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Passivity Analysis and Passification of Discrete-Time Hybrid Systems

Alberto Bemporad, Gianni Bianchini, Filippo Brogi

Abstract

For discrete-time hybrid systems in piecewise affine or piecewise polynomial form, this note

proposes sufficient passivity analysis and synthesis criteria based on the computation of piecewise

quadratic or piecewise polynomial storage functions. By exploiting linear matrix inequality techniques

and sum of squares decomposition methods, passivity analysis and synthesis of passifying controllers

can be carried out through standard semidefinite programming packages, providing a tool particularly

important for stability of interconnected heterogenous dynamical systems.

I. INTRODUCTION

Passivity is a widely adopted tool for analyzing the stability of interconnections of dynamical

systems [1] and is used in several domains of engineering sciences, such as in the analysis of

electrical circuits and of mechanical systems. In particular, passivity is exploited in robotics as

a key concept for stability analysis of human/machine interaction (see, e.g., [2]).

Stability analysis of interconnected systems hinges upon the ability of characterizing the

passivity properties of each single dynamical system. A solid theory and analytical/numerical

criteria are available for linear systems, and theoreticalcharacterizations were developed for

smooth nonlinear dynamical systems [1]. Although most of the passivity characterizations were

proposed for continuous-time models, a few results were developed for discrete-time models [3].

In many practical applications, some of the system components exhibit a heterogeneous

dynamical discrete and continuous nature that cannot be captured by smooth models because of

abrupt mode switches. The study of suchhybrid systems, that has massively emerged in the last

few years, was devoted to analyzing the dynamical interaction between continuous and discrete

signals in one common framework. Passivity analysis of hybrid models has received very little

attention, except for the contributions of [4], [5], [6] and[7], in which notions of passivity for

continuous-time hybrid systems are formulated.
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In this note we address the passivity property of discrete-time hybrid systems in the widely

exploited piecewise affine (PWA) form and, more generally, in the piecewise polynomial (PWP)

form. For PWA systems, in the spirit of [8], [9], quadratic and piecewise quadratic storage

functions are computed via the solution of a number of linearmatrix inequality (LMI) problems.

The proposed method also yields a LMI-based procedure for computing piecewise linear state-

feedback controllers ensuring passivity of the closed-loop system. We also propose a method

for proving passivity of a PWA/PWP system by means of polynomial or piecewise polynomial

storage functions. Such functions are constructed via semidefinite programming by means of

the sum of squares (SOS) decomposition of multivariate polynomials [10]. SOS methods for

the computation of piecewise polynomial Lyapunov functions have been exploited for analyzing

stability of continuous-time hybrid and switched systems [11]. In this note we use a similar idea

for passivity analysis in discrete-time, although the approach can be easily generalized to the

continuous-time case. Preliminary work leading to the results reported in this note was presented

in [12] and in [13].

The paper is organized as follows. After reporting some preliminary definitions and results, and

formulating the passivity analysis problem in Section II, in Section III we present an LMI-based

passivity test for PWA systems based on the construction of piecewise quadratic storage functions.

Section IV describes a passivity test for PWA and PWP systemsbased on the computation of

piecewise polynomial storage functions. An application ofthe proposed results to a simple model

derived from haptics is presented in Section V, and finally some concluding remarks are drawn

in Section VI.

II. NOTATION, PRELIMINARIES, AND PROBLEM FORMULATION

In this note we consider discrete-time time-invariant hybrid systems of the form
{
xk+1 = fi(xk, uk)

yk = hi(xk, uk)
if [xTk uTk ]T ∈ χi, i ∈ I, (1)

where xk ∈ R
n is the state vector,uk ∈ R

m the control input,yk ∈ R
p the output vector,

k ∈ T , {0, 1, . . .} the discrete-time counter,I , {1, . . . , nI} the set of mode-indices, and

fi : R
n+m → R

n, hi : R
n+m → R

p are suitable vector fields. Let{χi}i∈I be apartition of R
n+m,

namely

χi =
{
[xTuT ]T ∈ R

n+m : gxi,r(x) ≥ 0, gui,t(u) ≥ 0, r = 1, . . . , ri, t = 1, . . . , ti
}
, (2)

with Intχi
⋂

Intχj = ∅, ∀i, j ∈ I, i 6= j (“ Int” denotes the interior),
⋃
i∈I χi = R

n+m, χi 6= ∅

∀i ∈ I, and wheregxi,r : R
n → R, gui,t : R

m → R are the functions defining the shape of the
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cells of the partition1. Also, let us introduce the following sets of indices

Si = {j ∈ I : Πx(χi) = Πx(χj)} , i ∈ I,

whereΠx(χi) denotes the projection ofχi over thex-space. Since in (2) we have excluded the

more general caseχi =
{
[xTuT ]T ∈ R

n+m : gi,s(x, u) ≥ 0, s = 1, . . . , si
}

in defining the shape

of the cells, we have thatIntΠx(χj)
⋂

IntΠx(χi) = ∅, ∀j 6∈ Si, ∀i ∈ I. Let H ⊆ I denote a

subset of indicesi ∈ I corresponding to a collection of all setsΠx(χi) without duplicates, and

for eachh ∈ H denote

χh = Πx(χh). (3)

Clearly,χh = Πx(χi), ∀i ∈ Sh, and the collection{χh}h∈H forms a partition ofRn. Moreover,
⋃
h∈H Sh = I andSh ∩Sl = ∅, ∀h, l ∈ H, h 6= l. Also, introduce the maph : I → H defined as

h(i) = h ∈ H such that i ∈ Sh.

Each setχh has the expression

χh = {x ∈ R
n : gxh,r(x) ≥ 0, r = 1, . . . , rh}, h ∈ H.

Our definition of partition in (2) generalizes the definitionof [8], [15], [16], where the authors

consider the case of hybrid systems defined over a partition of the x-space only.

A. Piecewise Affine (PWA) case

If the vector fieldsfi, hi in (1), andgxi,r, g
u
i,t in (2) are affine functions, then system (1) is in

piecewise affine(PWA) form:
{
xk+1 = Aixk +Biuk + φi

yk = Cixk +Diuk + ψi
if [xTk uTk ]T ∈ χi, i ∈ I, (4)

whereAi, Bi, Ci, Di, φi, ψi constant matrices/vectors of suitable dimension.{χi}i∈I forms a

polyhedral partition ofRn+m, i.e.,

χi =
{
[xTuT ]T ∈ R

n+m : F x
i x ≥ fxi , F

u
i u ≥ fui

}
, (5)

1In case of discontinuities across common boundaries of neighboring regions, to avoid ambiguities of the state-update and/or

output mappings of the hybrid system (1), one can define setsχi in (2) by using strict and nonstrict inequalities. Alternatively,

one can replace strict inequalitiesg(·) > 0 by nonstrict inequalitiesg(·) ≥ ǫ, whereǫ > 0 is an arbitrarily small number (e.g.,

the machine precision), although systems trajectories would not be defined in the interval0 < g(·) < ǫ (see [14]).
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whereF x
i , fxi , F u

i , fui , i ∈ I, are constant matrices/vectors.

Clearly, the partition{χh}h∈H is defined by

χh = {x ∈ R
n : F x

h x ≥ fxh} , h ∈ H. (6)

Let I0 = {i ∈ I : 0 ∈ χh(i)}. We assume thatφi = ψi = 0, ∀i ∈ I0, i.e., that the origin is an

equilibrium point for the system with zero inputs.

For ease of notation, by settingx = [xT 1]T , u = [uT 1]T , y = [yT 0]T , we rewrite (4) in the

more compact form
{
xk+1 = Aixk +Biuk

yk = Cixk +Diuk
if [xTk uTk ]T ∈ χi, i ∈ I, (7)

and χi =
{
[xTuT ]T ∈ R

n+m : F
x

i x ≥ 0, F
u

i u ≥ 0
}

, whereAi =
[
Ai φi

0 1

]
, Bi =

[
Bi 0
0 0

]
, Ci =

[
Ci ψi

0 0

]
, Di =

[
Di 0
0 0

]
, andF

x

i = [F x
i − fxi ], F

u

i = [F u
i − fui ].

Likewise, if fi(x, u), hi(x, u), gxi,r(x), andgui,r(u) in (1),(2) are multivariate polynomials inx

andu, then the system is termedpiecewise polynomial(PWP).

B. Discrete-time passivity

In this note, we refer to the standard notion of passivity fordiscrete-time systems [1], [3].

Definition 1: Consider system (1), and letm = p. The system is said to bepassiveif there

exists a positive definite functionV : R
n → R with V (0) = 0 (called thestorage function)

such that along all possible system trajectories(xk, uk, yk), k ∈ T , the following dissipation

inequalityholds

V (xk+1) − V (xk) − yTk uk ≤ 0. (8)

Note that even in the linear case, the usual sampled equivalent of a passive continuous-time

system, which assumes a zero-order holder on the input and sets yk as the output value at thek-

th sampling instant, in general does not preserve passivity. A passivity-preserving discretization

scheme for linear dynamics was proposed in [12].

III. PASSIVITY ANALYSIS OF PIECEWISE AFFINE SYSTEMS

The most common way to investigate passivity of general nonlinear systems is to check the dis-

sipation inequality (8) against storage functions of prescribed structure. In this respect, quadratic

functions are the most common choice. Such an approach can beapplied straightforwardly to

the case of PWA systems of the form (4), (5). Indeed, it is easily shown that passivity of the

system is ensured if there exists a common quadratic storagefunction satisfying the passivity

inequality for all the linear subsystems defined by(Ai, Bi, Ci, Di), i ∈ I. Moreover, by a standard
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Kalman-Yakubovich-Popov (KYP) lemma argument, checking the passivity of each subsystem

via a quadratic storage function is known to boil down to an LMI condition [1].

It is apparent that the common quadratic storage function approach is likely to be overly

conservative for hybrid systems in PWA form (4),(5) since the switching conditions are com-

pletely ignored. By following the line proposed in [8], [9] in the context of stability analysis,

in the sequel we illustrate an LMI criterion for passivity analysis based on the computation of

piecewise quadratic storage functions. This task is accomplished by specializing the positivity

and dissipation inequalities in Definition 1 so as to capturethe relevant features of the switching

behavior and hence to reduce conservatism.

A. Passivity Analysis via Piecewise Quadratic Storage Functions

For system (4), we consider a piecewise quadratic (PWQ) candidate storage functionV :

R
n → R defined on the partition{χh}h∈H of the state space as

V (x) = xTP hx ∀x ∈ χh, h ∈ H, (9)

whereP h are suitable(n+ 1)× (n+ 1) symmetric matrices. Note that, in order forV (x) to be

zero at the origin and positive definite,P h is constrained to have the formP h =

[
Ph 0

0 0

]
for

all h ∈ H such thatχh contains the origin, i.e.,∀h ∈ I0 ∩ H, wherePh ∈ R
n×n is a positive

definite symmetric matrix.

According to (8), if matricesP h, h ∈ H exist such that the dissipation inequality withV (x)

as in (9) holds for all system trajectories, then system (4) is passive. If this is the case, then the

system will be termedPWQ passive.

Let us define the set of index pairs

S =
{
(i, j) : ∃x ∈ R

n, u, w ∈ R
m : [xTuT ]T ∈ χi, [(Aix+Biu+ φi)

TwT ]T ∈ χj, i, j ∈ I
}
,

(10)

i.e., the set of ordered pairs of indices corresponding to all transitions from cellχi at any time

k to cell χj at time k + 1 which are actually allowed to occur along system trajectories. The

set S can be computed by means of reachability analysis based on linear programming [17].

Moreover, for all(i, j) ∈ S, let

χ̃
j
i = {[xT uT ]T ∈ χi : ∃w : [(Aix+Biu+ φi)

T wT ]T ∈ χj}

be the subsets of all state-input pairs in cellχi which can evolve into cellχj in one step. It is

easily seen that, sinceχj 6= ∅, the setχ̃ji is the following polytope ofRn+m

χ̃
j
i = {[xT uT ]T ∈ R

n+m : F
x

i x ≥ 0, F
u

i u ≥ 0, F
x

ijx+ F
u

iju ≥ 0},
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whereF
x

ij = [F x
j Ai F x

j φi − fxj ] andF
u

ij = [F x
j Bi 0]. The following result, in the spirit of [8],

[15], [16], gives a sufficient condition for PWQ passivity ofthe PWA system (4) that can be

tested by semidefinite programming.

Theorem 1:Let U i, V i, i ∈ I, Zh, h ∈ H, andW ij, (i, j) ∈ S, be unknown matrices of

suitable dimensions with nonnegative entries and define

Gij = (F
x

i )
TU iF

x

i + (F
x

ij)
TW ijF

x

ij ; J ij = (F
u

i )
TV iF

u

i + (F
u

ij)
TW ijF

u

ij

H ij = (F
u

ij)
TW ijF

x

ij ; Lh = (F
x

h)
TZhF

x

h.
(11)

Let P h ∈ R
(n+1)×(n+1), h ∈ H, be symmetric matrices. If a selection of matricesP h, Zh, h ∈ H,

U i, V i, i ∈ I, andW i,j, (i, j) ∈ S, exists that satisfies the set of LMIs





P h − Lh > 0, ∀h ∈ H, h 6∈ I0

P h =
[

Ph 0
0 0

]
, [In 0] (P h − Lh)

[
In

0

]
> 0, ∀h ∈ H ∩ I0


A

T

i Ph(j)Ai − P h(i) + Gij A
T

i P h(j)Bi −
C

T

i

2
+ H

T

ij

B
T

i P h(j)Ai −
Ci

2
+ Hij B

T

i P h(j)Bi −
Di + D

T

i

2
+ J ij


 ≤ 0, ∀(i, j) ∈ S,

(12)

with Gij, J ij , Hij , Lh as in (11), then system (4) is PWQ passive with storage function (9).

Proof: By the first LMI in (12) and the fourth of (11) it turns out thatxTLhx ≥ 0, ∀x ∈

χh, h ∈ H, and henceV (x) in (9)is positive definite. Moreover, along any trajectory such that

[xTk u
T
k ]T ∈ χi and [xTk+1 u

T
k+1]

′ ∈ χj for some(i, j) ∈ S, it holds that

V (xk+1) − V (xk) − yTk uk =

[xTk u
T
k ]




A
T

i P h(j)Ai − P h(i) + Gij A
T

i P h(j)Bi −
C

T

i

2
+ H

T

ij

B
T

i P h(j)Ai −
Ci

2
+ Hij B

T

i Ph(j)Bi −
Di + D

T

i

2
+ J ij




[
xk

uk

]

−[xTkGijxk + 2uTkH ijxk + uTk J ijuk].

Therefore, by the last LMI in (12) and (11), we have thatV (xk+1) − V (xk) − yTk uk ≤ 0 along

any system trajectory and hence the system is passive according to Definition 1.

Note that the conditionP h =
[
Ph 0
0 0

]
in (12) implies linear equality constraints onU i, W ij , V i,

Zh for i, h ∈ I0.

A simpler but more conservative version of Theorem 1 can be obtained by removing the

unknownsU i, V i, Zh, W ij and the termsGij, J ij, H ij, Lh from the LMI problem (12). This

amounts to ignoring the switching conditions defined by the setsχi in (7) for the PWA dynamics.

B. Passivity Enforcement via Piecewise Linear State Feedback

We now consider the problem of synthesizing a piecewise linear state feedback control law

for PWA systems in order to make the resulting closed-loop system passive. More specifically,
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we look for a piecewise linear functionkpl : R
n → R

m such that system (4) with state feedback

uk = kpl(xk) + vk (13)

is PWQ passive, i.e., there exists a PWQ storage functionV (x) such that the dissipation inequality

V (xk+1) − V (xk) ≤ yTk vk holds for any system trajectory(xk, vk, yk), k ∈ T . The approach

proposed here extends the one used in [18] in the context of stabilization. In order to meet space

limitations and to avoid introducing excessive technicalities, we only address the problem for

system (4) with zero affine terms, i.e.,φi = ψi = 0, ∀i ∈ I.

It is apparent that the partition{χi}i∈I cannot be exploited to define the piecewise linear feedback

in (13), since the partition itself depends on the control input u. Hence, it is natural to look for a

piecewise linear feedback defined on the polyhedral partition {χ̄h}h∈H of the state space defined

by (6), i.e., a control law of the form

uk = −Khxk + vk, xk ∈ χh, h ∈ H. (14)

Based on the PWQ storage function

V (x) = xTPhx, ∀x ∈ χh, h ∈ H, (15)

we want to provide a criterion for synthesizing feedback gainsKh, h ∈ H, such that the closed-

loop system {
xk+1 = Acli xk +Bivk

yk = Ccl
i xk +Divk

if
[ xk

Kh(i)xk+vk

]
∈ χi, i ∈ I,

with input vk and outputyk, is passive, whereAcli = Ai −BiKh(i), Ccl
i = Ci −DiKh(i).

The following closed-loop passivity condition can be stated.

Lemma 1:Consider system (4) withφi = ψi = 0, ∀i ∈ I. If there exist matricesPh, h ∈ H,

andKh, h ∈ H such that the inequalities





Ph = PT
h > 0, ∀h ∈ H


(Acl

i )T PlA
cl
i − Ph(i) (Acl

i )T PlBi −
(Ccl

i )T

2

BT
i PlA

cl
i −

Ccl
i

2
BT

i PlBi −
Di + DT

i

2


 ≤ 0, ∀ i ∈ I, ∀l ∈ H

(16)

hold, then the system with piecewise linear feedback (14) isPWQ passive .

Proof: It suffices to note that the second inequality in (16) impliesthatV (xk+1)−V (xk)−

yTk vk ≤ 0 along all possible system trajectories. Indeed, the feedback gainKh(i) is applied for

all xk ∈ χi and independent of the cellχl the vectorxk+1 belongs to. Moreover, all possible

transitions are covered.
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The PWQ passivity condition provided by Lemma 1 is not computationally appealing since

the inequalities in (16) are bilinear inKh andPh, and hence the synthesis problem cannot be

approached by means of convex optimizations techniques. Nevertheless, such inequalities can

be exploited to derive a LMI sufficient condition for computing the passifying piecewise linear

feedback (14). This is accomplished through a standard Schur complement argument as the

following result shows.

Theorem 2:Consider system (4) and letφi = ψi = 0, ∀i ∈ I. If there exist matricesQh, Rh,

Yh, h ∈ H such that the set of LMIs




Qh = QT
h > 0, ∀h ∈ H



Rh(i) + RT
h(i) − Qh(i)

1
2 (RT

h(i)C
T
i − Y T

h(i)D
T
i ) RT

h(i)A
T
i − Y T

h(i)B
T
i

1
2 (CiRh(i) − DiYh(i))

Di+DT

i

2 BT
i

AiRh(i) − BiYh(i) Bi Ql


 ≥ 0, ∀i ∈ I, ∀l ∈ H

(17)

holds, then the system with piecewise linear state feedback(14) with

Kh = YhR
−1
h , h ∈ H,

is PWQ passive with respect to the storage function (15), with Ph = Q−1
h .

Proof: SinceQh(i) > 0 andRh(i) + RT
h(i) ≥ Qh(i) by (17), thenRh(i) is nonsingular and

moreover it is easy to see thatRT
h(i)Q

−1
h(i)Rh(i) ≥ Rh(i) +RT

h(i) −Qh(i) ≥ 0. Hence (17) implies




Qh = QT
h > 0, ∀h ∈ H



RT
h(i)Q

−1
h(i)Rh(i)

1
2 (RT

h(i)C
T
i − Y T

h(i)D
T
i ) RT

h(i)A
T
i − Y T

h(i)B
T
i

1
2 (CiRh(i) − DiYh(i))

Di+DT

i

2 BT
i

AiRh(i) − BiYh(i) Bi Ql


 ≥ 0, ∀i ∈ I, ∀l ∈ H

(18)

By left-multiplying (18) by
[
R−T

h(i)
0

0 I

]
and right-multiplying by

[
R−1

h(i)
0

0 I

]
we obtain





Qh = QT
h > 0, ∀h ∈ H



Q−1
h(i)

Ccl
T

i

2 (Acl
i )T

Ccl

i

2
Di+DT

i

2 BT
i

Acl
i Bi Ql


 ≥ 0, ∀i ∈ I, ∀l ∈ H,

which is equivalent to (16) by a Schur complement argument, whereQh(i) = P−1
h(i). The result

then follows by Lemma 1.

IV. PASSIVITY ANALYSIS FOR PIECEWISE POLYNOMIAL SYSTEMS

In this section we consider the problem of assessing the passivity property of hybrid systems

in piecewise polynomial (PWP) form, i.e., of systems of the form (1), (2) when it is assumed that

the vector fieldsfi(x, u), hi(x, u), gxi,r(x) andgui,r(u) are multivariate polynomials inx andu. Our
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approach is based on the computation of piecewise polynomial storage functions by exploiting

the SOS decomposition of multivariate polynomials. It is well-known that the SOS decomposition

provides a satisfactory relaxation for proving polynomialpositivity via semidefinite programming

[10].

In the sequel, piecewise polynomial storage functionsV (x) will be considered and passivity

conditions will be formulated in terms of inequalities based on (8). To employ the convex

programming techniques mentioned above, such inequalities must be interpreted in the SOS

sense.

Remark 1:The PWA models analyzed in the previous section clearly fallinto the wider class

of PWP systems. It is worth to note that looking for higher order piecewise polynomial storage

functions may generally yield significantly less conservative passivity tests than those based on

piecewise quadratic storage functions, as it will be pointed out in Section V. Unfortunately,

contrary to PWQ methods, SOS tests which employ superquadratic storage functions do not

easily extend to compute feedback control laws that ensure passivity of the closed-loop system.

Moreover, such tests may be more sensitive to numerical errors.

Consider a PWP system of the form (1), (2) and the following piecewise polynomial candidate

storage functionV : R
n → R defined on the partition{χh}h∈H in (3):

V (x) = Vh(x), ∀x ∈ χh, h ∈ H, (19)

whereVh(x), h ∈ H are polynomials. Let us define the set of index pairs

S =
{
(i, j) : ∃x ∈ R

n, u, w ∈ R
m : [xT uT ]T ∈ χi, [fi(x, u)

T wT ]T ∈ χj , i, j ∈ I
}
.

Clearly, this set plays the same role as the setS in (10) for the PWA case.

A PWP passivity test can be devised by proceeding in the same fashion as the PWQ test in

Section III.A.

For all (i, j) ∈ S, let us introduce the set̃χji ⊆ χi defined as

χ̃
j
i =

{
[xT uT ]T ∈ χi : ∃w : [fi(x, u)

T wT ]T ∈ χj
}
,

i.e., the subset of state-input pairs in cellχi at timek which are allowed to evolve into cellχj

at timek + 1. Eachχ̃ji is given by

χ̃
j
i =

{
[xT uT ]T ∈ R

n :

gxi,r(x) ≥ 0, gui,t(u) ≥ 0, gxj,s(fi(x, u)) ≥ 0, r = 1, . . . ri, t = 1, . . . ti, s = 1, . . . rj

}
.

The following result provides the sought PWP passivity test. The detailed proof is omitted due

to space limitation but can be easily conducted in the same fashion as that of Theorem 1 by
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enforcing both positivity ofV (x) in (19) and the dissipation inequality taking into account the

switching behavior described byS and χ̃ji .

Theorem 3:Consider the PWP system (1). If there exist polynomialsVh(x), h ∈ H, axh,r(x) ≥

0, r = 1, . . . , rh, h ∈ H, bi,j,r(x, u) ≥ 0, r = 1, . . . , ri, ci,j,t(x, u) ≥ 0, t = 1, . . . , ti, and

di,j,s(x, u) ≥ 0, s = 1, . . . , rj, (i, j) ∈ S such thatVh(0) = 0 and




Vh(x) −
∑rh

r=1 a
x
h,r(x)g

x
h,r(x) > 0, ∀x 6= 0, ∀h ∈ H

Vh(j)(fi(x, u)) − Vh(i)(x) − hTi (x, u)u+
∑ri

r=1 bi,j,r(x, u)g
x
i,r(x) +

∑ti
t=1 ci,j,t(x, u)g

u
i,t(u)

+
∑rj

s=1 di,j,s(x, u)g
x
j,s(fi(x, u)) ≤ 0, ∀(x, u), ∀(i, j) ∈ S

then the system is passive with storage function (19).

Remark 2:The set of allowed transitionsS is in general quite difficult to compute for an

arbitrary PWP system. Clearly, the above result can be applied successfully in the case of PWA

systems. Otherwise, a more conservative version of Theorem3 is readily obtained by replacingS

with the Cartesian productI ×I and takingaxh,r(x) = bi,j,r(x, u) = ci,j,t(x, u) = di,j,s(x, u) = 0.

V. APPLICATION EXAMPLE

In this section we apply the proposed passivity criteria to stability analysis of a simple model

derived from haptics. Indeed, the stability of a haptic loop(human operator, haptic device and

virtual environment) can be assessed provided that passivity of the dynamics relating the applied

force and the velocity of the end effector can be ensured [2].

Consider the simple haptic interaction model in Fig. 1. The idea of modelling the interaction

between a haptic device and a virtual environment with a sampled-data equivalent of a spring-

mass-damper system with Coulomb friction is quite standard[2]. Clearly, the haptic device

b,c

Fext m z
K

Device Virtual environment

Fig. 1. Spring-mass-damper haptic model with Coulomb friction

dynamics is continuous-time, while the virtual environment is a computer simulated model and

hence a pure discrete-time system. It is well-known that thecoupling of a discrete-time system

with a continuous-time system can lead to loss of passivity.A possible approach to analyzing

passivity of the overall model, where the inputu is the external forceFext applied to the haptic
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device and the outputy is the velocityż of the end effector, is to derive a discrete-time multirate

model in which different sampling timesnTs and Ts (n > 1) are used for the simulated and

the haptic device dynamics, respectively [19]. Of course, this still involves a certain degree of

approximation since the intersample behavior of the “fast”subsystem is neglected. It is worth

noting that the problem of stability analysis and controller design for haptic systems can indeed

be addressed in a purely discrete-time setting by exploiting the framework proposed in [20], [21].

In this respect, we believe that an extension of the above framework to haptic systems involving

hybrid components is viable by exploiting the results presented here but this goes beyond the

scope of this note and is the subject of current research.

The dynamics of the haptic device (fast system) is modeled indiscrete time by sampling

everyTs seconds the dynamics of a spring-mass system (with massm and dampingb) through

a passivity-preserving discretization scheme as described in [12]. The forces exciting the mass-

spring system are the applied forceFext (acting as the input to the overall system), the Coulomb

friction Fc = c · sign(ẋ) acting on the end effector, and the spring force (with stiffnessK) from

the virtual environment (slow system), which is only allowed to change everynTs seconds. The

physical parameters of the system arem = 0.01, b = 0.9, c = 0.1, K = 1, Ts = 10−4, n = 10

(international units).

Let x1, x2 be the position and velocity, respectively, of the end-effector. Letx3 be the value of

x1 at multiples of the slow sampling timenTs, and letx4 be the state of an auxiliary counter that

is reset everyn steps. The overall system can be described as the fourth-order PWA model (4),

defined over four polyhedral cells (I = {1, 2, 3, 4}), reported in [22]. The setS of admissible

switches isS = I × I \ {(1, 1), (1, 3), (3, 1), (3, 3)}.

By applying the PWQ criterion of Theorem 1, a piecewise quadratic storage function is found

that proves the discrete-time passivity of the system. Whendamping and Coulomb friction

parameters are decreased tob = 0.01 andc = 0.001, respectively, while Theorem 1 fails to prove

PWQ passivity, Theorem 3 provides a valid piecewise quarticstorage function. The expressions

of both functions are reported in [22].

VI. CONCLUSION

This note has proposed sufficient passivity analysis criteria for discrete-time hybrid systems

in piecewise affine or piecewise polynomial form, and a tool for the synthesis of passifying

state-feedback piecewise linear control laws for piecewise affine systems. The proposed ap-

proach appears particularly encouraging in the analysis and design of (possibly heterogeneous)

interconnected systems, such as those modeling human-machine interaction.
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