over a horizon of length Te (each simulation 
is called an episode). The input and output values collected at sampling times kTs , 
k = 0,… ,H , with Te = HTs , are denoted as u(k) and y(k), respectively. Then, the 
performance index to be minimized is specified as

where x(0) denotes the initial state vector,

and � is a threshold assessing practical convergence. The parameter � is used to 
trade-off the two conflicting requirements of minimizing the maneuver completion 
time Hconv and the fuel consumption.

In the following, the problem of minimizing the cost (7) with respect to the 
controller parameter vector K is addressed. Being (7) a discontinuous function of K, 
a gradient-free optimization method is required. In the next section, a learning-based 
approach is proposed.

4 � Learning Procedure

A classical approach to minimize a function J(K) with respect to K ∈ ℝ
q is the 

so-called random search, which amounts to computing a numerical approximation 
of the function gradient along a random search direction.

Recently, an enhanced version of this approach, namely the Augmented Random 
Search (ARS) method, has been proposed in [35]. It is a derivative-free stochastic 
optimization method which explores the parameter space of a family of determin-
istic control policies, by simulating episodes with randomly perturbed parameter 
vectors K. The ARS algorithm improves with respect to the basic random search, 

(6)y = Y(x,�r),

(7)J(x(0);K) = Hconv + �

Hconv−1∑
k=0

||u(k)||,

(8)Hconv = min{k̄ ∶ y(k) ≤ 𝜖, ∀k ≥ k̄},
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by adopting several heuristics which have proven to be effective in speeding up the 
learning process. First, multiple random search directions �j ∈ ℝ

q , j = 1,… ,N , are 
selected in order to enhance the exploration of the parameter space. This is done 
by generating N random vectors �j sampled from a normal distribution with zero 
mean and covariance matrix Σ� . Notice that the latter plays a significant role in scal-
ing the exploration appropriately for each element of the parameter space. Then, the 
parameter vector is updated along a direction which is a weighted average of the ran-
dom search vectors, according to the cost variation along each �j . The update step is 
scaled by the standard deviation �J of the 2N cost values J(j)+ = J(K

(j)
+ ) , J(j)

−
= J(K(j)

−
) , 

j = 1,… ,N , evaluated by simulating the closed-loop system with the corresponding 
control law parameter values

until practical convergence of the trajectory y is achieved. In (9)-(10), � is a posi-
tive scaling constant and 𝜖K > 0 is a small quantity, instrumental to guaranteeing 
positivity of the controller parameters, as required by Proposition 1. The scaling by 
�J is useful to adapt the step sizes according to the local sensitivity of the cost with 
respect to perturbations of the control parameters [35]. Then, the parameter update 
step is performed as

The update (11) is repeated iteratively for i = 1,… ,M , where M is the total num-
ber of iterations (note that, each iteration requires to perform 2N episodes and cost 
evaluations). The outcome of the learning procedure is the final parameter vector 
K∗ = K(M) . The overall procedure is summarized in Algorithm 1. Note that, rather 
than employing a predefined maximum number of iterations, alternative stopping 
criteria can be adopted for the proposed algorithm. For instance, the learning pro-
cedure can be terminated when the cost J does not decrease significantly anymore. 
This is typically done by smoothing the cost value with a moving average and then 
checking if its decrease is below a given threshold. In the simulations presented in 
Sect. 5, we let the learning procedure evolve over a predefined number of iterations 
in order to test the numerical stability of the method.

It is worth stressing that asymptotic convergence of the closed-loop system tra-
jectories is guaranteed for all learning episodes by the global stability property of 
the control law (3) and the fact that in Algorithm 1 all the generated K+ , K− and 
updated K(i) are strictly positive. This feature turns out to be crucial to streamline the 
learning procedure. Indeed, the occurrence of divergence or other unstable behav-
iors would prevent a meaningful computation of the costs J(j)+  , J(j)

−
 , thus leading to 

high variance of the local cost values and, in turn, of the parameter updates.

(9)K
(j)
+ =max{K + ��j, �K}

(10)K(j)
−

=max{K − ��j, �K},

(11)K(i+1) = max{K(i) −
�

N�J

N∑
j=1

(J
(j)
+ − J(j)

−
)�j, �K}.
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Algorithm 1   Augmented Random Search (ARS)

5 � Numerical Simulations

In this section, Algorithm  1 is exploited to tune the parameter vector 

K =
[
K1,… ,K5

]T of the control law (1) within different case-studies, in order to 

demonstrate its suitability for performance optimization in the context of space 
applications. In particular three different scenarios are considered: (A) an orbital 
transfer from a low Earth orbit (LEO) to a geostationary transfer orbit (GTO); 
(B) an orbital transfer from a GTO to a geostationary Earth orbit (GEO); (C) a 
rendezvous mission in LEO. The first two case studies are representative of orbit 
control problems characterized by strong nonlinearities, which raise the chal-
lenge of optimizing a complex transient response. The latter application focuses 
on a scenario in which feedback control is essential to achieve a sufficient level 
of mission autonomy.

The implementation of the proposed algorithm utilizes the C++ program-
ming language and runs on a 3.10 GHz CPU with 16 cores, using OpenMP 
constructs to enable parallel computing. The parallelization is applied to both 
episodic exploration directions and initial conditions so as to improve the com-
putational efficiency. The hyperparameters chosen for the learning algorithm are 
reported for each scenario in the corresponding subsection.
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5.1 � Orbital Transfer: LEO‑GTO

In this transfer mission, which is inspired by [38], the initial orbit is an equatorial 
circular orbit with a semi-major axis equal to 6778 km, while the reference orbit is a 
higher altitude elliptic orbit. The initial and reference orbital elements are reported 
in Table 1.

The sampling time is Ts = 16 min and the parameters characterizing the perfor-
mance index in (7)-(8) are set to � = 50 and � = 10 km. The algorithm hyperparam-
eters are chosen as follows: M = 2000 , � = 5 ⋅ 10−3 , � = 2 ⋅ 10−3 , N = 16 , H = 320 , 
corresponding to 10 consecutive target orbits and Te = 86.4 hours. The initial 
parameter vector is selected as K(1) = [0.1, 1, 1, 1, 10]T . The covariance matrix is 
specified as Σ� = diag{0.1, 1, 1, 1, 10} , which ensures an appropriate scaling of 
the perturbation direction for the vector K. The choice of the scaling values is the 

Fig. 1   Scenario A. Evolution of the parameter vector K(i) during the learning process

Table 1   Scenario A: orbital 
elements of the initial and 
reference orbits

Orbital element Initial orbit Reference orbit

True longitude L(0) = 4.1015 rad Lr(0) = 3.9270 rad
Semi-parameter p = 6778 km pr = 19455 km
Eccentricity vector eX = 0

eY = 0

er
X
= −0.0776

er
Y
= 0.2898

Inclination vector hX = 0

hY = 0

hr
X
= 0.3046

hr
Y
= 0.0816
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outcome of a trial-and-error selection process based on the experimentation on dif-
ferent datasets. In this setting, the computation time required for tuning the control-
ler parameters amounts to 12 s. This corresponds on average to 6 ms per iteration.

The evolution of the parameter vector K(i) is depicted in Fig. 1, while Fig. 2 dis-
plays the overall cost J defined by (7). A cost reduction of about 18% with respect 
to the initial non-optimized cost is achieved in less than 1000 iterations. It can be 
observed that the cost is not monotonically decreasing during the learning process, 
due to the stochasticity of the search algorithm. In fact, the finite number of the 
explored directions in the parameter space may lead to a local increase in the cost at 
some iterations. Fig. 3 shows the output y(t) defined by (6) for all the iterations of 
the learning algorithm. The black and red lines denote the trajectories correspond-
ing to the initial and the final parameter vector of the controller, respectively. It 
can be seen that optimizing such parameters leads to a remarkable reduction of the 

Fig. 2   Scenario A. Evolution of the maneuver cost J 

Fig. 3   Scenario A. Evolution of the output signal y(t) resulting from the application of Algorithm 1: first 
iteration (black line) and final iteration (red line)
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flight time and that all the trajectories generated during the learning phase achieve 
converge towards the origin. To qualitatively illustrate these results, Fig. 4 shows a 
three-dimensional plot of the resulting spacecraft trajectories in the Earth centered 
inertial (ECI) frame. It can be seen that the learned trajectory accomplishes notably 
less revolutions than the initial one, confirming the aforementioned cost reduction. 
The control input signals obtained in the first and last iterations of the learning pro-
cess are reported in Fig. 5. The optimization of the selected cost function allows for 
a reduction of the peak value of the normal acceleration uh and a shorter activation 
of the radial one ur.  

5.2 � Orbital Transfer: GTO‑GEO

In this case-study, the proposed approach is tested on a GTO to GEO transfer. The 
target orbit is an equatorial GEO with semi-major axis of 42,165  km, while the 
initial GTOs are characterized by a semi-major axis of 24364 km, eccentricity of 
0.7306 and initial true longitude of �∕6 . The inclination i, right ascension of the 
ascending node (RAAN) Ω , and argument of periapsis � of the GTO are randomly 
drawn from a uniform distribution on the interval 

[
�∕4, �∕2

]
 . In particular, a set of 

50 different initial GTO configurations has been considered. The hyperparameters 
of the learning algorithm are chosen as in the previous case study, except for 
Ts = 45 min, H = 1280 (corresponding to 40 target orbits), and Te = 957.4 hours. 
The computation time required by the proposed approach to optimize the controller 
parameters for the entire set of initial configurations amounts to about 40 min.

Fig. 4   Scenario A. Three-dimensional trajectories corresponding to the initial (black) and optimized 
(red) parameters of the control law (3). The black circle marks the intial condition, while the target orbit 
is colored green
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Fig. 6 shows the trajectories obtained for the considered set of initial configura-
tions, before and after the optimization performed by Algorithm 1. In particular, the 
black and red trajectories represent the evolution of the output y(t) resulting from the 
application of the control law (3) with parameters K(1) and K∗ , respectively. It can be 
seen that the optimized trajectories display a much better envelope profile than the 
initial ones, especially in terms of convergence time. Table 2 summarizes the results 
obtained by applying the proposed learning algorithm (Algorithm 1), with respect to 
the total cost, the convergence time and the fuel efficiency. These show a remarkable 
improvement in the cost-related metrics.

Fig. 5   Scenario A. Radial, transverse and normal control signals: first iteration (black line) and final iter-
ation (red line)

Fig. 6   Scenario B. Trajectories of the output y(t) for the considered set of initial conditions, before 
(black) and after (red) the optimization performed using Algorithm 1
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5.3 � Rendezvous

In this case study, we consider a terminal rendezvous scenario, in which a controlled 
spacecraft (referred to as the chaser) must intercept an uncontrolled target. The 
purpose of this study is to assess the performance obtained by using a mean 
parameter vector K̂ computed by averaging the results of the learning process over 
a sufficiently representative set of initial conditions. The motivation is the potential 
application to rendezvous missions. In these scenarios, the initial condition is 
not known accurately beforehand, being the result of a previous transfer mission. 
Moreover, online learning of the best controller tuning for a specific initial condition 
may not be possible due to computational constraints. To overcome this limitation 
while still achieving an acceptable performance, pre-computing mean tuning 
parameters turns out to be a viable option. A performance analysis of the controller 
tuned in this way is presented hereafter.

In the considered setting, the target moves along a near-circular LEO with an 
altitude of 1000  km above the Earth, an inclination of 81 deg and an initial true 
longitude of 45 deg. The chaser is assumed to initially lie in the neighborhood of 
the target following a preliminary coarser orbit injection maneuver. To account for 
this feature, a set of 50 random initial conditions x(0) are generated through a nor-
mal distribution centered at the target equinoctial elements � r , using the covariance 
matrix �� = diag {0.5 deg, 20 km, 3 ⋅ 10−5, 3 ⋅ 10−5, 2 ⋅ 10−3, 2 ⋅ 10−3} . The result-
ing initial inter-satellite separation is about 60 km on average. The hyperparameters 
used in the learning procedure are as follows: Ts = 3 min, � = 1 km, � = 400 and 
M = 5000 . The overall computation time required to apply Algorithm 1 to the entire 
set of initial conditions is about 90 min.

Fig.  7 shows the evolution of parameter vector K(i) during the iterations of 
the learning process, for a selected subset of the considered initial conditions. 
The final mean parameter vector resulting from the optimization is equal to 
K̂ = [1.22, 5.41, 0.72, 5.29, 0.40]T.

Figure 8 depicts the trajectories of the output y provided by the control law (3) 
with the parameters K(1) , K∗ and K̂ , for a single realization of the initial conditions. 
It can be seen that the controller employing mean tuning parameters achieves a 
considerable reduction of the convergence time, which is comparable to the one 
provided by the dedicated tuning K∗ . An equally good behavior is observed for the 
entire set of initial states x(0). Table  3 presents statistics on this experiment and 
confirms that the performance achieved by the parameters K∗ and K̂ is on a similar 
level. It is concluded that tuning the controller (3) with the learned mean parameter 

Table 2   Results for Scenario B Cost reduction (%)

Total cost Settling time Fuel con-
sumption

Average 78.4 86.0 68.8
Minimum 65.4 67.5 40.5
Maximum 83.6 91.8 76.1
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vector K̂ is an advantageous strategy for terminal rendezvous maneuvers, allowing 
for achieving near-optimal performance whenever on-board optimization is not 
viable.

In Fig.  9, the cost evolutions, smoothed by a 50-sample moving average, are 
reported for the considered initial conditions. It can be seen that the cost converges 
in all the learning tests, even in the cases in which some parameter value does not 
reach a steady state value (thus suggesting a low sensitivity of the cost with respect 

Fig. 7   Scenario C. Evolution of the parameter vector during learning for a subset of the considered initial 
conditions

Fig. 8   Scenario C. Distance output y obtained with the control parameter vectors K(1) (black line), K∗ 
(red line) and K̂ (yellow line)
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to such parameters). By using the stopping criterion discussed in Sect 4, i.e., termi-
nating the learning procedure when the smoothed cost does not decrease more than 
a predefined threshold (here set to 10−5 ), one has that the procedure converges on 
average after approximately 1800 iterations.

6 � Conclusions

Optimization of performance measures in orbital tracking is a challenging task 
due to the complexity of the dynamic models and the necessity to guarantee 
fundamental requirements such as stability, robustness and constraint satisfaction. 
This work has shown that a simple learning technique, based on the ARS 
algorithm, can be successfully employed to tune the parameters of a family of 
stabilizing controllers for orbital tracking, in order to optimize a cost function 
accounting for both settling time and fuel consumption. The approach combines 
the benefits of model-based control design to those of simulation-based learning 
techniques. A major advantage of the proposed approach lies in its computational 
efficiency, which makes it compatible with on-board implementation. It is 
believed that the proposed learning procedure can be successfully employed to 
optimize the parameters of other families of control laws, while guaranteeing 
specific stability/performance properties, during the parameter exploration 
phase. In perspective, the proposed methodology can also be useful to analyze 

Fig. 9   Scenario C. Evolution of the smoothed cost J for the considered initial conditions

Table 3   Results for Scenario C Total cost reduction (%)

K
∗

K̂

Average 81.3 78.4
Minimum 72.6 68.9
Maximum 87.2 85.9
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the sensitivity of the performance metrics with respect to the control parameters. 
Future research may concern the comparison of the proposed algorithm with 
other learning approaches (e.g., policy optimization) and the inclusion of state/
input constraints or parametric uncertainties in the control synthesis problem.
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