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This paper presents a new robust model predictive control (MPC) scheme for rendezvous and docking of a
servicer spacecraft with a rotating noncooperative target. The main feature of the proposed solution is that the
prediction horizon is included among the optimization variables. Robustness against model uncertainty is achieved
by applying a tube-based control approach. Finite completion time of the variable horizon tube MPC algorithm
is guaranteed, thanks to a suitable adaptive choice of the terminal constraint. The latter is also instrumental
to promote a close proximity approach to the docking point. Efficient solutions are presented to limit the
computational burden of the variable horizon optimization problem and of the set computations required by
tube MPC. The approach is validated on two simulation benchmarks: a Monte Carlo study of a rendezvous with a
rotating object in low-Earth orbit and a mission setting involving the capture of the nonoperational EnviSat
spacecraft. The results demonstrate the advantages of the proposed technique with respect to both a tube-based
optimal control law and a variable horizon MPC law without adaptation of the terminal constraint.

I. Introduction

PACECRAFT rendezvous and docking (RVD) has been a
cornerstone of space exploration since the early days of human
spaceflight. Successful RVD missions include the Apollo lunar land-
ings and the assembly of the International Space Station, as well as
various technology demonstrations [1-3]. The increasing complexity
of modern space missions, coupled with the need for autonomous
operations, has driven the development of more sophisticated RVD
techniques. In particular, the level of performance required for
autonomous in-orbit assembly, satellite servicing, and space debris
removal calls for advanced control strategies capable of handling
complex dynamics and stringent design specifications [4—10]. One
such strategy is model predictive control (MPC), which has gained
significant attention due to its ability to handle multivariable control
problems with constraints, while optimizing suitable performance
indexes [11]. Despite its advantages, traditional MPC can be sensitive
to model uncertainty, which is prevalent in space applications due to,
for example, thrust inaccuracies and environmental perturbations.
To overcome this drawback, robust MPC has been proposed.
Robust MPC enhances the standard MPC framework by incorpo-
rating robustness against model uncertainty and process disturb-
ances. This can be achieved by considering worst-case scenarios in
the optimization process, ensuring that the control actions remain
effective and constraints are satisfied even in the presence of the
uncertainty. In particular, tube MPC (TMPC) [12,13] turned out to
be a viable technique in several studies, highlighting the potential of
this approach for enhancing the reliability of RVD operations.
However, most of the existing TMPC designs focus on RVD to a
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nonrotating target, which prevents their application to noncoopera-
tive objects (e.g., removal of a tumbling piece of space debris).

RVD with a rotating target poses additional challenges in MPC
design, because both the docking point position and the mission
constraints become time varying. To address this challenge, the use
of a variable optimization horizon may be a promising approach, as
it allows for the identification of favorable docking opportunities
and for a finite maneuver completion time. However, variable
horizon MPC (VHMPC) entails theoretical difficulties and compu-
tational issues that must be carefully addressed [14]. Concerning
robustness aspects of the VHMPC formulation, it is important to
notice that, due to the presence of uncertainty, the docking configu-
ration cannot be reached exactly in finite time. Hence, the objective
becomes to reduce as much as possible the final deviation from the
docking point, an aspect that has received little attention so far and
deserves further investigation.

In this paper, we propose a novel robust technique for spacecraft
RVD by developing a tube-based VHMPC strategy capable of
closely approaching the docking point of a rotating target. The
paper contribution is detailed in Sec. L.B.

A. Related Work

The use of MPC techniques for tackling RVD problems is an
active field of research. A linear MPC strategy for planar RVD is
presented in Ref. [15]. Solutions in a three-dimensional setting are
devised in Refs. [16,17]. A nonlinear MPC approach is adopted in
Ref. [18]. Suitable convex formulations of the optimization problem
involved in the MPC scheme have been proposed (see, e.g.,
Refs. [19-21]), in order to improve accuracy and efficiency, which
are fundamental requisites for online implementation.

Within this research line, a major challenge is how to deal with
model uncertainty. Indeed, unmodeled dynamics, process disturb-
ances, and linearization errors can severely affect the performance
of the MPC controller. To this aim, several solutions based on TMPC
[12,13] have been proposed to ensure robustness with respect to
various uncertainty sources. One of the first works showing that
TMPC can be effectively employed for real-time RVD operations is
Ref. [22]. In Refs. [23,24] robust output feedback control laws for
RVD are designed, by coupling TMPC either with a Luenberger
observer or with an extended Kalman filter. A similar problem is
addressed in Ref. [25], in which the proposed control law is validated
on an experimental test bed with realistic modeling and navigation
uncertainties. The adaptive control scheme presented in Ref. [26]
enhances the performance of TMPC by employing an online identi-
fication procedure, progressively reducing the uncertainty associated
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to the unknown process disturbance. A complete pipeline for autono-
mous RVD with a tumbling target is presented in Ref. [27], in which
TMPC is used to track a reference rendezvous trajectory, while taking
into account uncertainties arising from imperfect knowledge of the
inertia and angular velocity of the target.

In recent years, researchers have considered the possibility of
including the MPC horizon length among the variables of the opti-
mization problem, in order to increase the flexibility of the resulting
control law. This provides a valuable additional degree of freedom,
especially in those applications in which the time required to complete
the control task is a key factor. VHMPC has been introduced in
Ref. [14], for linear discrete-time systems. A tube-based approach is
adopted to achieve robustness with respect to bounded process dis-
turbances. Several variants of this technique have been proposed in a
wide range of control applications, such as point-to-point motion
control [28,29], helicopter landing [30,31], train operations [32], path
tracking [33], and RVD between a drone and a moving platform [34].
In Ref. [35], a variable horizon approach has been adopted for the
guidance of a spacecraft toward a tumbling target. However, to the best
of the authors’ knowledge, a variable horizon MPC control law for
RVD with a noncooperative target has not been studied so far.

B. Contribution

This paper proposes a new robust MPC scheme for an RVD
mission involving a servicer spacecraft and a rotating target. The
main contributions of this work can be summarized as follows. A
tube-based VHMPC algorithm with adaptive terminal constraint is
presented, whose principal features are as follows:

1) The adaptation of the terminal constraint guarantees that the
algorithm provides a feasible control input at every time step.

2) The controlled servicer trajectory satisfies the mission con-
straints and reaches a suitable final set in finite time.

The choice of the terminal constraint is instrumental to provide
final sets which are smaller and closer to the docking point, com-
pared to those achieved by existing variable horizon robust control
techniques. To make the approach feasible for online implementa-
tion, efficient computational solutions are outlined for the variable
horizon search strategy and for the operations between sets involved
in the tube-based formulation. The control scheme is validated on
two simulation benchmarks. The first one consists of a Monte Carlo
study on an RVD maneuver with a rotating object in low-Earth orbit.
In this scenario, the performance of the proposed technique is
compared to those of two baseline solutions, for a wide range of
values of mission parameters. The second test bed involves a more
realistic scenario in which the objective is the capture of the EnviSat
platform. Both case studies showcase the advantages of the new
VHMPC scheme, in terms of final distance of the servicer from the
docking point, and demonstrate its computational feasibility.

The rest of the paper is organized as follows. Section II contains
the formulation of the rendezvous robust control problem and a
review of a classical solution via tube-based optimal control over a
finite horizon. The VHMPC scheme proposed in this work is
introduced and discussed in Sec. III. Several implementation aspects
aimed at limiting the computational burden are outlined in Sec. IV.
Section V presents the two simulation benchmarks which demon-
strate the advantages of the proposed approach with respect to two
baseline solutions, and Sec. VI provides some concluding remarks.

C. Notation

The sets of real, nonnegative integer, and positive integer num-
bers are denoted by R, N, and N, respectively. The time derivative
of a vector x is denoted by x. The p-norm of x and the direction of x
are indicated by ||x||, and x = x/||x||,, respectively. The matrix
describing a rotation about the axis @ € R? by an angle 6 € R is
denoted by R(a, 6). The symbols @ and & represent the Minkowski
sum and Pontryagin set difference, respectively. Specifically, given
twosets A, B, A®B={a+b:ae€ A be B}, and ASB = {a:
{a} & B C A}, with {a} indicating the singleton set. The value of a
decision variable x obtained from the solution of an optimization
problem is denoted by x*.

II. Rendezvous Robust Control Problem

The considered task is RVD between an actively controlled
servicer spacecraft and an uncontrolled target that is rotating freely.
The focus is on ensuring robust trajectories toward the target, while
satisfying the typical RVD constraints and achieving robustness
against additive process disturbance. In the following, the RVD
dynamic model and the control problem are formalized. Moreover,
a standard tube-based solution to the control problem is discussed as
a preliminary step for the proposed design.

A. RVD Model

To describe the RVD maneuver, we consider the motion of the
center of mass of the servicer (SCM) relative to a time-varying
docking point modeling the rotational motion of the target. Both the
SCM and the docking point are expressed in the radial-tangential—
normal (RTN) coordinate frame centered at the target center of mass
(TCM). To simplify the control design procedure, while accounting
for maneuver uncertainty, we find it convenient to model the relative
motion between the SCM and the the TCM using the normalized
discrete-time Hill-Clohessy—Wiltshire equations [36], corrupted by
an additive process disturbance signal. The resulting dynamics are
given by

x(k + 1) = Ax(k) + Bu(k) + w(k)

= et x(k) + (/T eAchr)Bc u(k) +w(k) (1)
=0

where k € N is the discrete time index, x(k) € R® is the system state,
u(k) € R? is the control input, w(k) € RO is the process disturbance,
7, is the sampling interval, and

(000 0 1 0 0] [0 0 0]
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The control input in Eq. (1) is defined as u(k) = a(k)/amn., with
a(k) € R3 being the actual acceleration, expressed in RTN coordi-
nates, and a,,,, the maximum acceleration deliverable by the servicer
along each axis of the RTN frame (a,,, is assumed constant). Notice
that, in this setting, |lu(k)|l, < 1. The state vector is defined as
x(k) = [xT(k), xI (k)]", where x, (k) € R? describes the RTN com-
ponents of the position vector of the servicer multiplied by 7% /@max.
and x, (k) € R? describes the RTN components of its velocity vector
multiplied by 77/a ., being 7 the target mean motion. Moreover, a
scaled time variable 7 = 5t is employed, where ¢ is the actual time.
Then, t = kz,/n at the sampling instants. The choice of the linear
time-invariant model (1-2) is appropriate for circular orbits.

The RVD specifications are modeled by defining a docking axis
which is rigidly attached to the target and specifying a suitable
docking point along this axis. The docking point describes the
desired position of the SCM upon docking. Taking into account
the target rotational motion, it follows that the position of the
docking point evolves on a sphere of constant radius. The position
p? € R3 of the docking point relative to the TCM satisfies the
continuous-time differential equation

(0 =) xp'@) 3

where all vectors are expressed in the RTN frame and w(r) € R? is
the instantaneous angular velocity of the target body frame relative
to the RTN frame. The dynamics of Eq. (3) are used to generate the
reference trajectory, which is sampled and normalized to match the
discrete-time framework of the control design. In particular, by
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evaluating p?(r) and the corresponding velocity v¢(7) = p9(t) at
each time step k, corresponding to the actual time instant kz /7, and
applying the same normalization used to define the state vector x(k),
we construct the reference state trajectory r(k) € R® as follows:

2
U d krg
r®7] | e © (7)
r(k) = = 4
r, (k) n vd (ﬁ)
amax ”
The state constraints for the maneuver are defined so as to
guarantee that the servicer remains inside a docking cone, which

is representative of visibility and collision avoidance requirements.
In particular, let us consider the time-varying set

£
Clk) = {[;} ER®: €, — [E7r, (I, ()],

v

< tan(a)[gp - rp(k)]Trp (k)} (5)

The set (5) represents a cone stemming from the docking point
position r,(k), with axis aligned to r,(k) and half-angle specified
by the parameter a. Then, the visibility condition can be cast as
x(k) € C(k), which defines a convex quadratic constraint. Because
for computational reasons it is usually better to deal with linear
constraints, a polyhedral constraint set X'(k) is employed as an
alternative to Eq. (5). In particular, we define

&
X(k) = € RS:
{L‘}

tan(a)

2

’T(k) (& — &b, (I, 0)

(o]

<

[gp - rp(k)]Trp(k)} (6)

where
T(k) = R(r,,(k) x [1 0 0], arccos([1 O O]r,,(k))) %)

The set (6) and (7) represents a time-varying polyhedron defined by
four hyperplanes. As shown in Ref. [35], X'(k) C C(k). Hence, the
linear constraint set

x(k) € X(k) (8)

implies the visibility condition x(k) € C(k). Notice that the require-
ment of avoiding collisions with the target is guaranteed by the
satisfaction of constraint (8) because X'(k) is entirely outside the
region occupied by the target. Moreover, according to the discussion
following Eq. (2), the control input u(k) is subject to the constraint

uk)eU ={uek:|ul, <1} ©)

The geometry of the RVD maneuver is illustrated in Fig. 1.

In this work, it is assumed that the process disturbance w(k)
belongs to a bounded set W that is a convex polytope. In general,
the uncertainty w(k) can arise from various factors, such as an
imperfect thrusting, limited knowledge of the target inertia and
inaccuracies in its angular velocity (see, e.g., Ref. [27]).

The RVD control problem is stated as follows.

Problem 1: Find a control law ensuring that the state x(k) of
system (1) is driven in finite time toward the reference trajectory
r(k), satisfying the state and input constraints (8) and (9) for any
realization of w(k) € W, while optimizing a tradeoff between
maneuver completion time and fuel consumption.

Target orbit .
/

Fig. 1 Illustration of RVD geometry: RTN frame (red), angular veloc-
ity w(t) (purple), position trajectory p?(t) of the docking point (dashed
black), and constraint set X' (k) (green).

A classical way to tackle Problem 1 is a tube-based approach
relying on the solution of a robust optimal control problem over a
finite horizon. This is recalled in Sec. IL.B. Then, in Sec. III, a novel
variable horizon MPC strategy is proposed with the aim of reducing
as much as possible the final deviation of the servicer trajectory
from the reference.

B. Tube-Based Optimal Control

Classical tube-based optimal control (TBOC) can be applied to
solve Problem 1. In this approach, a disturbance-free nominal
system, corresponding to Eq. (1) with w(k) = 0, is defined as
follows:

2(k+ 1) = Az(k) + Bv(k) (10)

The key idea of TBOC is to confine the trajectories of the uncertain
system (1) in a bounded neighborhood of the trajectory of the
nominal system (10), which is called a tube (see Ref. [13],
Sec. IILLE). To do this, the feedback-plus-feedforward control law
is introduced for system (1),

u(k) = v(k) + K(x(k) — z(k)) (11)

where the matrix K is chosen in such a way that Ay = (A + BK) is
Schur. This way, the dynamics of the error e(k) = x(k) — z(k) are
given by

e(k+1) = Age(k) + w(k) (12)
which ensures that the error remains bounded within a tube as long

as w(k) is bounded. In particular, to realize the TBOC strategy, we
consider the optimization problem

N-1
min J=N+y |lv(k)||
N (203, ! g '

s.t. z(0) = x(0)
z2(k+ 1) = Az(k) + Bv(k)

2(kye Z(k), k=0,....N

v(k) €V(k). k=0,....N-1

Z(N) = 2/ (N)

N eN* (13)

where N is the horizon length, y, > 0 is a scalar weighting param-
eter, z"(N) is the terminal state, and Z(k), V(k) are tightened
constraint sets (defined hereafter). The cost function in Eq. (13)
accounts for the performance specification of Problem 1. In par-
ticular, N is proportional to the maneuver completion time, and the
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term Y 2=} |lv(k)||; represents the fuel consumption (see, e.g.,
Ref. [37]), which is weighted by the tunable parameter y,. The
decision variables in problem (13) are the horizon length N and the
nominal input and state sequences {v(k)}¥=} and {z(k)}}_,. respec-
tively. Such sequences are constrained to lie in the tightened sets

Z(k) = X(k) © S(k)
V(k) = U & KS(k) (14)

where

{0}, if k=0
sw={_" (15)
ELALW if k> 1

The TBOC control law is defined by using the optimal solution of
problem (13) in Eq. (10), that s,

u(k) = v*(k) + K(x(k) — z*(k)) (16)

where v* and z* denote the solution of Eq. (13).

The following well-known properties pertain to the TBOC con-
trol law (16). The trajectories of the closed loop system (1), (13-16)
are guaranteed to satisfy the constraints (8) and (9) for any possible
realization of the disturbance w(k) € WV, in the discrete-time inter-
val k € [0, N*] (see, e.g., Ref. [13], Sec. II.V). In particular, the
solution of problem (13) is such that the optimal value N* is finite
(whenever the problem is feasible), which results in a finite maneu-
ver completion time. Moreover, by construction, it holds that
x(N*) € T(N*), where

T(N*) ={z'(N")} & S(N*) an

that is, 7 (N*) is the set in which the trajectories of the closed-loop
system (1), (13-16) are guaranteed to terminate. Also, by construc-
tion, one has that 7 (N*) C X(N*).

In view of solving Problem 1, the natural choice for the terminal
state in Eq. (13) would be z"(N) = r(N). However, this cannot be
enforced because in general r(N) does not lie in the tightened set
Z(N). To reduce as much as possible the deviation from the
reference, in this work z”(N) in Eq. (13) is chosen as the point in
Z(N) that is closest to r(N), that is,

"(N) = i —r(N 18
z"(N) = arg zgg(r}v)llz r(N)|» (18)

With Z(N) being a convex polytope, the point z"(N) in Eq. (18) is
unique and can be computed by solving a quadratic program. An
illustration of the TBOC strategy is shown in Fig. 2.

/

Fig. 2 Illustration of TBOC: reference trajectory r(k) (dashed black),
sets X' (k) (green) and Z(k) (blue), optimal nominal state trajectory
z*(k) (blue) terminating in z"(N*), and state trajectory x(k) (red)
terminating in 7' (N*) (purple).

It is worth remarking that the TBOC approach solves the opti-
mization problem (13) only once at the initial step k =0. As a
result, the control strategy (16) can be conservative. In particular, if
the maneuver final set 7 (N*) is large, the final configuration x(N*)
of the servicer can be significantly far from r(N*). A less
conservative solution is proposed in the next section, by leveraging
VHMPC.

III. Robust Variable Horizon MPC Design

In this section, a robust VHMPC scheme that solves Problem 1
using online optimization is presented. As a first design step, we
consider the online version of the optimization problem (13) (here-
after denoted by IP;). This is defined as

Ni—1
Py : {ln}{l . Jk=Nk+7uZ||vk(j)”1
Nk-{vk(j)}/:kg a{Zk(/)},in Jj=0

st 24(0) = x(k)
2;:(j + 1) = Az (j) + Bvi()j)
w(HeZ(), j=0,....Ng
v (/) € Vi(), j=0,....,Ny—1
zi(Ny) = z;(Ny)
N, e N* 19

where the subscript k is employed to highlight that the correspond-
ing quantities are evaluated at step k. In Eq. (19), the tightened
constraints are defined by suitably adapting (14) as

Zi(j) = Xk + j) © S0,
V() = US KS()) (20)

and, consistently with Eq. (18), the terminal state is specified as

"(N,) = i —r(k+N 21
Z;(Ny) = arg ze%il&‘m”Z r(k+ Npl» (21)

It is worth stressing that now N, is the length of the control horizon
starting at the current step k. Under the usual receding horizon
paradigm, one can obtain a feedback control law for system (1)
by solving Eq. (19) at each time k and applying u(k) = v}(0).
However, due to the presence of process disturbances and of the
time-varying terminal equality constraint z,(N) = z}(N;), such an
approach does not guarantee that, given a feasible PP, feasibility of
P, is retained for subsequent values of k, along the closed-loop
system trajectories.

To address this issue, we propose selecting the control action by
exploiting both [P, and a modified version of this problem denoted
by P(F. N}, according to a suitable selection strategy described
later on. Problem P, (F, N;) is defined as follows:

Ny-1
Pu(Fr, Ni): i szNk+7vZ v
Oz =

st 2,(0) = x(k)
z;(j+ 1) = Az (j) + Bo(j)

zi() € Zk(j), j=0,....,Ny
v (NDEV()), Jj=0,....N;—1
Zi(Ni) € Fi (22)

The main difference between P; in Eq. (19) and P,(F, Ny) in
Eq. (22) is that the former is a variable horizon optimization
problem, while the latter is a fixed-horizon optimization problem
parameterized by F; and N,. Indeed, N, in Eq. (22) is not a



Downloaded by 5.61.220.146 on January 1, 2026 | http://arc.aiaa.org | DOI: 10.2514/1.G008874

Article in Advance / QUARTULLO ET AL. 5

decision variable. Furthermore, it should be noticed that the terminal
constraint in Eq. (22) involves the set F rather than the endpoint
Zp(Ny) in Eq. (19). The choice of the parameters Ny and F of
problem P (F, N), as well as the logic for computing the control
action on the basis of the solution of problems P, and Py (F, Ny),
are detailed in Algorithm 1, hereafter referred to as variable horizon
MPC with adaptive terminal constraint (ATC).

Algorithm 1: VHMPC with Adaptive Terminal Constraint

1:  Input x(0), 1

2:  Solve Py, and get (J§, N§, v§, z§).

3 Zpo < {0}

4: g« 0

5: u(0) < v§(0)

6: x(1) « Ax(0) + Bu(0) + w(0)

7. k<0

8:  while N} > 1, do

9: k—k+1
10: Solve P, and get (J%, N}, vy, 25).
11: if J; > Ji | — 4, then

12: Zpp e 2o @ ARTIW

13: Fr < {zi(N)} @ 25

14: Solve Py (F, Ni_, — 1), and get (J}, v}, z}).
15: Nf <N, —1

16: else o

17: VLN vioz)) < 3N o1 2D
18: Zrp < {0}

19: q <k
20: end if
21: u(k) < v;(0)
22: x(k + 1) « Ax(k) + Bu(k) + w(k)

23:  end while
24: return gy < g

The mechanism underlying Algorithm ] is to keep solving the
variable horizon problem PP, at each step k, as long as it is
feasible and its optimal cost decreases at least by a suitable
positive quantity 4 with respect to the solution at the previous
time step. When these conditions are not met, the control action
is obtained by solving problem P (F, N;), with suitable choices
of F, and N,. The rationale behind this approach is that, on the
one hand, the use of a terminal equality constraint in [P, favors a
close proximity approach to the docking point. On the other
hand, the choice of the parameters F;, N, made in Algorithm 1
is instrumental to guarantee feasibility of problem (22) and
finite-time completion of the overall rendezvous maneuver. The
next result formalizes the key properties of the proposed MPC-
ATC scheme.

Proposition 1: Let problem P be feasible. Then, the following
properties hold for system (1) under the MPC-ATC control law in
Algorithm 1:

1) At each time step k, problem P, (F, N,) in line 14 is feasible.

2) The closed-loop system trajectories satisfy the constraints
(8) and (9), for all k and any w(k) € W.

3) By selecting y, such that

A2 1—y,sup ) |[KAjw]; >0 (23)

wew j=0

and setting 1 = A in Algorithm 1, the state trajectories x(k) of the
closed-loop system converge to the final set {z} (N7 )} & S(N7,)

in a finite number of time steps T.=q;+ Nj < LJ;//_IJ,

with g, being as returned in line 24 and J§ the optimal cost of
problem P,.

Proof: See Appendix A.

It is worth remarking that feasibility of problem PP, is a standard
assumption in the MPC literature. However, note that within the
variable horizon framework this assumption is quite mild, as it only
requires that there exists a value of the horizon length for which
problem (19) admits a feasible solution. In contrast, in conventional
fixed-horizon MPC schemes, feasibility of the initial optimization
problem is required for a given prediction horizon, making this
assumption much more stringent.

Statement 1 in Proposition 1 ensures that if the initial problem P,
is feasible then Algorithm ] yields a well-defined value of the
control input u (k) at each subsequent step. This is due to the choice
of the parameters F; and N;. Specifically, the terminal set for
problem Py (Fy, Ny) is chosen as Fy = {z}(N})} & Z,,. Notice
that, when problem P (F, N,) is solved for consecutive time steps,
the point z},(N7) is kept fixed, while the set F; progressively grows
according to lines 12—13 of Algorithm 1. Moreover, while solving
problem P,(F;,N,), the horizon parameter N, is set equal to
Nj_, — 1; that is, it is forced to decrease by one unit at each step
(line 14 of Algorithm 1). A qualitative illustration is reported in
Fig. 3, in which problem PP, is solved at step g, while problems
@qu,(qu,NqH), Fqﬁ(}'qﬁ,Nﬁz) are solved at the two sub-
sequent steps.

Statements 2 and 3 in Proposition 1 ensure that all possible
trajectories x(k) comply with the state constraint (8) and converge
in finite time to the set {z{ (N7 )} ® S(Nj ). It is worth stressing
that whenever Ny < N* this final set is smaller than T(N*) in
Eq. (17), which is the set of possible final states achievable by the
control law (13-16). A further advantage of the proposed design
stems from the way the terminal state z;,(N) is chosen in Eq. (21).
As long as the control action u(k) results from the solution of
problem P and the corresponding optimal horizon length N}
decreases, the terminal state zj (V) gets closer to the reference
trajectory. This is formalized by the following result.

Proposition 2: Assume that at two consecutive time instants k and
k41 the solutions of problems P, and P, are such that
Ni, = N; — 1. Then,

2k (Vi) = r(k+ 1+ N DI < Nlzg (V) = r(k+ND 24)

Ze(NF = 1)

\ S ¥ /)
Zq(Nq) /
\\ ™ Zgt2 (N; -2)
e
/

\ 7))
\ /SR )
| ] /’Z T - */x'(q/J?

/o x(g+2)
/

\
\Vi

/

zy(Ng)

q

-7 r(g+Ny) S~
7 N
7 N
/7 N\
/

Fig. 3 Choice of F; for problem P, (F;,N;): terminal sets F, g+15
F 442 (orange), optimal nominal state sequences (dashed blue),
actual closed-loop trajectory (red), set X'(¢+ Nj) (largest light
green cone), and darker sets are its tightened versions according
to Eq. (20).

-
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Fig. 4 Illustration of Proposition 2: predicted nominal state sequen-
ces at steps k and k + 1 (dashed blue); visibility region X'(k + Ny)
(largest light green cone) and its tightened versions at steps k and k + 1
(light blue).

Proof: See Appendix B.
From Proposition 2, it follows that the smaller N7 , the closer the
terminal configuration zj (Nj /) gets to the reference trajectory

r(gy + N f), thus promoting a more accurate approach to the
docking point than TBOC. An illustration of this behavior is shown
in Fig. 4. In the case studies reported in Sec. V, N7 actually turns
out to be much smaller than N*, thus significantly reducing the
distance of the final state to the reference trajectory with respect to
the solution of the TBOC problem (13).

IV. Computational Strategies

The proposed control law involves operations that are in general
computationally intensive. In particular, Algorithm 1 requires the
solution of mixed integer optimization problems, with the horizon
N, being an integer decision variable in problem P,. Moreover,
Minkowski sums and Pontryagin differences among sets are known
to be computationally demanding. Hereafter, some strategies are
proposed to mitigate the computational burden.

A. Horizon Search Strategy

As previously mentioned, in this work, the 1-norm is employed to
weigh the fuel consumption. This choice promotes control sparsity,
see, for example, Ref. [37], while enabling problem (19) to be
solved either as a mixed-integer linear program (MILP) or as a
sequence of linear program (LP) with fixed prediction horizon.
Although MILPs are generally less complex than other integer
programming problems, their solution still entails a significant
computational burden, which may hinder the implementation of
Algorithm ] onboard a spacecraft. Another approach to achieve a
global minimum is by enumeration, where problem P; is solved for
fixed Ny =1,..., Ny, being N.. an upper bound on the
expected maneuver duration. This method can also be computation-
ally intensive, although there are solutions that leverage the problem
structure to mitigate this issue (see, e.g., Refs. [34,35]).

In this work, the search over the prediction horizon Ny is effi-
ciently handled by solving a finite number of linear programs. This
is done by adopting the heuristic procedure proposed in Ref. [35],
Algorithm 1, here slightly modified to cope with the MPC approach
adopted in this work. More specifically, the employed heuristic
algorithm consists of two steps: starting from a suitable initial guess
of the prediction horizon length, one searches for the feasible
solution closest to this initial guess; a local search is then performed
around this solution until the optimal cost no longer decreases. This
procedure is guaranteed to provide a local minimum that is marked

as the solution of problem PP;. Clearly, the obtained solution
depends on the initial guess of the horizon length. In this work,
the initial guess for problem P, is chosen in the same way as in
Ref. [35], Algorithm 1. For subsequent steps k > 0, the initial guess
for the horizon length is selected as the optimal horizon length
found at the previous time step decreased by 1, that is, Nj_, — 1,
which is known to be feasible by construction. This choice further
speeds up the search process. It is worth remarking that, although
the described heuristic does not guarantee to find the global mini-
mum of problem (19), the properties of Algorithm 1 stated in
Proposition 1, and in particular finite-time convergence of the over-
all rendezvous maneuver, are still ensured.

B. Set Operations

The set operations involved in the proposed control scheme may
be computationally challenging. In particular, the sets S(k) and the
tightened constraints in Eq. (14) require, respectively, to compute
multiple Minkowski sums and Pontryagin differences in RO.
Although solvers are available to perform the required set operations
(such as the MPT3 MATLAB® Toolbox [38]), these operations
typically become computationally intractable even for moderate
set dimensions. To address this issue, the disturbance set W, and
consequently the sets S(k), are represented using zonotopes [39].
This representation relies on the fairly general assumption that the
set W is a zonotope. A zonotope P C R” is defined as P = {x|x =
cp 4+ Gpp, Pl < 1}, where cp € R* and Gp € R™6 are the
center and generator matrix of the zonotope, respectively. The
Minkowski sum of zonotopes is straightforward to compute because
it reduces to summing the centers and stacking horizontally the
generator matrices of the involved zonotopes [39].

Concerning the Pontryagin difference between the polytopes
X(k) (respectively, U) and the zonotopes S(k) [respectively,
KS(k)], required for constraint tightening in Eq. (20), we adopt a
solution tailored to the specific structure of the sets involved.
Specifically, in this case, subtracting the zonotope S(k) results in
moving the planes of the polytope X'(k) along a suitable direction.
Such direction and displacement are computed as follows. The
polyhedral cone in Eq. (6) can be described by the 4-hyperplane
representation X' (k) = {x:h(wa <by;i=1,...,4}, where hy; €
R® and by ; € R are easily obtained from Eq. (6). The direction
along which to move the ith plane is orthogonal to the plane itself,
and the displacement is computed as

8 = % ;Gsw i, i=1,...,4

with G, being the generator matrix of the set S(k). Therefore, the
resulting tightened constraint set can be defined as Z(k) = {z:hY;
z2<by;—6;,i=1,...,4}. The same method is also used for
tightening the input constraint &/ in Eq. (9), which is a unitary
box in the considered setting. Note that these operations require
very low computational effort, as opposed to the standard Pontrya-
gin difference. An illustration of the constraint tightening outcome
is shown in Fig. 5.

V. Simulation Case Studies

In this section, the proposed control scheme is validated
through numerical simulations involving RVD with rotating tar-
gets and compared with different baselines. As a first baseline,
the TBOC approach in Egs. (13-16) is employed. The second
baseline is the robust variable horizon control approach proposed
in Ref. [14], which is suitably modified to cope with the RVD
scenario considered in this paper. In particular, the formulation in
Ref. [14] is amended to include a time-varying reference trajec-
tory, as follows. At each time k, a modified version of prob-
lem (19) is solved, in which the terminal constraint z;(N;) =
2 (Ny) is replaced by

2(Ni) € {r(k + Ny} @ Q(Ny)
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Fig. 5 Qualitative two-dimensional illustration of the subtraction
between a polyhedral cone and a zonotope.

where

r(j) = arg min

z—r(j
oamin 2 =r()l:

Q(Ny) = S(e0) © S(Ny)

with S(o0) = lim;_, S(k). Notice that Q(N;) is nonempty for
any possible value of N;. The resulting control scheme is referred
to as variable horizon MPC with fixed terminal constraint (FTC).

The simulation campaign is organized as follows. First, a Monte
Carlo analysis that is representative of different RVD missions is
carried out to evaluate the performance of Algorithm 1 in comparison
to the selected baselines. Then, the MPC-ATC control law is tested on
a realistic scenario inspired by the capture of the nonoperational
EnviSat spacecraft [40]. The simulations are performed by using
the MATLAB® programming environment and exploiting the com-
putational speed-ups described in Sec. IV, on a platform equipped
with an Intel Core 17-1165G7 processor and 16 GB of RAM.

A. Monte Carlo Study

The proposed Monte Carlo study is representative of RVD maneu-
vers with rotating objects in low-Earth orbit (LEO). This scenario is
considered due to the increasing number of space missions that are
scheduled to take place in the LEO regime, which will possibly
necessitate of in-orbit repair, refueling, and assembly as well as of
dedicated removal and deorbiting operations. The main features of this
study are as follows. The target satellite is located on a circular orbit
800 km above the Earth, and it is tumbling around a constant spin axis
orthogonal to its orbital plane; thus, @ = [0,0,1]7. The docking point
is initially located at p¢(0) = [—1.5,0,0]7 m. The docking cone half-
angle is set equal to @ = 30 deg. The servicer initial position relative
to the target is randomly chosen inside the first polyhedral cone [i.e.,
x(0) € X(0)]. The initial intersatellite distance falls in the interval
[20,85] m. The initial velocity is uniformly sampled over [—0.01,
0.01] m/s. The maximum acceleration of the servicer propulsion
system and the spin period of the rotating target (which is assumed
to be constant) are treated as free parameters and are assigned at the
beginning of each simulation. In particular, they are uniformly
sampled in the intervals [5,50] mm/s” and [300,600] s, respectively.
The disturbance w (k) is treated as a random signal. At each step &,
w (k) is uniformly sampled in the set W = [ ,, w, ] X [-w,, W, %,
withw, = 1076 and w, = 5 - 10~* (which, according to the adopted
input normalization, corresponds to about 5% of the maximum accel-
eration). The sampling interval is selected as 7, = 27z/512 rad, cor-
responding to a sampling time of 11.8 s. The matrix K is selected so as
to place the eigenvalues of Ag at {0.6,0.6,0.6,0.5,0.5, 0.5}, while

the parameter y, of the control law is chosen as y, = 5, resulting in
A = 0.17 according to Eq. (23).

The RVD maneuver is simulated over 1000 runs in which the
initial problem P, returns a feasible solution. The aim of this study
is to assess the performance of the proposed control scheme. This
is done through a statistical evaluation of the final distance from
the docking point, the fuel consumption, and the maneuver com-
pletion time obtained in all simulation runs. Such performance
indices are compared to those achieved by the TBOC and MPC-
FTC control baselines. These are illustrated through box plots, in
which the central red mark indicates the median value of the
metric; the bottom and top blue edges of the box denote the 25th
and 75th percentiles, respectively; and the black whiskers encap-
sulate the most extreme data points. Figure 6 reports the box plot
of the final distance with respect to the docking point achieved by
the proposed control scheme, in comparison with that of the
selected baselines. It can be seen that MPC-ATC outperforms
the two baselines in terms of achievable proximity to the docking
point. The median of the final distance obtained with the proposed
controller over all maneuver realizations is equal to 0.59 m, com-
pared to 2.25 and 2.82 m achieved by TBOC and MPC-FTC,
respectively. Quite remarkably, it turns out that the maximum final
distance achieved by MPC-ATC is smaller than the 25th percentile
of the final distances obtained by using the comparison laws.
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Fig. 6 Box plot of final distance achieved by the MPC-ATC, TBOC,
and MPC-FTC schemes.
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Fig. 7 Box plot of the fuel consumption achieved by the MPC-ATC,
TBOC, and MPC-FTC schemes.
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Figure 7 shows that the fuel consumption incurred by the proposed
approach is comparable to that of the baseline methods. The com-
pletion time, reported in Fig. 8, is slightly greater than the one
obtained by the baselines. This is not surprising, in view of the much
smaller final displacement reached by MPC-ATC. The statistics in
Table 1 clearly show that the improvement achieved by MPC-ATC in
terms of final distance is considerably larger than the performance
drop observed for the completion time and fuel consumption.

To support the discussion of MPC-ATC features in Sec. III, some
statistics on the behavior of Algorithm 1 are reported. The average
value of the final horizon length N} is 2.07, while the average N*
for the TBOC law is 12.7 (note that this value depends on the initial
condition). Hence, N, ,*; , turns out to be much smaller than N*. The
average radius of the projection of the set {z; ; (N5 j)} @ SNy /) on
the position subspace is 0.29 m. Conversely, the radius of the
projection of 7 (N*) turns out to be 1.04 m, thus confirming that
MPC-ATC significantly reduces the set of possible final states. This
stems from the fact that in MPC-ATC the solution of problem
P (Fy. N,) is triggered only few times (7% on average).

An example of the trajectories produced by the three approaches
is shown in Fig. 9. The trajectories start from the same initial
condition and display similar profiles at the initial stage of the
maneuver. In particular, the observed parabolic trend is due to the
requirement to keep the SCM confined within the rotating docking
cone at all time steps, which is robustly achieved by the three
solutions. Significant differences arise in the final part of the
maneuver, where the MPC-ATC strategy converges to a point much
closer to the docking point. Consequently, the MPC-ATC trajectory
yields a much smaller final distance (0.55 m) than that of the
baselines (2.13 m for TBOC and 2.91 m for MPC-FTC). This is
consistent with the overall results of the Monte Carlo study.

To quantify the performance of the heuristic horizon search
strategy described in Sec. IV.A, 100 simulations from this study
are compared with the results obtained by using enumeration
search to solve at the optimum the same MPC problems. In these
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Fig. 8 Box plot of the completion time achieved by the MPC-ATC,
TBOC, and MPC-FTC schemes.

Table 1 Average values of the final distance, fuel consumption,
and maneuver completion time obtained with the MPC-ATC,
TBOC, and MPC-FTC methods (the percentage difference
with respect to MPC-ATC is also reported)

Metric MPC-ATC TBOC MPC-FTC
Final distance, m 0.62 221 (4257%)  2.81 (+354%)
Fuel consumption 6.92 6.82 (—1.5%) 6.42 (=7%)
Completion time 15.53 12.68 (—18%) 11.80 (—24%)

T., samples

sl 2 — MPC-ATC]|
TBOC
— MPC-FTIC
o0+ =2y 7 Reference
£
3 5 |
i
&%
g 0r -8 ]
& 5
5 i
0k ]
40 -30 -20 -10 0

Radial [m]

Fig. 9 Projection on the radial-tangential plane of the position trajec-
tories: MPC-ATC (blue), TBOC (green), and MPC-FTC (red). The
crosses indicate the final position of the servicer, and the circles
represent r(T,) for each law.

Table 2  Average, minimum, and maximum computational
times required by an iteration of Algorithm 1, for the horizon
search strategy described in Sec. IV.A and the
enumeration search method

Horizon search strategy Average Minimum Maximum
Adopted local search, s 0.17 0.11 0.37
Enumeration, s 0.47 0.30 0.74

simulations, the solutions of problem P, provided by the two
search methods turn out to be equal for all steps k, thus meaning
that the adopted local search strategy effectively finds the global
minima in the test scenario. Moreover, the adopted heuristic
reduces the average computational time of the control law by a
factor 2.8 with respect to the enumeration method, as reported in
Table 2.

Summarizing, the proposed approach appears to be the most
effective option to address the considered RVD problem, among
the compared methods. Specifically, the proposed MPC-ATC
scheme demonstrates significant improvements in the final distance
from the docking point. This is a critical factor in a number of
recently proposed missions involving RVD with noncooperative
objects, such as in-orbit servicing and space debris capture. Indeed,
the ability to closely approach a rotating target ultimately dictates
the suitability of a control policy for such type of missions.

B. Docking to EnviSat Platform

In recent years, extensive research has been dedicated to in-
orbit servicing missions focused on capturing and deorbiting the
ESA’s EnviSat platform (see, e.g., Ref. [41]). EnviSat’s opera-
tional life suddenly ended on 8 April 2012, following an unex-
pected loss of contact with the spacecraft. Subsequently, the
spacecraft lost its Earth-pointing attitude and began to rotate in
an uncontrolled way. In this case study, the proposed control
scheme is tested in an RVD scenario inspired by the capture of
the rotating object. The EnviSat platform lies on an almost
circular orbit whose orbital elements are specified in Table 3.

Table 3 EnviSat orbital parameters

Orbit parameter Value
Semi-major axis 7140 km
Eccentricity 0.0001212
Inclination 98.3320 deg
Right ascension of ascending node 92.0262 deg
Argument of perigee 90.6460 deg
Mean anomaly 28.2890 deg
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It is currently rotating around the spin axis @ = [-0.01, —0.88,
—0.47]" (corresponding to azimuth and elevation equal to
269.22 and —28.14 deg, respectively) with a period of 280 s, as
estimated in Ref. [42]. The following assumptions are made on
the RVD maneuver. The servicer is equipped with a propulsion
system capable of exerting a maximum acceleration of a,,, =
25 mm/s> and a camera with a (half-angle) field of view of
a = 25 deg, which dictates the docking cone amplitude. At the
beginning of the maneuver, the servicer center of mass is located
50 m away from the center of mass of EnviSat, along the docking cone
axis. Concerning the parameters of the control law, the sampling
interval is selected as 7, = 2z/1024 rad, which corresponds to
approximately 5 s. The parameter y, is set equal to 5, and the
matrix K is chosen as in the previous Monte Carlo study (result-
ing in 4 = 0.23). Moreover, it is assumed that the uncertainty
affecting the system is due to a constant misalignment 60 =
[60., 507, 80y]" of the applied thrust, where 60g, 607, and 50y
are radial, transverse, and tangential components of the misalign-
ment error. For small misalignment errors, this introduces an
additive disturbance compatible with the uncertain system
described in Eq. (1), with w(k) = BM(60)u(k), being

0 -0y 80r
S0y 0 —8bg
50, 80 O

M(50) =

In this setting, an appropriate choice of the disturbance set is
W = 260, BU, where 60, is the maximum misalignment error
magnitude.

To capture the complexity of this real-world mission scenario, in
this case study, RVD operations have been simulated using a non-
linear truth model, which accounts for the J2 perturbation and the
small eccentricity of the target orbit. The MPC-ATC scheme is still
designed using the linear time-invariant model (1-2), that is,
neglecting the eccentricity of the orbit. In this setting, the RVD
maneuver is simulated over 100 runs, in which each component of
the misalignment is randomly sampled from a uniform distribution
within the interval [0,y , Omax], With 6., = 1 deg. This value is
compatible with the thrust misalignment observed in modern satel-
lite missions [43]. To verify that the selected misalignment is
significant from a control viewpoint, a nonrobust VHMPC scheme,
based on a nominal version of problem (19) in which Z(k) = X (k)
and V(k) = U(k), has been tested on the considered scenario. The
results indicate that such an approach violates the state constraint (8),
on average, after only nine time steps, calling for an early abort of
the RVD maneuver. Conversely, the maneuver is always success-
fully terminated when using the proposed MPC-ATC scheme,
despite the discrepancy between the simulation model and that used
for the design of the control law.

The performance of MPC-ATC for RVD to EnviSat is reported
in Table 4, in terms of mean and standard deviation of the final
distance, maneuver fuel consumption, and completion time. These
results indicate that the proposed design allows reaching a final
displacement that is reasonable for practical RVD, considering the
size of EnviSat, while providing a suitable balance between the
time and fuel minimization objectives. Moreover, the standard
deviation observed for all the metrics is very small, showing that
the proposed design is able to effectively limit the sensitivity to the
misalignment disturbance. This is confirmed by Fig. 10, which

Table 4 Mean and standard deviation of the final distance,
maneuver completion time, and fuel consumption

Metric Average Standard deviation
Final distance, m 0.38 6.1-1073
Fuel consumption 25.26 0.16
Completion time 7., samples 29.29 0.66

- -
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o

60

20

Radial [m] 0 _2_4-6'8
Tangential [m]
Fig. 10 Radial, tangential, and normal components of the position

trajectory of the satellite. The reference trajectory is reported in dashed
black.

depicts the obtained RVD trajectories (the gray lines depict the
position of the servicer in the RTN frame for all runs), showing
that the trajectory profile remains nearly identical for different
misalignment values. To better illustrate the maneuver, Fig. 11
reports some snapshots that depict the SCM and docking point
positions as well as the docking cone region, at different time
steps, for a single simulation run. It is evident that the SCM
consistently stays within the docking cone, thereby robustly meet-
ing the state constraint (8). Similar behavior is observed in all the
other runs. Figure A1 shows maximum-norm profile of the control
input (i.e., |u(k)||) for all runs. It can be seen that the input
constraint (9) is always satisfied. Hence, the commanded thrust
consistently remains within the propulsion limits. The average
time for the computation of the MPC-ATC control law is 0.11 s,
with the maximum time being 0.37 s. Such values are much
smaller than the adopted sampling time. For the sake of compari-
son, the TBOC and MPC-FTC schemes have also been tested,
resulting in a final distance is equal to 0.76 m for the former and
0.87 m for the latter. These results are in line with those obtained
in Sec. V.A.

To quantify the impact of the tuning parameter y, on control
performance, the MPC-ATC law has been tested with values of
7, €1{0,0.1,0.2,...,y7}, where y* = 6.4 represents the largest
value for which condition (23) is satisfied. The resulting fuel con-
sumption and maneuver completion time averaged over 100 runs are
shown in Fig. 12 for each value of y,. As expected, smaller values of
7, promote faster maneuvers, while larger values reduce the fuel
expenditure. This analysis demonstrates that the proposed control
scheme enables performance tuning according to the priorities of the
mission.

More details on a single simulation run are given next, in order
to further clarify the main ideas underpinning Algorithm 1 and to
support the discussion on its properties made in Sec. III. In this
simulation, the misalignment vector is set as 6 = [1, —1,1]7 deg.
The evolution of the optimal cost J; and of the optimal horizon
Ny, resulting from the application of Algorithm 1, are shown in
Fig. A2. It can be seen that, in agreement with Proposition 1, the
cost is strictly decreasing [see Eq. (A7)]. Moreover, N} displays a
decreasing trend, starting from the initial value Nj = 26. Algo-
rithm 1 returns gy = 26 and N7 = 3. This implies that the final
set {z54(3)} ® S(3) reached by the MPC-ATC (see statement 3 of
Proposition 1), is much smaller than 7 (26) = {z"(26)} & S(26),
achieved by the TBOC method [see Eq. (17)]. Moreover, one has
1z56(3) = r(29) ||, = 1.25 - 1075, which is smaller than ||z"(26) —
r(26)||, = 3.5-107° (in adimensional units). It is again con-
firmed that MPC-ATC favors a closer approach to the reference
trajectory.
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Fig. 11 Illustration of the RVD maneuver at some time steps. The blue and black dots report the current positions of the SCM and the docking point,

respectively, while the docking cone X' (k) is highlighted in green.
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Fig. 12 Fuel consumption (top) and completion time (bottom) for
different values of y, in the cost function J;.

VI. Conclusions

A novel robust MPC strategy has been presented for space
missions involving rendezvous and docking between a controlled
servicer and a rotating noncooperative target. The proposed MPC-
ATC scheme, by including the prediction horizon among the vari-
ables of the MPC optimization problem, increases the flexibility of
the control law and promotes the identification of favorable docking
opportunities. The simulation results demonstrate that the adapta-
tion of the terminal constraint is a key factor to achieve a close

proximity approach to the docking point, in the presence of persist-
ing process disturbances. The computational burden of mixed-
integer optimization and set operations involved in tube-based
variable horizon MPC is significantly limited by adopting solutions
tailored to the cost function and constraints which characterize the
considered mission setting. This makes the control law amenable for
online implementation onboard a spacecraft. Furthermore, the pro-
posed approach appears to be promising even for other application
domains, in which the objective is to intercept a given trajectory
with high accuracy, despite the presence of disturbances, limited
control authority and state constraints.

Appendix A: Proof of Proposition 1

The following is the proof of Proposition 1:

1) During the execution of Algorithm 1, problem Py (F, N}) is
solved only at time steps in which k > ¢ (in fact, when the condition
in line 11 does not hold, P (F. N;) is not solved, and g is set equal

0.8 b

(k)0

021 b

or ‘ ‘ , . . ]

0 5 10 15 20 25
k

Fig. A1 co-norm of the control input u(k) returned by Algorithm 1.
The control bound is depicted in dashed red.
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Fig. A2 Evolution of the optimal cost J; and optimal horizon length
N;. The red markers correspond to the solutions of problem

Py (FisNo)-

to k in line 19). Therefore, it is sufficient to show that, no matter how
the control action has been selected at time k = g + i, with i > 0,
problem Py (Fip1, Ni — 1) is feasible. At step k = g +i,i >0,
the control action has been selected from the solution of either
problem P, (if k = q) or Py(F, Ny) (if k > g). This implies that

2;() € Z¢()) = X(k+ j) ©8()).j = 0,.... N} (A1)
v;(j) € Vi(j) =UBSKS(j).j=0,....N; — 1 (A2)

2i(G+1) = Azi(j) + Bv(j).j=0,...,N; -1 (A3)

(2} if k=g
(N} € o . (A4)
]:k={zq(Nq)}€BZf_k lfk>q

Now, for step k+ 1, consider the candidate state and control
sequences of length N} — 1,

LD =G+ 1)+ Akwk), j=0,...,Ni—1
b1 () = 01+ 1) + KAjw(k),  j=0,....Ni =2 (A5)

with associated cost

Ni-2

Jewt = Ni =147, 2 10Oy (A6)
Jj=0

By adopting the same reasoning as in Ref. [14] (Proposition 1)
through Ref. [44] (Theorem 1), it can be shown that the sequences
Zry1 and Uy satisfy dynamics, state, and input constraints of
problem Py, (Fyy1, Nj —1). Concerning the terminal constraint,
by exploiting Egs. (AS) and (A4), one has that

N . Ni-1

i (Np = 1) = 2 (NY) + A" w(k)
E{Z NI @2, @ Ay W
={z,(N)} ® Zf i1 = Frna

where the last equality stems from lines 12—13 in Algorithm | and
Zs4 = {0}, according to lines 18-19. Hence, problem P (Frprs
N} — 1) admits a feasible solution.

2) This statement follows from the fact that in both P, and
P.(F.N,) the nominal states and inputs are constrained to the
tightened sets Z(j), Vi (j) in Eq. (20), by using standard arguments
from tube-based MPC.

3) It is easy to show that the cost (A6) associated to the candidate
feasible solution (AYS) satisfies J;,; < Ji — A. This implies that the
optimal solution satisfies the cost decrease condition

T ST ST =2 Yk (A7)

This results in a completion time of the maneuver being
T, < |J§ /4], with J the initial optimal cost. Concerning the
terminal set ensured by the MPC-ATC law, if g, =T. -1 [ie,
problem (22) is never executed], at the last step k = T, — 1, one gets
N} = 1, and the last optimal state returned by P, is z;(1) = z}(1).
Hence, by applying u(k) = v;(0), the final true state is
x(To) = zz(D) +w(T. - 1) € {z;(D)} @ W = {z;(1)} & 5(1).
Otherwise, if gy < T, — 1, the problem solved at k =T, —1 is
FBu(Fy 1), in which z;(1) € Fy = {2, (N;)} @ X0y AjW.
Therefore, the final true state is

N -t
x(T)=zi()+wT. -1 e{z, (N;)} & Y ANVOW
=1
= 125, (NG,)} ® S(VG))
This concludes the proof. O

Appendix B: Proof of Proposition 2

First, considering Ny, , = Nj —1, observe that r(k+ 1+
Niy) =rk+ 1+ Ni—1) =r(k+ Ni). Then, from the first
equation in Eq. (20), one gets

Zi(N}) = X(k+ Nj)e S(Ny),
Zrii (N ) = Zip i (N = 1) = X(k+ Nf) © S(N; — 1) 2 Z,(N)

where the last inclusion comes from the fact that S(N; — 1) C
S(N§), according to Eq. (15). Hence, Eq. (24) results directly
from the definition of zj(Ny) in Eq. (21). This concludes the
proof. O
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