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Abstract

For discrete-time hybrid systems in piecewise affine or gsése polynomial form, this note
proposes sufficient passivity analysis and synthesisrigriteased on the computation of piecewise
quadratic or piecewise polynomial storage functions. Bpleixing linear matrix inequality techniques
and sum of squares decomposition methods, passivity asaps synthesis of passifying controllers
can be carried out through standard semidefinite programmpaéckages, providing a tool particularly
important for stability of interconnected heterogenouralyical systems.

I. INTRODUCTION

Passivity is a widely adopted tool for analyzing the stépitif interconnections of dynamical
systems [1] and is used in several domains of engineerirenses, such as in the analysis of
electrical circuits and of mechanical systems. In paréiguybassivity is exploited in robotics as
a key concept for stability analysis of human/machine axtgon (see, e.g., [2]).

Stability analysis of interconnected systems hinges upan ability of characterizing the
passivity properties of each single dynamical system. Adsibleory and analytical/numerical
criteria are available for linear systems, and theoretateracterizations were developed for
smooth nonlinear dynamical systems [1]. Although most efplassivity characterizations were
proposed for continuous-time models, a few results wereldped for discrete-time models [3].

In many practical applications, some of the system compisnerhibit a heterogeneous
dynamical discrete and continuous nature that cannot beiregpby smooth models because of
abrupt mode switches. The study of sugbrid systemsthat has massively emerged in the last
few years, was devoted to analyzing the dynamical intevadietween continuous and discrete
signals in one common framework. Passivity analysis of igdybrodels has received very little
attention, except for the contributions of [4], [5], [6] afid, in which notions of passivity for
continuous-time hybrid systems are formulated.
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{benpor ad, gi anni bi, brogi }@lii.unisi.it. This work was partially supported by the European Commyunit
through the HYCON Network of Excellence (contract numbe6#ET-511368), and by the Italian Research Ministry thioug
project PRIN’'03 “Models for optimization, control, and gdaation of distributed production systems”.
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In this note we address the passivity property of discriete-thybrid systems in the widely
exploited piecewise affine (PWA) form and, more generafiythie piecewise polynomial (PWP)
form. For PWA systems, in the spirit of [8], [9], quadraticdapiecewise quadratic storage
functions are computed via the solution of a number of limeatrix inequality (LMI) problems.
The proposed method also yields a LMI-based procedure foipating piecewise linear state-
feedback controllers ensuring passivity of the closegrlegstem. We also propose a method
for proving passivity of a PWA/PWP system by means of polyramr piecewise polynomial
storage functions. Such functions are constructed via dsfimite programming by means of
the sum of squares (SOS) decomposition of multivariate rpmityials [10]. SOS methods for
the computation of piecewise polynomial Lyapunov funcsitrave been exploited for analyzing
stability of continuous-time hybrid and switched systerhg]| In this note we use a similar idea
for passivity analysis in discrete-time, although the apph can be easily generalized to the
continuous-time case. Preliminary work leading to the ltegeported in this note was presented
in [12] and in [13].

The paper is organized as follows. After reporting someimiakry definitions and results, and
formulating the passivity analysis problem in Section il Section Il we present an LMI-based
passivity test for PWA systems based on the constructiorestwise quadratic storage functions.
Section IV describes a passivity test for PWA and PWP systeased on the computation of
piecewise polynomial storage functions. An applicatiothaf proposed results to a simple model
derived from haptics is presented in Section V, and finalipe@oncluding remarks are drawn
in Section VI.

[1. NOTATION, PRELIMINARIES, AND PROBLEM FORMULATION

In this note we consider discrete-time time-invariant ylsystems of the form

{ T = fil@e ) e e e 1)
Yr = hi(xr, ug)

wherez;, € R" is the state vectory, € R™ the control input,y, € R? the output vector,
k€T = {0,1,...} the discrete-time countef, = {1,...,ns} the set of mode-indices, and
fi : R™™ — R™ b, : R"*™ — RP are suitable vector fields. Lély;}.cr be apartition of R"*™,

namely
Xi = {[a:TuT]T eR™™: gf(2) >0, gi(u) >0, r=1,...,m, t=1,.. Gt} (2)

with Intx; (Intx; = 0, Vi,j € Z, i # j (“Int” denotes the interior) J,.; xi = R"™™, x; # 0
Vi € Z, and wheregf, : R" — R, g, : R™ — R are the functions defining the shape of the
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cells of the partitioh Also, let us introduce the following sets of indices
Si = {] el : Ha&(X@) = Ha&(X])}a (S I,

wherell,(x;) denotes the projection of; over thez-space. Since in (2) we have excluded the
more general casg; = {[z7u’]" € R"™ : g;,(z,u) >0, s=1,...,s;} in defining the shape
of the cells, we have thditIL,(x;) (IntIL,(x;) = 0, V5 € S;, Vi € Z. Let H C 7 denote a
subset of indices € Z corresponding to a collection of all sdik, (y;) without duplicates, and
for eachh € H denote

Clearly, x;,, = II.(x:), Vi € Si, and the collectiorx,, }rcx forms a partition ofR™. Moreover,
Unen Sk =Z andS, NS; = 0, Vh,l € H, h # 1. Also, introduce the map : T — H defined as

h(i) = h € H such thati € S},.
Each sety, has the expression
Xp=1r€R": gy () >0, r=1,...,m}, heH.

Our definition of partition in (2) generalizes the definitioh[8], [15], [16], where the authors
consider the case of hybrid systems defined over a partifidhear-space only.

A. Piecewise Affine (PWA) case

If the vector fieldsf;, h; in (1), andg;,, gi; in (2) are affine functions, then system (1) is in
piecewise affindPWA) form:

{ Tpr1 = Aizg + Biug + ¢

if [z ul]' €xi, i €T, (4)
yr = Cizy, + Diuy, + 1; bR

where A;, B;, C;, D;, ¢;, ¥; constant matrices/vectors of suitable dimensipy.};cr forms a
polyhedral partition ofR™"*™, i.e.,

xi = {la"d" T R e > ff Flu > f'} (5)

In case of discontinuities across common boundaries othbeigng regions, to avoid ambiguities of the state-updat¥ax

output mappings of the hybrid system (1), one can define)sets (2) by using strict and nonstrict inequalities. Alterinaty,

one can replace strict inequalitigé-) > 0 by nonstrict inequalitieg(-) > ¢, wheree > 0 is an arbitrarily small number (e.g.,
the machine precision), although systems trajectoriedomvoot be defined in the intervdl < g(-) < € (see [14]).
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where F?, f*, F*, f*, 1 € I, are constant matrices/vectors.
Clearly, the partition{x,, } .cx is defined by

X, ={rx€eR": Fx>f’}, heH. (6)

LetZ, = {1 € Z:0 € xnq)}- We assume thap;, = ¢; = 0, Vi € I, i.e., that the origin is an
equilibrium point for the system with zero inputs.

For ease of notation, by setting= [z7 1]7, u = [u” 1]7, 7 = [y 0]7, we rewrite (4) in the
more compact form

T = ATk + By,

T Z AT B T T e v, i e T @)
andy; = {[zTu7)T e R™™ : Fiz > 0,F;u>0}, where 4, = [4 %], B, = [B:0], C; =
(6] D= % 0], and Fy = [F7 — ff], Fi = [ — fi1.

Likewise, if fi(x,u), hi(z,u), gf,(z), andg,.(u) in (1),(2) are multivariate polynomials in
andu, then the system is termguecewise polynomiglPWP).

B. Discrete-time passivity

In this note, we refer to the standard notion of passivitydscrete-time systems [1], [3].

Definition 1: Consider system (1), and let = p. The system is said to bhgassiveif there
exists a positive definite functiol’ : R” — R with V(0) = 0 (called thestorage functioh
such that along all possible system trajectories, ux, yx), £ € 7, the following dissipation
inequality holds

V(2p41) = V(ax) — ypu <0, (8)

Note that even in the linear case, the usual sampled eqnivafea passive continuous-time
system, which assumes a zero-order holder on the input asg,sas the output value at the
th sampling instant, in general does not preserve passAipassivity-preserving discretization
scheme for linear dynamics was proposed in [12].

[1l. PASSIVITY ANALYSIS OF PIECEWISE AFFINE SYSTEMS

The most common way to investigate passivity of generalineal systems is to check the dis-
sipation inequality (8) against storage functions of priéged structure. In this respect, quadratic
functions are the most common choice. Such an approach cap@ed straightforwardly to
the case of PWA systems of the form (4), (5). Indeed, it islgagiown that passivity of the
system is ensured if there exists a common quadratic stdraggion satisfying the passivity
inequality for all the linear subsystems defined(bly, B;, C;, D;), i € Z. Moreover, by a standard
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Kalman-Yakubovich-Popov (KYP) lemma argument, checkimg passivity of each subsystem
via a quadratic storage function is known to boil down to anllddndition [1].

It is apparent that the common quadratic storage functiqerageh is likely to be overly
conservative for hybrid systems in PWA form (4),(5) since 8witching conditions are com-
pletely ignored. By following the line proposed in [8], [9) the context of stability analysis,
in the sequel we illustrate an LMI criterion for passivityadysis based on the computation of
piecewise quadratic storage functions. This task is actishgal by specializing the positivity
and dissipation inequalities in Definition 1 so as to captheerelevant features of the switching
behavior and hence to reduce conservatism.

A. Passivity Analysis via Piecewise Quadratic Storage Eaone

For system (4), we consider a piecewise quadratic (PWQ) idated storage functioiv” :
R™ — R defined on the partitioR, } nc; Of the state space as

V(z)=2"Px Vzex, heH, (9)

where P, are suitablgn + 1) x (n + 1) symmetric matrices. Note that, in order foi(x) to be
. iy L= . — P, 0

zero at the origin and positive definit&,, is constrained to have the fori, = Oh 0 ] for

all h € 'H such thaty, contains the origin, i.eYh € Z, N'H, where P, € R™*" is a positive
definite symmetric matrix.

According to (8), if matricesP;,, h € ‘H exist such that the dissipation inequality with(z)
as in (9) holds for all system trajectories, then systemg4jassive. If this is the case, then the
system will be termed®WQ passive

Let us define the set of index pairs

S={(,5): It e R u,w e R™: [gTu]" € xi, [(Aw + Biu+ ¢:) w']" € x5, 4,5 € I},
(10)
i.e., the set of ordered pairs of indices corresponding lterahsitions from celly; at any time
k to cell x; at timek + 1 which are actually allowed to occur along system trajeesrilhe
setS can be computed by means of reachability analysis basednearliprogramming [17].
Moreover, for all(i, j) € S, let
Y= {[2"u"" € xi : 3w : (A + Biu+ ¢) " w”)" € x5}

be the subsets of all state-input pairs in ogliwhich can evolve into celk; in one step. It is

easily seen that, since; # 0, the set~{ is the following polytope ofR"*™

X ={"d )" eR"™  Fiz>0, F;u>0, F,7+F,u>0}
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whereF;, = [F*A; FP¢; — f7] andF;; = [F7B; 0]. The following result, in the spirit of [8],
[15], [16], gives a sufficient condition for PWQ passivity tife PWA system (4) that can be
tested by semidefinite programming.

Theorem 1:Let U;, V,, i € I, Z,, h € 'H, and WZ], (1,7) € S, be unknown matrices of
suitable dimensions with nonnegatlve entries and define

ﬁij = (Fij)TWijFij ) L, = (Fi)T7hfi-

Let P, € R(+D)x(+1) 1 ¢ H, be symmetric matrices. If a selection of matridgs Z,, h € H,
U;, Vi, i €Z,andW,, (i,7) € S, exists that satisfies the set of LMIs

Py —1Ly >0, Yhe H,h ¢ Io
Pr=[20], [, 0)(Pn—Tn) [5] >0, Vhe HN T,

—T
T - — —r— = C;, =T (12)
A Priydi = Py +Gij A Py Bi — —- + Hyj -
_ 5 QET <0, V(i,j) €S,
i+ i =
+ Jij

—r— - C;, = T

B, Py — — +Hy B, Pr;)Bi —

with Gy, Ji;, Hi;, Ly, @s in (11), then system (4) is PWQ passive with storage fond®).
Proof: By the first LMI in (12) and the fourth of (11) it turns out that L,z > 0, Vx €

Xn, h € H, and hencéd/(x) in (9)is positive definite. Moreover, along any trajectoncls that
2} ui)’ € x; and (2], ui, ] € x; for some(i, j) € S, it holds that

V(wger) = Viwg) — yfug =

T = — = = C, T _
7 ) A PrgyAi = Py +Gij A PryBi — = ij [xk]

[fk Uy,

Bl Puyydi~ L+ T,y Bl PyyBi-
—[ZL Gy Ty, + 2ul H Ty + Ut J iU

Therefore, by the last LMI in (12) and (11), we have thatry, 1) — V(zx) — yf w, < 0 along
any system trajectory and hence the system is passive awgdodDefinition 1. [ |
Note that the conditio®, = [ %+ 0] in (12) implies linear equality constraints @R, W,;, V;,
Zy, for i, h € I,.

A simpler but more conservative version of Theorem 1 can bmioéd by removing the
unknownsU,;, V;, Z,, W,; and the term<,;, J;;, H;;, L, from the LMI problem (12). This
amounts to ignoring the switching conditions defined by #ts g; in (7) for the PWA dynamics.

B. Passivity Enforcement via Piecewise Linear State Feddba

We now consider the problem of synthesizing a piecewisalirstate feedback control law
for PWA systems in order to make the resulting closed-loggiesy passive. More specifically,
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we look for a piecewise linear functidt¥’ : R — R™ such that system (4) with state feedback
U = k’pl(ZL‘k) + Vi (13)

is PWQ passive, i.e., there exists a PWQ storage funéfi@rn such that the dissipation inequality
V(zgy1) — V(zg) < ylv, holds for any system trajectoryry, vi, yx), K € 7. The approach
proposed here extends the one used in [18] in the contexabiligation. In order to meet space
limitations and to avoid introducing excessive technt@sdi we only address the problem for
system (4) with zero affine terms, i.ey; = ¢, =0, Vi € 7.

It is apparent that the partitiof; } ez cannot be exploited to define the piecewise linear feedback
in (13), since the partition itself depends on the contrplin:. Hence, it is natural to look for a
piecewise linear feedback defined on the polyhedral pamtity;, } .+ Of the state space defined
by (6), i.e., a control law of the form

u = —KprK + Vg, Tk € Xps heH. 14
Based on the PWQ storage function
V(z) = 2" Pyx, Yo € xn, h € H, (15)

we want to provide a criterion for synthesizing feedbackgai,, h € H, such that the closed-
loop system

. Tk .
if [Kh(i);k+vk:| € Xiy € I,

L1 = Aflﬂfk + Bﬂ}k
Yr = Cflxk + Dy,

with input v, and outputy,, is passive, wherely = A; — B, K}y, C¢ = C; — D; Kp ).
The following closed-loop passivity condition can be state

Lemma 1:Consider system (4) with; = ¢, = 0, Vi € Z. If there exist matrices’,, h € H,
and K, h € ‘H such that the inequalities

P,=PI'>0,YVheH

c\T
A¢l TPlAgl — Py A¢l TPlBi _ (Ci ) 16
z ? (7) 1
ol 2r | S0.VieI, WieH
BfHAgl—% BiTPlBi—Di—; :

hold, then the system with piecewise linear feedback (1HW) passive .

Proof: It suffices to note that the second inequality in (16) imptrest V (xy1) — V (zy) —
ytvx < 0 along all possible system trajectories. Indeed, the fedldiain K,(;) is applied for
all z;, € x; and independent of the cey, the vectorz,, belongs to. Moreover, all possible
transitions are covered. [ |
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The PWQ passivity condition provided by Lemma 1 is not corapahally appealing since
the inequalities in (16) are bilinear iA;, and P,, and hence the synthesis problem cannot be
approached by means of convex optimizations techniquegertteless, such inequalities can
be exploited to derive a LMI sufficient condition for commgithe passifying piecewise linear
feedback (14). This is accomplished through a standard rSchimnplement argument as the
following result shows.
Theorem 2:Consider system (4) and let = v; = 0, Vi € Z. If there exist matrices),,, Ry,

Y., h € ‘H such that the set of LMIs

Qn=QF >0, VheH

Ryiy + Ry — Qnay 3Ry CF =Yy D) R AT =Yl BY

i)t h(7) h(i)* ™ h(i) "% (17)

L(CiRugsy — DiYis) Di+D/ BT >0,VieT, VieH

AiRp(iy — BiYn() B; Qu

holds, then the system with piecewise linear state feedfibtkwith
K, =Y,R;', h € H,

is PWQ passive with respect to the storage function (15% wit= Q, .
Proof: Since Quu) > 0 and Ry + Ry > Qney by (17), thenRy, is nonsingular and
moreover it is easy to see thﬂg(l.)Q,:(li)Rh(i) > Ry + Ry — Qnay > 0. Hence (17) implies

N[

Qh:QZ>O, Vh e H
T -1 T T T T T T T T
Rh(i)Qh(i)Rh(i) (Rh(i)ci *TYh(i)Di ) Rh(i)Ai - Yh(i)Bi

L(CiRu@y — DiYns)) DitD, BT >0, Viel VIeH

AiRpiy — BiYh) B; Q1

(18)

By left-multiplying (18) by [Rfé@ ﬂ and right-multiplying by[R%é) ?] we obtain

Qn=QF >0, VheH

_ ce” .
Qhé) 2 (Ail>T

CT Dm;D? BT >0, VieTI, VlIeH,
Ag! B; Qi

which is equivalent to (16) by a Schur complement argumehgre/Q;,;) = P};Z.l). The result
then follows by Lemma 1. [ |

IV. PASSIVITY ANALYSIS FOR PIECEWISE POLYNOMIAL SYSTEMS

In this section we consider the problem of assessing thevitgigsroperty of hybrid systems
in piecewise polynomial (PWP) form, i.e., of systems of thenf (1), (2) when it is assumed that
the vector fieldsf;(z, u), hi(z, u), gf,. () andg;,.(u) are multivariate polynomials im andu. Our
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approach is based on the computation of piecewise polyn@tteage functions by exploiting
the SOS decomposition of multivariate polynomials. It idlvik@own that the SOS decomposition
provides a satisfactory relaxation for proving polynonpasitivity via semidefinite programming
[10].

In the sequel, piecewise polynomial storage functibiig) will be considered and passivity
conditions will be formulated in terms of inequalities basen (8). To employ the convex
programming techniques mentioned above, such inequalitiest be interpreted in the SOS
sense.

Remark 1: The PWA models analyzed in the previous section clearlyifiédi the wider class
of PWP systems. It is worth to note that looking for higheresrgiecewise polynomial storage
functions may generally yield significantly less consemeapassivity tests than those based on
piecewise quadratic storage functions, as it will be painteit in Section V. Unfortunately,
contrary to PWQ methods, SOS tests which employ superqiadtarage functions do not
easily extend to compute feedback control laws that ensassiyity of the closed-loop system.
Moreover, such tests may be more sensitive to numericatserro

Consider a PWP system of the form (1), (2) and the followiregpwise polynomial candidate
storage functior/ : R" — R defined on the partitioRx,, } ez in (3):

V(z) = Vp(x), Y €%, h €H, (29)
whereV,(z), h € H are polynomials. Let us define the set of index pairs
S={(,j): IreR u,weR™: [T u"]" € y; [filz,w)T W) €x;, i,j €L} .
Clearly, this set plays the same role as the&en (10) for the PWA case.
A PWP passivity test can be devised by proceeding in the sastedn as the PWQ test in
Section IlL.A.
For all (7, j) € S, let us introduce the sezg C y; defined as
X = {[SCT w17 € xi s Fw : [fi(z,u) W' e X5} s

i.e., the subset of state-input pairs in cgllat time £ which are allowed to evolve into cel;
at timek + 1. Eachy? is given by

) T e R

L { gi(x) 20, giy(u) >0, gi (filw,u) 20, r=1,...m t=1,...t;, s=1,...1; }
The following result provides the sought PWP passivity.tébe detailed proof is omitted due
to space limitation but can be easily conducted in the sarsi@ida as that of Theorem 1 by
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enforcing both positivity ofl’(x) in (19) and the dissipation inequality taking into accoure t
switching behavior described ky and 5(5

Theorem 3:Consider the PWP system (1). If there exist polynomialse), i € H, af, (z) >
0,r=1,...,rp h € H, b, (x,u) >0, r =1,....1 ¢ji(zr,u) > 0,¢t=1,...,¢, and
dijs(x,u)>0,s=1,...,r; (i,5) € S such thatV},(0) = 0 and

Vil(z) = 22 af () gy (x) > 0, Vo #0, Vh e H
Vi (fi(@, w) = Vi (@) = b (2, w)u + 3270 bigor (@, w) gl () + 3000 cigal, w) gty (u)
+ 2L digs(@,w) g5 (fi(w,w) <0, Y(z,u), Y(@ij) €S
then the system is passive with storage function (19).

Remark 2: The set of allowed transitionS§ is in general quite difficult to compute for an
arbitrary PWP system. Clearly, the above result can be eghsliccessfully in the case of PWA
systems. Otherwise, a more conservative version of The8rsmeadily obtained by replacing
with the Cartesian produdt x 7 and takingaj, ,.(v) = b; j,(z,u) = c;j(v,u) = d;js(x,u) = 0.

V. APPLICATION EXAMPLE

In this section we apply the proposed passivity criteriat&idity analysis of a simple model
derived from haptics. Indeed, the stability of a haptic Igbpman operator, haptic device and
virtual environment) can be assessed provided that passivihe dynamics relating the applied
force and the velocity of the end effector can be ensured [2].

Consider the simple haptic interaction model in Fig. 1. Tdeai of modelling the interaction
between a haptic device and a virtual environment with a $edngata equivalent of a spring-
mass-damper system with Coulomb friction is quite standaid Clearly, the haptic device

Virtual environment
K

Fig. 1. Spring-mass-damper haptic model with Coulomb ifrict

Device

dynamics is continuous-time, while the virtual environmesna computer simulated model and
hence a pure discrete-time system. It is well-known thatcthgpling of a discrete-time system
with a continuous-time system can lead to loss of passidtpossible approach to analyzing
passivity of the overall model, where the inputs the external force-,,; applied to the haptic
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device and the output is the velocityz of the end effector, is to derive a discrete-time multirate
model in which different sampling times7; and 7, (n > 1) are used for the simulated and
the haptic device dynamics, respectively [19]. Of courkes still involves a certain degree of
approximation since the intersample behavior of the “fasttsystem is neglected. It is worth
noting that the problem of stability analysis and contrmotlesign for haptic systems can indeed
be addressed in a purely discrete-time setting by exptpthie framework proposed in [20], [21].
In this respect, we believe that an extension of the abovedweork to haptic systems involving
hybrid components is viable by exploiting the results pnéseé here but this goes beyond the
scope of this note and is the subject of current research.

The dynamics of the haptic device (fast system) is modeledisaorete time by sampling
every T, seconds the dynamics of a spring-mass system (with maasd damping) through
a passivity-preserving discretization scheme as destiib§l2]. The forces exciting the mass-
spring system are the applied forég,; (acting as the input to the overall system), the Coulomb
friction F. = ¢-sign(z) acting on the end effector, and the spring force (with sti$ls¥) from
the virtual environment (slow system), which is only all@iwe change every T, seconds. The
physical parameters of the system ate= 0.01, b =0.9, c=0.1, K =1, T, = 1074, n = 10
(international units).

Let x4, 2o be the position and velocity, respectively, of the endatfie Letz; be the value of
x1 at multiples of the slow sampling timel;, and letz, be the state of an auxiliary counter that
is reset every: steps. The overall system can be described as the fourdr-BMVA model (4),
defined over four polyhedral cellf (= {1,2,3,4}), reported in [22]. The sef of admissible
switches isS =7 x 7\ {(1,1),(1,3),(3,1),(3,3)}.

By applying the PWQ criterion of Theorem 1, a piecewise qaadistorage function is found
that proves the discrete-time passivity of the system. Wiamping and Coulomb friction
parameters are decreasedte 0.01 andc = 0.001, respectively, while Theorem 1 fails to prove
PWQ passivity, Theorem 3 provides a valid piecewise quatticage function. The expressions
of both functions are reported in [22].

VI. CONCLUSION

This note has proposed sufficient passivity analysis ciitenr discrete-time hybrid systems
in piecewise affine or piecewise polynomial form, and a tawml the synthesis of passifying
state-feedback piecewise linear control laws for piecevdffine systems. The proposed ap-
proach appears particularly encouraging in the analysisdasign of (possibly heterogeneous)
interconnected systems, such as those modeling humarnimeaakeraction.
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