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This paper presents a new robust model predictive control (MPC) scheme for rendezvous and docking of a

servicer spacecraft with a rotating noncooperative target. The main feature of the proposed solution is that the

prediction horizon is included among the optimization variables. Robustness against model uncertainty is achieved

by applying a tube-based control approach. Finite completion time of the variable horizon tube MPC algorithm

is guaranteed, thanks to a suitable adaptive choice of the terminal constraint. The latter is also instrumental

to promote a close proximity approach to the docking point. Efficient solutions are presented to limit the

computational burden of the variable horizon optimization problem and of the set computations required by

tube MPC. The approach is validated on two simulation benchmarks: a Monte Carlo study of a rendezvous with a

rotating object in low-Earth orbit and a mission setting involving the capture of the nonoperational EnviSat

spacecraft. The results demonstrate the advantages of the proposed technique with respect to both a tube-based

optimal control law and a variable horizon MPC law without adaptation of the terminal constraint.

I. Introduction

S PACECRAFT rendezvous and docking (RVD) has been a

cornerstone of space exploration since the early days of human

spaceflight. Successful RVD missions include the Apollo lunar land-

ings and the assembly of the International Space Station, as well as

various technology demonstrations [1–3]. The increasing complexity

of modern space missions, coupled with the need for autonomous

operations, has driven the development of more sophisticated RVD

techniques. In particular, the level of performance required for

autonomous in-orbit assembly, satellite servicing, and space debris

removal calls for advanced control strategies capable of handling

complex dynamics and stringent design specifications [4–10]. One

such strategy is model predictive control (MPC), which has gained

significant attention due to its ability to handle multivariable control

problems with constraints, while optimizing suitable performance

indexes [11]. Despite its advantages, traditional MPC can be sensitive

to model uncertainty, which is prevalent in space applications due to,

for example, thrust inaccuracies and environmental perturbations.

To overcome this drawback, robust MPC has been proposed.

Robust MPC enhances the standard MPC framework by incorpo-

rating robustness against model uncertainty and process disturb-

ances. This can be achieved by considering worst-case scenarios in

the optimization process, ensuring that the control actions remain

effective and constraints are satisfied even in the presence of the

uncertainty. In particular, tube MPC (TMPC) [12,13] turned out to

be a viable technique in several studies, highlighting the potential of

this approach for enhancing the reliability of RVD operations.

However, most of the existing TMPC designs focus on RVD to a

nonrotating target, which prevents their application to noncoopera-
tive objects (e.g., removal of a tumbling piece of space debris).
RVD with a rotating target poses additional challenges in MPC

design, because both the docking point position and the mission
constraints become time varying. To address this challenge, the use
of a variable optimization horizon may be a promising approach, as
it allows for the identification of favorable docking opportunities
and for a finite maneuver completion time. However, variable
horizon MPC (VHMPC) entails theoretical difficulties and compu-
tational issues that must be carefully addressed [14]. Concerning
robustness aspects of the VHMPC formulation, it is important to
notice that, due to the presence of uncertainty, the docking configu-
ration cannot be reached exactly in finite time. Hence, the objective
becomes to reduce as much as possible the final deviation from the
docking point, an aspect that has received little attention so far and
deserves further investigation.
In this paper, we propose a novel robust technique for spacecraft

RVD by developing a tube-based VHMPC strategy capable of
closely approaching the docking point of a rotating target. The
paper contribution is detailed in Sec. I.B.

A. Related Work

The use of MPC techniques for tackling RVD problems is an
active field of research. A linear MPC strategy for planar RVD is
presented in Ref. [15]. Solutions in a three-dimensional setting are
devised in Refs. [16,17]. A nonlinear MPC approach is adopted in
Ref. [18]. Suitable convex formulations of the optimization problem
involved in the MPC scheme have been proposed (see, e.g.,
Refs. [19–21]), in order to improve accuracy and efficiency, which
are fundamental requisites for online implementation.
Within this research line, a major challenge is how to deal with

model uncertainty. Indeed, unmodeled dynamics, process disturb-
ances, and linearization errors can severely affect the performance
of the MPC controller. To this aim, several solutions based on TMPC
[12,13] have been proposed to ensure robustness with respect to
various uncertainty sources. One of the first works showing that
TMPC can be effectively employed for real-time RVD operations is
Ref. [22]. In Refs. [23,24] robust output feedback control laws for
RVD are designed, by coupling TMPC either with a Luenberger
observer or with an extended Kalman filter. A similar problem is
addressed in Ref. [25], in which the proposed control law is validated
on an experimental test bed with realistic modeling and navigation
uncertainties. The adaptive control scheme presented in Ref. [26]
enhances the performance of TMPC by employing an online identi-
fication procedure, progressively reducing the uncertainty associated
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to the unknown process disturbance. A complete pipeline for autono-
mous RVD with a tumbling target is presented in Ref. [27], in which
TMPC is used to track a reference rendezvous trajectory, while taking
into account uncertainties arising from imperfect knowledge of the
inertia and angular velocity of the target.
In recent years, researchers have considered the possibility of

including the MPC horizon length among the variables of the opti-
mization problem, in order to increase the flexibility of the resulting
control law. This provides a valuable additional degree of freedom,
especially in those applications in which the time required to complete
the control task is a key factor. VHMPC has been introduced in
Ref. [14], for linear discrete-time systems. A tube-based approach is
adopted to achieve robustness with respect to bounded process dis-
turbances. Several variants of this technique have been proposed in a
wide range of control applications, such as point-to-point motion
control [28,29], helicopter landing [30,31], train operations [32], path
tracking [33], and RVD between a drone and a moving platform [34].
In Ref. [35], a variable horizon approach has been adopted for the
guidance of a spacecraft toward a tumbling target. However, to the best
of the authors’ knowledge, a variable horizon MPC control law for
RVD with a noncooperative target has not been studied so far.

B. Contribution

This paper proposes a new robust MPC scheme for an RVD
mission involving a servicer spacecraft and a rotating target. The
main contributions of this work can be summarized as follows. A
tube-based VHMPC algorithm with adaptive terminal constraint is
presented, whose principal features are as follows:
1) The adaptation of the terminal constraint guarantees that the

algorithm provides a feasible control input at every time step.
2) The controlled servicer trajectory satisfies the mission con-

straints and reaches a suitable final set in finite time.
The choice of the terminal constraint is instrumental to provide

final sets which are smaller and closer to the docking point, com-
pared to those achieved by existing variable horizon robust control
techniques. To make the approach feasible for online implementa-
tion, efficient computational solutions are outlined for the variable
horizon search strategy and for the operations between sets involved
in the tube-based formulation. The control scheme is validated on
two simulation benchmarks. The first one consists of a Monte Carlo
study on an RVDmaneuver with a rotating object in low-Earth orbit.
In this scenario, the performance of the proposed technique is
compared to those of two baseline solutions, for a wide range of
values of mission parameters. The second test bed involves a more
realistic scenario in which the objective is the capture of the EnviSat
platform. Both case studies showcase the advantages of the new
VHMPC scheme, in terms of final distance of the servicer from the
docking point, and demonstrate its computational feasibility.
The rest of the paper is organized as follows. Section II contains

the formulation of the rendezvous robust control problem and a
review of a classical solution via tube-based optimal control over a
finite horizon. The VHMPC scheme proposed in this work is
introduced and discussed in Sec. III. Several implementation aspects
aimed at limiting the computational burden are outlined in Sec. IV.
Section V presents the two simulation benchmarks which demon-
strate the advantages of the proposed approach with respect to two
baseline solutions, and Sec. VI provides some concluding remarks.

C. Notation

The sets of real, nonnegative integer, and positive integer num-
bers are denoted by R, N, and N�, respectively. The time derivative
of a vector x is denoted by _x. The p-norm of x and the direction of x
are indicated by kxkp and x � x∕kxk2, respectively. The matrix

describing a rotation about the axis a ∈ R3 by an angle θ ∈ R is
denoted byR�a; θ�. The symbols� and⊖ represent the Minkowski
sum and Pontryagin set difference, respectively. Specifically, given
two sets A, B, A� B � fa� b∶a ∈ A; b ∈ Bg, and A⊖B � fa∶
fag � B ⊆ Ag, with fag indicating the singleton set. The value of a
decision variable x obtained from the solution of an optimization
problem is denoted by x�.

II. Rendezvous Robust Control Problem

The considered task is RVD between an actively controlled
servicer spacecraft and an uncontrolled target that is rotating freely.
The focus is on ensuring robust trajectories toward the target, while

satisfying the typical RVD constraints and achieving robustness
against additive process disturbance. In the following, the RVD
dynamic model and the control problem are formalized. Moreover,
a standard tube-based solution to the control problem is discussed as
a preliminary step for the proposed design.

A. RVD Model

To describe the RVD maneuver, we consider the motion of the
center of mass of the servicer (SCM) relative to a time-varying
docking point modeling the rotational motion of the target. Both the
SCM and the docking point are expressed in the radial–tangential–
normal (RTN) coordinate frame centered at the target center of mass
(TCM). To simplify the control design procedure, while accounting
for maneuver uncertainty, we find it convenient to model the relative

motion between the SCM and the the TCM using the normalized
discrete-time Hill–Clohessy–Wiltshire equations [36], corrupted by
an additive process disturbance signal. The resulting dynamics are
given by

x�k� 1� � Ax�k� � Bu�k� �w�k�

� eAcτs x�k� �
τs

τ�0

eAcτ dτ Bc u�k� �w�k� (1)

where k ∈ N is the discrete time index, x�k� ∈ R6 is the system state,

u�k� ∈ R3 is the control input, w�k� ∈ R6 is the process disturbance,
τs is the sampling interval, and

Ac �

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3 0 0 0 2 0

0 0 0 −2 0 0

0 0 −1 0 0 0

; Bc �

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

(2)

The control input in Eq. (1) is defined as u�k� � a�k�∕amax, with

a�k� ∈ R3 being the actual acceleration, expressed in RTN coordi-

nates, and amax the maximum acceleration deliverable by the servicer
along each axis of the RTN frame (amax is assumed constant). Notice
that, in this setting, ku�k�k∞ ≤ 1. The state vector is defined as

x�k� � �xTp�k�; xTv �k�	T , where xp�k� ∈ R3 describes the RTN com-

ponents of the position vector of the servicer multiplied by η2∕amax,

and xv�k� ∈ R3 describes the RTN components of its velocity vector
multiplied by η∕amax, being η the target mean motion. Moreover, a
scaled time variable τ � ηt is employed, where t is the actual time.
Then, t � kτs∕η at the sampling instants. The choice of the linear
time-invariant model (1–2) is appropriate for circular orbits.
The RVD specifications are modeled by defining a docking axis

which is rigidly attached to the target and specifying a suitable
docking point along this axis. The docking point describes the
desired position of the SCM upon docking. Taking into account
the target rotational motion, it follows that the position of the
docking point evolves on a sphere of constant radius. The position

pd ∈ R3 of the docking point relative to the TCM satisfies the
continuous-time differential equation

_pd�t� � ω�t� × pd�t� (3)

where all vectors are expressed in the RTN frame and ω�t� ∈ R3 is
the instantaneous angular velocity of the target body frame relative
to the RTN frame. The dynamics of Eq. (3) are used to generate the
reference trajectory, which is sampled and normalized to match the

discrete-time framework of the control design. In particular, by
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evaluating pd�t� and the corresponding velocity vd�t� � _pd�t� at

each time step k, corresponding to the actual time instant kτs∕η, and
applying the same normalization used to define the state vector x�k�,
we construct the reference state trajectory r�k� ∈ R6 as follows:

r�k� � rp�k�
rv�k�

�

η2

amax

pd kτs
η

η

amax

vd
kτs
η

(4)

The state constraints for the maneuver are defined so as to

guarantee that the servicer remains inside a docking cone, which

is representative of visibility and collision avoidance requirements.

In particular, let us consider the time-varying set

C�k� �
ξp

ξv
∈ R6∶kξp − �ξTprp�k�	rp�k�k2

≤ tan�α��ξp − rp�k�	Trp�k� (5)

The set (5) represents a cone stemming from the docking point

position rp�k�, with axis aligned to rp�k� and half-angle specified

by the parameter α. Then, the visibility condition can be cast as

x�k� ∈ C�k�, which defines a convex quadratic constraint. Because

for computational reasons it is usually better to deal with linear

constraints, a polyhedral constraint set X�k� is employed as an

alternative to Eq. (5). In particular, we define

X�k� �
ξp

ξv
∈ R6∶ T�k� ξp − �ξTprp�k�	rp�k�

∞

≤
tan�α�

2
p �ξp − rp�k�	Trp�k� (6)

where

T�k� � R rp�k� × �1 0 0	T; arccos��1 0 0	rp�k�� (7)

The set (6) and (7) represents a time-varying polyhedron defined by

four hyperplanes. As shown in Ref. [35], X�k� ⊂ C�k�. Hence, the
linear constraint set

x�k� ∈ X�k� (8)

implies the visibility condition x�k� ∈ C�k�. Notice that the require-
ment of avoiding collisions with the target is guaranteed by the

satisfaction of constraint (8) because X�k� is entirely outside the

region occupied by the target. Moreover, according to the discussion

following Eq. (2), the control input u�k� is subject to the constraint

u�k� ∈ U � fu ∈ R3∶kuk∞ ≤ 1g (9)

The geometry of the RVD maneuver is illustrated in Fig. 1.
In this work, it is assumed that the process disturbance w�k�

belongs to a bounded set W that is a convex polytope. In general,

the uncertainty w�k� can arise from various factors, such as an

imperfect thrusting, limited knowledge of the target inertia and

inaccuracies in its angular velocity (see, e.g., Ref. [27]).
The RVD control problem is stated as follows.
Problem 1: Find a control law ensuring that the state x�k� of

system (1) is driven in finite time toward the reference trajectory

r�k�, satisfying the state and input constraints (8) and (9) for any

realization of w�k� ∈ W, while optimizing a tradeoff between

maneuver completion time and fuel consumption.

A classical way to tackle Problem 1 is a tube-based approach
relying on the solution of a robust optimal control problem over a
finite horizon. This is recalled in Sec. II.B. Then, in Sec. III, a novel
variable horizon MPC strategy is proposed with the aim of reducing
as much as possible the final deviation of the servicer trajectory

from the reference.

B. Tube-Based Optimal Control

Classical tube-based optimal control (TBOC) can be applied to
solve Problem 1. In this approach, a disturbance-free nominal

system, corresponding to Eq. (1) with w�k� � 0, is defined as
follows:

z�k� 1� � Az�k� � Bv�k� (10)

The key idea of TBOC is to confine the trajectories of the uncertain
system (1) in a bounded neighborhood of the trajectory of the
nominal system (10), which is called a tube (see Ref. [13],
Sec. III.E). To do this, the feedback-plus-feedforward control law

is introduced for system (1),

u�k� � v�k� � K�x�k� − z�k�� (11)

where the matrixK is chosen in such a way thatAK � �A� BK� is
Schur. This way, the dynamics of the error e�k� � x�k� − z�k� are
given by

e�k� 1� � AKe�k� �w�k� (12)

which ensures that the error remains bounded within a tube as long
as w�k� is bounded. In particular, to realize the TBOC strategy, we
consider the optimization problem

min
N;fv�k�gN−1

k�0
;fz�k�gN

k�0

J � N � γv

N−1

k�0

kv�k�k1

s:t: z�0� � x�0�
z�k� 1� � Az�k� � Bv�k�
z�k� ∈ Z�k�; k � 0; : : : ; N

v�k� ∈ V�k�; k � 0; : : : ; N − 1

z�N� � zr�N�
N ∈ ℕ� (13)

where N is the horizon length, γv ≥ 0 is a scalar weighting param-
eter, zr�N� is the terminal state, and Z�k�, V�k� are tightened
constraint sets (defined hereafter). The cost function in Eq. (13)

accounts for the performance specification of Problem 1. In par-
ticular, N is proportional to the maneuver completion time, and the

Fig. 1 Illustration of RVD geometry: RTN frame (red), angular veloc-
ity ω�t� (purple), position trajectory pd�t� of the docking point (dashed
black), and constraint set X�k� (green).
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term N−1
k�0 kv�k�k1 represents the fuel consumption (see, e.g.,

Ref. [37]), which is weighted by the tunable parameter γv. The

decision variables in problem (13) are the horizon length N and the

nominal input and state sequences fv�k�gN−1
k�0 and fz�k�gNk�0, respec-

tively. Such sequences are constrained to lie in the tightened sets

Z�k� � X�k�⊖S�k�
V�k� � U⊖KS�k� (14)

where

S�k� �
f0g; if k � 0

k−1
i�0 A

i
KW if k ≥ 1

(15)

The TBOC control law is defined by using the optimal solution of

problem (13) in Eq. (10), that is,

u�k� � v��k� � K�x�k� − z��k�� (16)

where v� and z� denote the solution of Eq. (13).
The following well-known properties pertain to the TBOC con-

trol law (16). The trajectories of the closed loop system (1), (13–16)

are guaranteed to satisfy the constraints (8) and (9) for any possible

realization of the disturbance w�k� ∈ W, in the discrete-time inter-

val k ∈ �0; N�	 (see, e.g., Ref. [13], Sec. III.V). In particular, the

solution of problem (13) is such that the optimal value N� is finite

(whenever the problem is feasible), which results in a finite maneu-

ver completion time. Moreover, by construction, it holds that

x�N�� ∈ T �N��, where

T �N�� � fzr�N��g � S�N�� (17)

that is, T �N�� is the set in which the trajectories of the closed-loop

system (1), (13–16) are guaranteed to terminate. Also, by construc-

tion, one has that T �N�� ⊆ X�N��.
In view of solving Problem 1, the natural choice for the terminal

state in Eq. (13) would be zr�N� � r�N�. However, this cannot be
enforced because in general r�N� does not lie in the tightened set

Z�N�. To reduce as much as possible the deviation from the

reference, in this work zr�N� in Eq. (13) is chosen as the point in

Z�N� that is closest to r�N�, that is,

zr�N� � arg min
z∈Z�N�

kz − r�N�k2 (18)

With Z�N� being a convex polytope, the point zr�N� in Eq. (18) is

unique and can be computed by solving a quadratic program. An

illustration of the TBOC strategy is shown in Fig. 2.

It is worth remarking that the TBOC approach solves the opti-
mization problem (13) only once at the initial step k � 0. As a
result, the control strategy (16) can be conservative. In particular, if
the maneuver final set T �N�� is large, the final configuration x�N��
of the servicer can be significantly far from r�N��. A less
conservative solution is proposed in the next section, by leveraging
VHMPC.

III. Robust Variable Horizon MPC Design

In this section, a robust VHMPC scheme that solves Problem 1
using online optimization is presented. As a first design step, we
consider the online version of the optimization problem (13) (here-
after denoted by Pk). This is defined as

ℙk∶ min
Nk;fvk�j�gNk−1

j�0
;fzk�j�gNk

j�0

Jk � Nk � γv

Nk−1

j�0

kvk�j�k1

s:t: zk�0� � x�k�
zk�j� 1� � Azk�j� � Bvk�j�
zk�j� ∈ Zk�j�; j � 0; : : : ; Nk

vk�j� ∈ Vk�j�; j � 0; : : : ; Nk − 1

zk�Nk� � zrk�Nk�
Nk ∈ ℕ� (19)

where the subscript k is employed to highlight that the correspond-
ing quantities are evaluated at step k. In Eq. (19), the tightened
constraints are defined by suitably adapting (14) as

Zk�j� � X�k� j�⊖S�j�;
Vk�j� � U⊖KS�j� (20)

and, consistently with Eq. (18), the terminal state is specified as

zrk�Nk� � arg min
z∈Zk�Nk�

kz − r�k� Nk�k2 (21)

It is worth stressing that now Nk is the length of the control horizon
starting at the current step k. Under the usual receding horizon
paradigm, one can obtain a feedback control law for system (1)
by solving Eq. (19) at each time k and applying u�k� � v�k �0�.
However, due to the presence of process disturbances and of the
time-varying terminal equality constraint zk�Nk� � zrk�Nk�, such an
approach does not guarantee that, given a feasible P0, feasibility of
Pk is retained for subsequent values of k, along the closed-loop
system trajectories.
To address this issue, we propose selecting the control action by

exploiting both Pk and a modified version of this problem denoted

by Pk�F k; Nk�, according to a suitable selection strategy described

later on. Problem Pk�F k; Nk� is defined as follows:

ℙk�F k;Nk�∶ min
fvk�j�gNk−1

j�0
;fzk�j�gNk

j�0

Jk � Nk � γv

Nk−1

j�0

kvk�j�k1

s:t: zk�0� � x�k�
zk�j� 1� � Azk�j� �Bvk�j�
zk�j� ∈ Zk�j�; j� 0; : : : ; Nk

vk�j� ∈ Vk�j�; j� 0; : : : ;Nk − 1

zk�Nk� ∈ F k (22)

The main difference between Pk in Eq. (19) and Pk�F k; Nk� in
Eq. (22) is that the former is a variable horizon optimization
problem, while the latter is a fixed-horizon optimization problem
parameterized by F k and Nk. Indeed, Nk in Eq. (22) is not a

Fig. 2 Illustration of TBOC: reference trajectory r�k� (dashed black),

sets X�k� (green) and Z�k� (blue), optimal nominal state trajectory
z��k� (blue) terminating in zr�N��, and state trajectory x�k� (red)
terminating in T �N�� (purple).
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decision variable. Furthermore, it should be noticed that the terminal

constraint in Eq. (22) involves the set F k rather than the endpoint

zrk�Nk� in Eq. (19). The choice of the parameters Nk and F k of

problem Pk�F k; Nk�, as well as the logic for computing the control

action on the basis of the solution of problems Pk and Pk�F k; Nk�,
are detailed in Algorithm 1, hereafter referred to as variable horizon

MPC with adaptive terminal constraint (ATC).

The mechanism underlying Algorithm 1 is to keep solving the

variable horizon problem Pk at each step k, as long as it is

feasible and its optimal cost decreases at least by a suitable

positive quantity λ with respect to the solution at the previous

time step. When these conditions are not met, the control action

is obtained by solving problem Pk�F k; Nk�, with suitable choices

of F k and Nk. The rationale behind this approach is that, on the

one hand, the use of a terminal equality constraint in Pk favors a

close proximity approach to the docking point. On the other

hand, the choice of the parameters F k; Nk made in Algorithm 1

is instrumental to guarantee feasibility of problem (22) and

finite-time completion of the overall rendezvous maneuver. The

next result formalizes the key properties of the proposed MPC-

ATC scheme.
Proposition 1: Let problem P0 be feasible. Then, the following

properties hold for system (1) under the MPC-ATC control law in

Algorithm 1:
1) At each time step k, problem Pk�F k; Nk� in line 14 is feasible.
2) The closed-loop system trajectories satisfy the constraints

(8) and (9), for all k and any w�k� ∈ W.
3) By selecting γv such that

�λ ≜ 1 − γv sup
w∈W

∞

j�0

kKAj
Kwk1 > 0 (23)

and setting λ � �λ in Algorithm 1, the state trajectories x�k� of the
closed-loop system converge to the final set fzrqf �N�

qf �g � S�N�
qf �

in a finite number of time steps Tc � qf � N�
qf ≤ bJ�0∕�λc,

with qf being as returned in line 24 and J�0 the optimal cost of

problem P0.
Proof: See Appendix A.
It is worth remarking that feasibility of problem P0 is a standard

assumption in the MPC literature. However, note that within the
variable horizon framework this assumption is quite mild, as it only
requires that there exists a value of the horizon length for which
problem (19) admits a feasible solution. In contrast, in conventional
fixed-horizon MPC schemes, feasibility of the initial optimization
problem is required for a given prediction horizon, making this
assumption much more stringent.
Statement 1 in Proposition 1 ensures that if the initial problem P0

is feasible then Algorithm 1 yields a well-defined value of the
control input u�k� at each subsequent step. This is due to the choice
of the parameters F k and Nk. Specifically, the terminal set for

problem Pk�F k; Nk� is chosen as F k � fzrq�N�
q�g � Zf;k. Notice

that, when problem Pk�F k; Nk� is solved for consecutive time steps,
the point zrq�N�

q� is kept fixed, while the set F k progressively grows

according to lines 12–13 of Algorithm 1. Moreover, while solving

problem Pk�F k; Nk�, the horizon parameter Nk is set equal to
N�

k−1 − 1; that is, it is forced to decrease by one unit at each step

(line 14 of Algorithm 1). A qualitative illustration is reported in
Fig. 3, in which problem Pq is solved at step q, while problems

Pq�1�F q�1; Nq�1�, Pq�2�F q�2; Nq�2� are solved at the two sub-

sequent steps.
Statements 2 and 3 in Proposition 1 ensure that all possible

trajectories x�k� comply with the state constraint (8) and converge
in finite time to the set fzrqf �N�

qf �g � S�N�
qf �. It is worth stressing

that whenever N�
qf < N� this final set is smaller than T �N�� in

Eq. (17), which is the set of possible final states achievable by the
control law (13–16). A further advantage of the proposed design
stems from the way the terminal state zrk�Nk� is chosen in Eq. (21).

As long as the control action u�k� results from the solution of
problem Pk and the corresponding optimal horizon length N�

k

decreases, the terminal state zrk�Nk� gets closer to the reference

trajectory. This is formalized by the following result.
Proposition 2:Assume that at two consecutive time instants k and

k� 1 the solutions of problems Pk and Pk�1 are such that
N�

k�1 � N�
k − 1. Then,

kzrk�1�N�
k�1�− r�k�1�N�

k�1�k≤ kzrk�N�
k �− r�k�N�

k �k (24)

Fig. 3 Choice of F k for problem Pk�F k;Nk�: terminal sets F q�1,

F q�2 (orange), optimal nominal state sequences (dashed blue),

actual closed-loop trajectory (red), set X�q�N�
q� (largest light

green cone), and darker sets are its tightened versions according
to Eq. (20).

Algorithm 1: VHMPC with Adaptive Terminal Constraint

1: Input x�0�, λ
2: Solve P0, and get �J�0 ; N�

0 ; v
�
0 ; z

�
0�.

3: Zf;0 ← f0g
4: q ← 0

5: u�0� ← v�0�0�
6: x�1� ← Ax�0� �Bu�0� �w�0�
7: k ← 0

8: while N�
k > 1, do

9: k ← k� 1

10: Solve Pk, and get � ~J�k ; ~N�
k ; ~v

�
k ; ~z

�
k �.

11: if ~J�k > J�k−1 − λ, then

12: Zf;k ← Zf;k−1 �A
N�

k−1−1
K W

13: F k ← fzrq�N�
q�g � Zf;k

14: Solve Pk�F k; N
�
k−1 − 1�, and get �J�k ; v�k ; z�k �.

15: N�
k ← N�

k−1 − 1

16: else
17: �J�k ; N�

k ; v
�
k ; z

�
k � ← � ~J�k ; ~N�

k ; ~v
�
k ; ~z

�
k �

18: Zf;k ← f0g
19: q ← k

20: end if
21: u�k� ← v�k �0�
22: x�k� 1� ← Ax�k� �Bu�k� �w�k�
23: end while
24: return qf ← q
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Proof: See Appendix B.
From Proposition 2, it follows that the smaller N�

qf , the closer the
terminal configuration zrqf �N�

qf � gets to the reference trajectory

r�qf � N�
qf �, thus promoting a more accurate approach to the

docking point than TBOC. An illustration of this behavior is shown
in Fig. 4. In the case studies reported in Sec. V, N�

qf actually turns

out to be much smaller than N�, thus significantly reducing the
distance of the final state to the reference trajectory with respect to
the solution of the TBOC problem (13).

IV. Computational Strategies

The proposed control law involves operations that are in general
computationally intensive. In particular, Algorithm 1 requires the
solution of mixed integer optimization problems, with the horizon
Nk being an integer decision variable in problem Pk. Moreover,
Minkowski sums and Pontryagin differences among sets are known
to be computationally demanding. Hereafter, some strategies are
proposed to mitigate the computational burden.

A. Horizon Search Strategy

As previously mentioned, in this work, the 1-norm is employed to
weigh the fuel consumption. This choice promotes control sparsity,
see, for example, Ref. [37], while enabling problem (19) to be
solved either as a mixed-integer linear program (MILP) or as a
sequence of linear program (LP) with fixed prediction horizon.
Although MILPs are generally less complex than other integer
programming problems, their solution still entails a significant
computational burden, which may hinder the implementation of
Algorithm 1 onboard a spacecraft. Another approach to achieve a
global minimum is by enumeration, where problem Pk is solved for
fixed Nk � 1; : : : ; Nmax, being Nmax an upper bound on the
expected maneuver duration. This method can also be computation-
ally intensive, although there are solutions that leverage the problem
structure to mitigate this issue (see, e.g., Refs. [34,35]).
In this work, the search over the prediction horizon Nk is effi-

ciently handled by solving a finite number of linear programs. This
is done by adopting the heuristic procedure proposed in Ref. [35],
Algorithm 1, here slightly modified to cope with the MPC approach
adopted in this work. More specifically, the employed heuristic
algorithm consists of two steps: starting from a suitable initial guess
of the prediction horizon length, one searches for the feasible
solution closest to this initial guess; a local search is then performed
around this solution until the optimal cost no longer decreases. This
procedure is guaranteed to provide a local minimum that is marked

as the solution of problem Pk. Clearly, the obtained solution
depends on the initial guess of the horizon length. In this work,
the initial guess for problem P0 is chosen in the same way as in
Ref. [35], Algorithm 1. For subsequent steps k > 0, the initial guess
for the horizon length is selected as the optimal horizon length
found at the previous time step decreased by 1, that is, N�

k−1 − 1,
which is known to be feasible by construction. This choice further
speeds up the search process. It is worth remarking that, although
the described heuristic does not guarantee to find the global mini-
mum of problem (19), the properties of Algorithm 1 stated in
Proposition 1, and in particular finite-time convergence of the over-
all rendezvous maneuver, are still ensured.

B. Set Operations

The set operations involved in the proposed control scheme may
be computationally challenging. In particular, the sets S�k� and the
tightened constraints in Eq. (14) require, respectively, to compute

multiple Minkowski sums and Pontryagin differences in R6.
Although solvers are available to perform the required set operations
(such as the MPT3 MATLAB® Toolbox [38]), these operations
typically become computationally intractable even for moderate
set dimensions. To address this issue, the disturbance set W, and
consequently the sets S�k�, are represented using zonotopes [39].
This representation relies on the fairly general assumption that the
set W is a zonotope. A zonotope P ⊂ Rn is defined as P � fxjx �
cP �GPβ; kβk∞ ≤ 1g, where cP ∈ Rn and GP ∈ Rn×nG are the
center and generator matrix of the zonotope, respectively. The
Minkowski sum of zonotopes is straightforward to compute because
it reduces to summing the centers and stacking horizontally the
generator matrices of the involved zonotopes [39].
Concerning the Pontryagin difference between the polytopes

X�k� (respectively, U) and the zonotopes S�k� [respectively,
KS�k�], required for constraint tightening in Eq. (20), we adopt a
solution tailored to the specific structure of the sets involved.
Specifically, in this case, subtracting the zonotope S�k� results in
moving the planes of the polytope X�k� along a suitable direction.
Such direction and displacement are computed as follows. The
polyhedral cone in Eq. (6) can be described by the 4-hyperplane

representation X�k� � fx∶hT
X ;ix ≤ bX ;i; i� 1;: : : ;4g, where hX ;i ∈

R6 and bX ;i ∈ R are easily obtained from Eq. (6). The direction

along which to move the ith plane is orthogonal to the plane itself,
and the displacement is computed as

δi � khT
X ;iGS�k�k1; i � 1; : : : ; 4

with GS�k� being the generator matrix of the set S�k�. Therefore, the
resulting tightened constraint set can be defined as Z�k� � fz∶hT

X ;i

z ≤ bX ;i − δi; i � 1; : : : ; 4g. The same method is also used for

tightening the input constraint U in Eq. (9), which is a unitary
box in the considered setting. Note that these operations require
very low computational effort, as opposed to the standard Pontrya-
gin difference. An illustration of the constraint tightening outcome
is shown in Fig. 5.

V. Simulation Case Studies

In this section, the proposed control scheme is validated
through numerical simulations involving RVD with rotating tar-
gets and compared with different baselines. As a first baseline,
the TBOC approach in Eqs. (13–16) is employed. The second
baseline is the robust variable horizon control approach proposed
in Ref. [14], which is suitably modified to cope with the RVD
scenario considered in this paper. In particular, the formulation in
Ref. [14] is amended to include a time-varying reference trajec-
tory, as follows. At each time k, a modified version of prob-
lem (19) is solved, in which the terminal constraint zk�Nk� �
zrk�Nk� is replaced by

zk�Nk� ∈ f ~r�k� Nk�g �Q�Nk�

Fig. 4 Illustration of Proposition 2: predicted nominal state sequen-
ces at steps k and k� 1 (dashed blue); visibility region X�k�N�

k�
(largest light green cone) and its tightened versions at steps k and k� 1
(light blue).
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where

~r�j� � arg min
z∈X�j�⊖S�∞�

kz − r�j�k2

Q�Nk� � S�∞�⊖S�Nk�

with S�∞� � limk→∞ S�k�. Notice that Q�Nk� is nonempty for
any possible value of Nk. The resulting control scheme is referred
to as variable horizon MPC with fixed terminal constraint (FTC).
The simulation campaign is organized as follows. First, a Monte

Carlo analysis that is representative of different RVD missions is
carried out to evaluate the performance of Algorithm 1 in comparison
to the selected baselines. Then, the MPC-ATC control law is tested on
a realistic scenario inspired by the capture of the nonoperational
EnviSat spacecraft [40]. The simulations are performed by using
the MATLAB® programming environment and exploiting the com-
putational speed-ups described in Sec. IV, on a platform equipped
with an Intel Core I7-1165G7 processor and 16 GB of RAM.

A. Monte Carlo Study

The proposed Monte Carlo study is representative of RVD maneu-
vers with rotating objects in low-Earth orbit (LEO). This scenario is
considered due to the increasing number of space missions that are
scheduled to take place in the LEO regime, which will possibly
necessitate of in-orbit repair, refueling, and assembly as well as of
dedicated removal and deorbiting operations. The main features of this
study are as follows. The target satellite is located on a circular orbit
800 km above the Earth, and it is tumbling around a constant spin axis
orthogonal to its orbital plane; thus, ω � �0; 0;1	T . The docking point
is initially located at pd�0� � �−1.5; 0;0	T m. The docking cone half-
angle is set equal to α � 30 deg. The servicer initial position relative
to the target is randomly chosen inside the first polyhedral cone [i.e.,
x�0� ∈ X�0�]. The initial intersatellite distance falls in the interval
�20;85	 m. The initial velocity is uniformly sampled over �−0.01;
0.01	 m∕s. The maximum acceleration of the servicer propulsion
system and the spin period of the rotating target (which is assumed
to be constant) are treated as free parameters and are assigned at the
beginning of each simulation. In particular, they are uniformly

sampled in the intervals �5;50	 mm∕s2 and �300;600	 s, respectively.
The disturbance w�k� is treated as a random signal. At each step k,
w�k� is uniformly sampled in the setW � �− �wp; �wp	3 × �− �wv; �wv	3,
with �wp � 10−6 and �wv � 5 ⋅ 10−4 (which, according to the adopted
input normalization, corresponds to about 5% of the maximum accel-
eration). The sampling interval is selected as τs � 2π∕512 rad, cor-
responding to a sampling time of 11.8 s. The matrixK is selected so as
to place the eigenvalues of AK at f0.6; 0.6; 0.6; 0.5; 0.5; 0.5g, while

the parameter γv of the control law is chosen as γv � 5, resulting in
�λ � 0.17 according to Eq. (23).

The RVD maneuver is simulated over 1000 runs in which the

initial problem P0 returns a feasible solution. The aim of this study

is to assess the performance of the proposed control scheme. This

is done through a statistical evaluation of the final distance from

the docking point, the fuel consumption, and the maneuver com-

pletion time obtained in all simulation runs. Such performance

indices are compared to those achieved by the TBOC and MPC-

FTC control baselines. These are illustrated through box plots, in

which the central red mark indicates the median value of the

metric; the bottom and top blue edges of the box denote the 25th

and 75th percentiles, respectively; and the black whiskers encap-

sulate the most extreme data points. Figure 6 reports the box plot

of the final distance with respect to the docking point achieved by

the proposed control scheme, in comparison with that of the

selected baselines. It can be seen that MPC-ATC outperforms

the two baselines in terms of achievable proximity to the docking

point. The median of the final distance obtained with the proposed

controller over all maneuver realizations is equal to 0.59 m, com-

pared to 2.25 and 2.82 m achieved by TBOC and MPC-FTC,

respectively. Quite remarkably, it turns out that the maximum final

distance achieved by MPC-ATC is smaller than the 25th percentile

of the final distances obtained by using the comparison laws.

MPC-ATC TBOC MPC-FTC
0

1

2

3

4

5

Fig. 6 Box plot of final distance achieved by the MPC-ATC, TBOC,
and MPC-FTC schemes.

MPC-ATC TBOC MPC-FTC
0

5

10

15

20

Fig. 7 Box plot of the fuel consumption achieved by the MPC-ATC,
TBOC, and MPC-FTC schemes.

Fig. 5 Qualitative two-dimensional illustration of the subtraction
between a polyhedral cone and a zonotope.
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Figure 7 shows that the fuel consumption incurred by the proposed
approach is comparable to that of the baseline methods. The com-
pletion time, reported in Fig. 8, is slightly greater than the one
obtained by the baselines. This is not surprising, in view of the much
smaller final displacement reached by MPC-ATC. The statistics in
Table 1 clearly show that the improvement achieved by MPC-ATC in
terms of final distance is considerably larger than the performance
drop observed for the completion time and fuel consumption.
To support the discussion of MPC-ATC features in Sec. III, some

statistics on the behavior of Algorithm 1 are reported. The average
value of the final horizon length N�

qf is 2.07, while the average N
�

for the TBOC law is 12.7 (note that this value depends on the initial
condition). Hence, N�

qf turns out to be much smaller than N�. The
average radius of the projection of the set fzrqf �N�

qf �g � S�N�
qf � on

the position subspace is 0.29 m. Conversely, the radius of the
projection of T �N�� turns out to be 1.04 m, thus confirming that
MPC-ATC significantly reduces the set of possible final states. This
stems from the fact that in MPC-ATC the solution of problem

Pk�F k; Nk� is triggered only few times (7% on average).
An example of the trajectories produced by the three approaches

is shown in Fig. 9. The trajectories start from the same initial
condition and display similar profiles at the initial stage of the
maneuver. In particular, the observed parabolic trend is due to the
requirement to keep the SCM confined within the rotating docking
cone at all time steps, which is robustly achieved by the three
solutions. Significant differences arise in the final part of the
maneuver, where the MPC-ATC strategy converges to a point much
closer to the docking point. Consequently, the MPC-ATC trajectory
yields a much smaller final distance (0.55 m) than that of the
baselines (2.13 m for TBOC and 2.91 m for MPC-FTC). This is
consistent with the overall results of the Monte Carlo study.
To quantify the performance of the heuristic horizon search

strategy described in Sec. IV.A, 100 simulations from this study
are compared with the results obtained by using enumeration
search to solve at the optimum the same MPC problems. In these

simulations, the solutions of problem Pk provided by the two
search methods turn out to be equal for all steps k, thus meaning
that the adopted local search strategy effectively finds the global
minima in the test scenario. Moreover, the adopted heuristic
reduces the average computational time of the control law by a
factor 2.8 with respect to the enumeration method, as reported in
Table 2.
Summarizing, the proposed approach appears to be the most

effective option to address the considered RVD problem, among
the compared methods. Specifically, the proposed MPC-ATC
scheme demonstrates significant improvements in the final distance
from the docking point. This is a critical factor in a number of
recently proposed missions involving RVD with noncooperative
objects, such as in-orbit servicing and space debris capture. Indeed,
the ability to closely approach a rotating target ultimately dictates
the suitability of a control policy for such type of missions.

B. Docking to EnviSat Platform

In recent years, extensive research has been dedicated to in-
orbit servicing missions focused on capturing and deorbiting the
ESA’s EnviSat platform (see, e.g., Ref. [41]). EnviSat’s opera-
tional life suddenly ended on 8 April 2012, following an unex-
pected loss of contact with the spacecraft. Subsequently, the
spacecraft lost its Earth-pointing attitude and began to rotate in
an uncontrolled way. In this case study, the proposed control
scheme is tested in an RVD scenario inspired by the capture of
the rotating object. The EnviSat platform lies on an almost
circular orbit whose orbital elements are specified in Table 3.

MPC-ATC TBOC MPC-FTC

5

10

15

20

25

Fig. 8 Box plot of the completion time achieved by the MPC-ATC,
TBOC, and MPC-FTC schemes.

Table 1 Average values of the final distance, fuel consumption,

and maneuver completion time obtained with the MPC-ATC,
TBOC, and MPC-FTC methods (the percentage difference

with respect to MPC-ATC is also reported)

Metric MPC-ATC TBOC MPC-FTC

Final distance, m 0.62 2.21 ��257%� 2.81 ��354%�
Fuel consumption 6.92 6.82 �−1.5%� 6.42 �−7%�
Completion time
Tc, samples

15.53 12.68 �−18%� 11.80 �−24%�

Fig. 9 Projection on the radial-tangential plane of the position trajec-
tories: MPC-ATC (blue), TBOC (green), and MPC-FTC (red). The

crosses indicate the final position of the servicer, and the circles
represent r�Tc� for each law.

Table 2 Average, minimum, and maximum computational
times required by an iteration of Algorithm 1, for the horizon

search strategy described in Sec. IV.A and the

enumeration search method

Horizon search strategy Average Minimum Maximum

Adopted local search, s 0.17 0.11 0.37
Enumeration, s 0.47 0.30 0.74

Table 3 EnviSat orbital parameters

Orbit parameter Value

Semi-major axis 7140 km
Eccentricity 0.0001212
Inclination 98.3320 deg
Right ascension of ascending node 92.0262 deg
Argument of perigee 90.6460 deg
Mean anomaly 28.2890 deg
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It is currently rotating around the spin axis ω � �−0.01;−0.88;
−0.47	T (corresponding to azimuth and elevation equal to
269.22 and −28.14 deg, respectively) with a period of 280 s, as
estimated in Ref. [42]. The following assumptions are made on
the RVD maneuver. The servicer is equipped with a propulsion
system capable of exerting a maximum acceleration of amax �
25 mm∕s2 and a camera with a (half-angle) field of view of
α � 25 deg, which dictates the docking cone amplitude. At the
beginning of the maneuver, the servicer center of mass is located
50 m away from the center of mass of EnviSat, along the docking cone
axis. Concerning the parameters of the control law, the sampling
interval is selected as τs � 2π∕1024 rad, which corresponds to
approximately 5 s. The parameter γv is set equal to 5, and the
matrix K is chosen as in the previous Monte Carlo study (result-

ing in �λ � 0.23). Moreover, it is assumed that the uncertainty
affecting the system is due to a constant misalignment δθ �
�δθR; δθT; δθN 	T of the applied thrust, where δθR, δθT , and δθN
are radial, transverse, and tangential components of the misalign-
ment error. For small misalignment errors, this introduces an
additive disturbance compatible with the uncertain system
described in Eq. (1), with w�k� � BM�δθ�u�k�, being

M�δθ� �
0 −δθN δθT

δθN 0 −δθR
−δθT δθR 0

In this setting, an appropriate choice of the disturbance set is
W � 2δθmaxBU, where δθmax is the maximum misalignment error
magnitude.
To capture the complexity of this real-world mission scenario, in

this case study, RVD operations have been simulated using a non-
linear truth model, which accounts for the J2 perturbation and the
small eccentricity of the target orbit. The MPC-ATC scheme is still
designed using the linear time-invariant model (1–2), that is,
neglecting the eccentricity of the orbit. In this setting, the RVD
maneuver is simulated over 100 runs, in which each component of
the misalignment is randomly sampled from a uniform distribution
within the interval �−θmax; θmax	, with θmax � 1 deg. This value is
compatible with the thrust misalignment observed in modern satel-
lite missions [43]. To verify that the selected misalignment is
significant from a control viewpoint, a nonrobust VHMPC scheme,
based on a nominal version of problem (19) in which Z�k� � X�k�
and V�k� � U�k�, has been tested on the considered scenario. The
results indicate that such an approach violates the state constraint (8),
on average, after only nine time steps, calling for an early abort of
the RVD maneuver. Conversely, the maneuver is always success-
fully terminated when using the proposed MPC-ATC scheme,
despite the discrepancy between the simulation model and that used
for the design of the control law.
The performance of MPC-ATC for RVD to EnviSat is reported

in Table 4, in terms of mean and standard deviation of the final
distance, maneuver fuel consumption, and completion time. These
results indicate that the proposed design allows reaching a final
displacement that is reasonable for practical RVD, considering the
size of EnviSat, while providing a suitable balance between the
time and fuel minimization objectives. Moreover, the standard
deviation observed for all the metrics is very small, showing that
the proposed design is able to effectively limit the sensitivity to the
misalignment disturbance. This is confirmed by Fig. 10, which

depicts the obtained RVD trajectories (the gray lines depict the

position of the servicer in the RTN frame for all runs), showing

that the trajectory profile remains nearly identical for different

misalignment values. To better illustrate the maneuver, Fig. 11

reports some snapshots that depict the SCM and docking point

positions as well as the docking cone region, at different time

steps, for a single simulation run. It is evident that the SCM

consistently stays within the docking cone, thereby robustly meet-

ing the state constraint (8). Similar behavior is observed in all the

other runs. Figure A1 shows maximum-norm profile of the control

input (i.e., ku�k�k∞) for all runs. It can be seen that the input

constraint (9) is always satisfied. Hence, the commanded thrust

consistently remains within the propulsion limits. The average

time for the computation of the MPC-ATC control law is 0.11 s,

with the maximum time being 0.37 s. Such values are much

smaller than the adopted sampling time. For the sake of compari-

son, the TBOC and MPC-FTC schemes have also been tested,

resulting in a final distance is equal to 0.76 m for the former and

0.87 m for the latter. These results are in line with those obtained

in Sec. V.A.

To quantify the impact of the tuning parameter γv on control

performance, the MPC-ATC law has been tested with values of

γv ∈ f0; 0.1; 0.2; : : : ; γmax
v g, where γmax

v � 6.4 represents the largest

value for which condition (23) is satisfied. The resulting fuel con-

sumption and maneuver completion time averaged over 100 runs are

shown in Fig. 12 for each value of γv. As expected, smaller values of

γv promote faster maneuvers, while larger values reduce the fuel

expenditure. This analysis demonstrates that the proposed control

scheme enables performance tuning according to the priorities of the

mission.

More details on a single simulation run are given next, in order

to further clarify the main ideas underpinning Algorithm 1 and to

support the discussion on its properties made in Sec. III. In this

simulation, the misalignment vector is set as δθ � �1;−1;1	T deg.
The evolution of the optimal cost J�k and of the optimal horizon

N�
k , resulting from the application of Algorithm 1, are shown in

Fig. A2. It can be seen that, in agreement with Proposition 1, the

cost is strictly decreasing [see Eq. (A7)]. Moreover, N�
k displays a

decreasing trend, starting from the initial value N�
0 � 26. Algo-

rithm 1 returns qf � 26 and N�
qf � 3. This implies that the final

set fzr26�3�g � S�3� reached by the MPC-ATC (see statement 3 of

Proposition 1), is much smaller than T �26� � fzr�26�g � S�26�,
achieved by the TBOC method [see Eq. (17)]. Moreover, one has

kzr26�3� − r�29�k2 � 1.25 ⋅ 10−5, which is smaller than kzr�26� −
r�26�k2 � 3.5 ⋅ 10−5 (in adimensional units). It is again con-

firmed that MPC-ATC favors a closer approach to the reference

trajectory.

Table 4 Mean and standard deviation of the final distance,
maneuver completion time, and fuel consumption

Metric Average Standard deviation

Final distance, m 0.38 6.1 ⋅ 10−3

Fuel consumption 25.26 0.16
Completion time Tc, samples 29.29 0.66

Fig. 10 Radial, tangential, and normal components of the position

trajectory of the satellite. The reference trajectory is reported in dashed
black.
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VI. Conclusions

A novel robust MPC strategy has been presented for space
missions involving rendezvous and docking between a controlled
servicer and a rotating noncooperative target. The proposed MPC-
ATC scheme, by including the prediction horizon among the vari-
ables of the MPC optimization problem, increases the flexibility of
the control law and promotes the identification of favorable docking
opportunities. The simulation results demonstrate that the adapta-
tion of the terminal constraint is a key factor to achieve a close

proximity approach to the docking point, in the presence of persist-
ing process disturbances. The computational burden of mixed-
integer optimization and set operations involved in tube-based
variable horizon MPC is significantly limited by adopting solutions
tailored to the cost function and constraints which characterize the
considered mission setting. This makes the control law amenable for
online implementation onboard a spacecraft. Furthermore, the pro-
posed approach appears to be promising even for other application
domains, in which the objective is to intercept a given trajectory
with high accuracy, despite the presence of disturbances, limited
control authority and state constraints.

Appendix A: Proof of Proposition 1

The following is the proof of Proposition 1:
1) During the execution of Algorithm 1, problem Pk�F k; Nk� is

solved only at time steps in which k > q (in fact, when the condition

in line 11 does not hold, Pk�F k; Nk� is not solved, and q is set equal

0 1 2 3 4 5 6
25

30

35

0 1 2 3 4 5 6
15

20

25

30

35

Fig. 12 Fuel consumption (top) and completion time (bottom) for
different values of γv in the cost function Jk.

Fig. 11 Illustration of the RVD maneuver at some time steps. The blue and black dots report the current positions of the SCM and the docking point,
respectively, while the docking cone X�k� is highlighted in green.

Fig. A1 ∞-norm of the control input u�k� returned by Algorithm 1.
The control bound is depicted in dashed red.
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to k in line 19). Therefore, it is sufficient to show that, no matter how
the control action has been selected at time k � q� i, with i ≥ 0,

problem Pk�1�F k�1; N
�
k − 1� is feasible. At step k � q� i; i ≥ 0,

the control action has been selected from the solution of either

problem Pk (if k � q) or Pk�F k; Nk� (if k > q). This implies that

z�k �j� ∈ Zk�j� � X�k� j�⊖S�j�; j � 0; : : : ; N�
k (A1)

v�k �j� ∈ Vk�j� � U⊖KS�j�; j � 0; : : : ; N�
k − 1 (A2)

z�k �j� 1� � Az�k �j� � Bv�k �j�; j � 0; : : : ; N�
k − 1 (A3)

z�k �N�
k � ∈

fzrq�N�
q�g if k � q

F k � fzrq�N�
q�g � Zf;k if k > q

(A4)

Now, for step k� 1, consider the candidate state and control
sequences of length N�

k − 1,

ẑk�1�j� � z�k �j� 1� �Aj
Kw�k�; j � 0; : : : ; N�

k − 1

v̂k�1�j� � v�k �j� 1� � KAj
Kw�k�; j � 0; : : : ; N�

k − 2 (A5)

with associated cost

Ĵk�1 � N�
k − 1� γv

N�
k
−2

j�0

kv̂k�1�j�k1 (A6)

By adopting the same reasoning as in Ref. [14] (Proposition 1)
through Ref. [44] (Theorem 1), it can be shown that the sequences
ẑk�1 and v̂k�1 satisfy dynamics, state, and input constraints of

problem Pk�1�F k�1; N
�
k − 1�. Concerning the terminal constraint,

by exploiting Eqs. (A5) and (A4), one has that

ẑk�1�N�
k − 1� � z�k �N�

k � �A
N�

k
−1

K w�k�
∈ fzrq�N�

q�g � Zf;k �A
N�

k
−1

K W

� fzq�N�
q�g � Zf;k�1 � F k�1

where the last equality stems from lines 12–13 in Algorithm 1 and

Zf;q � f0g, according to lines 18–19. Hence, problem Pk�1�F k�1;
N�

k − 1� admits a feasible solution.

2) This statement follows from the fact that in both Pk and

Pk�F k; Nk� the nominal states and inputs are constrained to the
tightened setsZk�j�, Vk�j� in Eq. (20), by using standard arguments
from tube-based MPC.
3) It is easy to show that the cost (A6) associated to the candidate

feasible solution (A5) satisfies Ĵk�1 ≤ J�k − �λ. This implies that the
optimal solution satisfies the cost decrease condition

J�k�1 ≤ Ĵk�1 ≤ J�k − �λ; ∀ k (A7)

This results in a completion time of the maneuver being

Tc ≤ bJ�0∕�λc, with J�0 the initial optimal cost. Concerning the

terminal set ensured by the MPC-ATC law, if qf � Tc − 1 [i.e.,

problem (22) is never executed], at the last step k � Tc − 1, one gets
N�

k � 1, and the last optimal state returned by Pk is z
�
k �1� � zrk�1�.

Hence, by applying u�k� � v�k �0�, the final true state is

x�Tc� � z�k �1� � w�Tc − 1� ∈ fzrk�1�g � W � fzrk�1�g � S�1�.
Otherwise, if qf < Tc − 1, the problem solved at k � Tc − 1 is

Pk�F k; 1�, in which z�k �1� ∈ F k � fzrqf �N�
qf �g �

N�
qf
−1

j�1 Aj
KW.

Therefore, the final true state is

x�Tc� � z�k �1� �w�Tc − 1� ∈ fzrqf �N�
qf �g �

N�
qf
−1

j�1

Aj
KW �W

� fzrqf �N�
qf �g � S�N�

qf �

This concludes the proof. □

Appendix B: Proof of Proposition 2

First, considering N�
k�1 � N�

k − 1, observe that r�k� 1�
N�

k�1� � r�k� 1� N�
k − 1� � r�k� N�

k �. Then, from the first

equation in Eq. (20), one gets

Zk�N�
k � �X�k�N�

k �⊖S�N�
k �;

Zk�1�N�
k�1� �Zk�1�N�

k − 1� �X�k�N�
k �⊖S�N�

k − 1� ⊇Zk�N�
k �

where the last inclusion comes from the fact that S�N�
k − 1� ⊆

S�N�
k �, according to Eq. (15). Hence, Eq. (24) results directly

from the definition of zrk�Nk� in Eq. (21). This concludes the

proof. □
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