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In this paper, the trajectory planning problem for autonomous rendezvous and docking between a controlled

spacecraft and a tumbling target is addressed.The use of a variable planning horizon is proposed in order to construct

an appropriate maneuver plan, within an optimization-based framework. The involved optimization problem is

nonconvex and features nonlinear constraints. The main contribution is to show that such problem can be tackled

effectively by solving a finite number of linear programs. To this aim, a specifically conceived horizon search

algorithm is employed in combination with a polytopic constraint approximation technique. The resulting

guidance scheme provides the ability to identify favorable docking configurations, by exploiting the time-varying

nature of the optimization problem endpoint. Simulation results involving the capture of the nonoperational EnviSat

spacecraft indicate that the method is able to generate optimal trajectories at a fraction of the computational cost

incurred by a state-of-the-art nonlinear solver.

I. Introduction

S PACECRAFT rendezvous and docking (RVD) technologies

were tested for the first time in the 1960s within the Gemini

and Soyuz programs and later brought to operational status with the

advent of manned space stations [1]. In these programs, RVD was

accomplished throughmanual or semi-automated procedures involv-

ing a tight cooperation among the vehicles, heavy instrumentation,

and man- or ground-in-the-loop interaction to ensure successful

maneuvering. In recent years, a demand for new RVD technologies

has emerged in the context of small multipurpose servicing vehicles,

which will be capable of autonomously performing a number of

complex tasks, such as refueling, in-orbit repair/assembly, and orbital

debris capture. Several technology demonstration missions have

been carried out for servicing a three-axis stabilized spacecraft,

including JAXA’s ETS-VII [2], NASA’s DART [3], AFRL’s XSS-

11 [4], and DARPA’s Orbital Express [5]. However, autonomous

RVD to an uncontrolled and possibly tumbling (i.e., rotating) target

has yet to be fully demonstrated in orbit, and servicing or capturing an

uncooperative target still involves a number of open problems. In

particular, there is a need for RVD techniques accounting for rota-

tional motion of the target, which optimize meaningful performance

indexes and are easy to implement onboard the spacecraft.

Achieving autonomous RVD involvesmany complementary oper-

ations: inspection, pose estimation, maneuver planning, attitude

synchronization, and relative motion control. From a guidance and

control perspective, the main challenge to be faced when the target is

uncooperative is that the docking point position may vary over time.

This leads to the formulation of trajectory planning problems in

which both the endpoint and the constraints are time varying. Awide

variety of optimization-based techniques have been proposed in the
literature to tackle such type of problems, which in general entail
nonlinear optimization methods. In [6], minimum-time and mini-
mum-energy rendezvous trajectories are obtained via direct colloca-
tion and validated against the first-order optimality conditions
provided by the Pontryagin minimum principle. The approach is

refined in [7] to limit the computational burden. In [8], a model
predictive control (MPC) strategy based on nonlinear programming
(NLP) is proposed. The primary advantage of these NLP methods is
that they can account for nonlinearities in the system model, non-
convex constraints, and a free final time.However, NLP is affected by

a number of well-known drawbacks, including the lack of conver-
gence guarantees and the requirement of complex solvers. To miti-
gate these issues, researchers in the field have focused on sequential
convex programming (SCP) [9–13]. Within this approach, all non-
convex elements of the trajectory optimization problem are linearized

and the resulting convex problem is solved in a trust regionwhere the
linearization is accurate. The process is repeated iteratively until a
stopping criterion is met. For certain classes of problems, the asymp-
totic convergence to a local optimum has been proved [14]. However,
for general nonlinear problems, the solution sequence may converge

to an infeasible trajectory [15]. This is one of the salient limitations of
SCP, and an intensive research is ongoing to overcome this obstacle
(see, e.g., [16,17]). At present, SCP provides an effective and flexible
way to perform rapid trajectory optimization trade studies (see,
e.g., [18]).
To facilitate online optimization, a great deal of research has been

directed toward problem formulations that are inherently convex. Con-
vex formulations are usually obtained by linearizing the spacecraft

relative motion dynamics, exploiting suitable convex approximations
of the RVD path constraints, and adopting a fixed planning horizon
[19,20]. Most of the studies in this area focus on RVD to a cooperative
target, assuming that the docking point is static (see, e.g., [21–23]).
Some important contributions have addressed the uncooperative RVD

problem. In [24], a convex description of the path constraints is
introduced and shown to provide much faster solutions compared with
a mixed-integer linear programming (MILP) formulation of such con-
straints (see, e.g., [25]). In [26], a linear MPC strategy is applied to a
planar RVD problem with a tumbling target. This is extended to the

three-dimensional case in [27,28]. Although such techniques have
nowadays proven to be suitable for implementation onboard a space-
craft (see, e.g., [23]), their application to RVD missions still faces
remarkable challenges. For instance, the useof a fixed planning horizon
maynot be consistentwith themission requirements, as it prevents from

taking into account the maneuver time in the cost function. This has
been first pointed out in [29,30], where a variable-horizon formulation
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is proposed in order to improve the regulation performance, for RVD
maneuvers involving a three-axis stabilized target. However, to the best
of our knowledge, variable-horizon approaches tailored to the case of
tumbling targets have not been developed to date. This is a serious
limitation because the planning horizon dictates the optimization prob-
lem endpoint (being the docking point timevarying) and thus thewhole
maneuver geometry. Therefore, an improper choice of this parameter
can lead to severe performancedegradationor even infeasibility. In light
of these considerations, and taking into account that the characteristics
of the target rotational motion are generally not known beforehand, it is
reasonable to expect that the horizon length will have to be tuned on
orbit. Thismakes it necessary to adopt a variable-horizon strategy, to be
run in real time onboard the spacecraft.
Variable-horizon optimal control problems can be addressed either

in a continuous-time or in a discrete-time setting. In the former, a free-
final-time problem is converted into a fixed-final-time one by nor-
malizing the time variable. The resulting optimization problem is
nonlinear, even for linear dynamic systems. The latter approach
amounts to solving a sequence of fixed-horizon problems, in which
linearity of the dynamics is preserved. This simplifies the conver-
gence analysis. However, treating the horizon length as an additional
decision variable leads to mixed-integer optimization problems that
are difficult to solve (see, e.g., [29]).
The contribution of this paper is to provide an effective discrete-

time solution to the variable-horizon guidance problem, for RVD to a
tumbling target. The only source of nonconvexity in the proposed
formulation is due to the variable horizon, which is weighted in the
cost function of the trajectory optimization problem. For any fixed
value of the horizon length, the optimization problem is formulated as
a linear program (LP). This is achieved by suitably approximating the
RVD constraints. In particular, nonconvex keep-out-zone constraints
are approximated by a set of linear time-varying inequalities, using a
variant of the so-called rotating hyperplane strategy (see, e.g., [20]).
Then, the solution to the variable-horizon problem is computed by
solving a finite number of LPs. The use of rotating hyperplanes is
instrumental to mitigate the computational burden. In fact, for any
given horizon length, the proposed approach requires to solve a single
LP, whereas alternative (and less conservative) methods based on
constraint linearization (see, e.g., [14]) involve the solution of a
sequence of convex programs. Another key element of the proposed
solution strategy is the construction of a convenient initial guess for the
planning horizon, around which a local search is performed. The
resulting optimization algorithm ensures convergence to a local opti-
mum ina finite and typically small number of steps.Aparametric study
shows the advantages of this approach with respect to other solution
techniques commonly employed for variable-horizon optimization.
The guidance scheme is demonstrated on two simulated maneuvers

inspired by the capture of the nonoperational EnviSat spacecraft [31].
Simulation results show that the method is able to generate safe RVD
trajectories to the tumbling target at a fraction of the computational cost
incurred by a state-of-the-art nonlinear solver. Moreover, the obtained
results indicate that the employed constraint approximation scheme,
although conservative, does not lead to a significant loss in terms of
maneuver performance. These features make the proposed approach
attractive for autonomous RVD applications, in which the solution to
the guidance problem must be computed onboard the spacecraft.
The paper is organized as follows. The variable-horizon guidance

problem is formulated in Sec. II, and the RVD constraint model is
presented in Sec. III. The proposed solution strategy is discussed in
Sec. IV. In Secs. VandVI the performance of the method is evaluated
numerically and the EnviSat RVD case studies are detailed, and
conclusions are drawn in Sec. VII.

A. Notation

The adopted notation is fairly standard. The sets of real, non-
negative real, positive integer, and nonnegative integer numbers are
denoted by R, R�, N, and N0, respectively. The time derivative of a
vector x is denoted by _x. The p-norm of x and the direction of x are

indicated by kxkp and ~x � x∕kxk2, respectively. The symbol ×
indicates the cross-product operation. The pseudo-inverse of amatrix

M is denoted byM†. The set difference operation is denoted by \ and
the empty set is denoted by∅. The matrix describing a rotation about

the axis ax ∈ R3 by an angle θ ∈ R is denoted by R�ax; θ�.

II. Problem Formulation

The considered spacecraft maneuvering problem is that of RVD
between an actively controlled servicer vehicle and a tumbling
target. Herein, the focus is on guidance aspects, i.e., on the gener-
ation of safe RVD trajectories to the target. We restrict our attention
to the motion of the center of mass of the servicer (sCM) relative to a
time-varying docking point modeling the rotational motion of the
target. Hence, the servicer attitude motion is neglected. The ration-
ale behind this approach is that, under reasonable assumptions
(namely, the availability of omnidirectional thrust), the translational
dynamics of the servicer can be decoupled from its own attitude
dynamics [32], thus resulting in a simplified guidance algorithm
design.
The reference coordinate frame employed in this work is the

radial–transverse–normal (RTN) frame centered at the target. The
R axis is aligned to the target radius vector, the N axis points toward
the target orbit normal, and the Taxis completes a right-handed triad.
According to standard design rules, the dynamics of the sCM with
respect to the center ofmass of the target (tCM) are expressed in terms
of relative position and velocity, by using the normalized discrete-
time Hill–Clohessy–Wiltshire equations [33]:

x�k� 1� � Ax�k� � Bu�k�

� eAcτsx�k� �
�Z

τs

τ�0

eAcτ dτ

�
Bcu�k� (1)

where k ∈ N0 is the discrete time index, x�k� ∈ R6 is the system

state, u�k� ∈ R3 is the control input, τs ∈ R� is the sampling inter-
val, and

Ac �

2
66666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3 0 0 0 2 0

0 0 0 −2 0 0

0 0 −1 0 0 0

3
77777777775

Bc �

2
66666666664

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

3
77777777775

(2)

The following properties pertain to this representation. The control

input is defined as u�k� � a�k�∕amax, being a�k� ∈ R3 the actual
acceleration, expressed in RTN coordinates, and amax the maximum
acceleration deliverable by the servicer along each axis of the RTN
frame (amax is assumed constant). Notice that, in this setting,

ku�k�k∞ ≤ 1 (3)

The state vector is defined as x�k� � � xTp�k� xTv �k� �T , where

xp�k� ∈ R3 describes the RTN components of the relative position

vector multiplied by η2∕amax, and xv�k� ∈ R3 describes the RTN
components of the relative velocity vector multiplied by η∕amax,
being η the target mean motion. In Eq. (1), a scaled time variable τ �
ηt is employed, where t ∈ R� is the actual time. Then, t � kτs∕η at
the sampling instants. The linear time-invariant model [Eqs. (1) and
(2)] is appropriate for spacecraft in circular orbits.
The docking specifications aremodeled by defining a docking axis

that is rigidly attached to the target and specifying a suitable docking
point along this axis, as illustrated in Fig. 1. The docking point
describes the desired position of the sCM upon docking. Taking into
account the target rotational motion, it follows that the position of the
docking point evolves on a sphere of constant radius. The linear
position pd ∈ R3 and velocity vd ∈ R3 of this point relative to the
tCM satisfy the differential equation
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_pd�t� � vd�t� vd�t� � ω�t� × pd�t� (4)

where ω�t� ∈ R3 is the instantaneous angular velocity of the target

body frame relative to the RTN frame. All vectors in Eq. (4) are

expressed in theRTN frame. The time-varying signalω�t� is assumed

to be known (e.g., determined on orbit before maneuvering). The

docking-point trajectory xd�k� ∈ R6 for the guidance problem is

obtained by sampling pd�t�, vd�t� and applying the same normali-

zation used to obtain x�k�, resulting in

xd�k� �
"
xdp�k�
xdv�k�

#
�

2
64

η2

amax
pd

�
kτs
η

�
η

amax
vd
�
kτs
η

�
3
75 (5)

The RVD maneuver objective is stated as follows: steer the state

x�k� of system (1) from a given initial condition x0 at the initial time

step k0 to the docking state x
d�k0 � N� at the final time step k0 � N,

while minimizing a tradeoff between fuel consumption and maneuver

time, and satisfying suitable state and input constraints. The proposed

guidance scheme achieves this objective through the solution of the

following variable-horizon discrete-time optimal control problem:

min
N;uN

JN � N � γkuNk1
s:t: x�k0� � x0

x�k� 1� � Ax�k� �Bu�k�
xp�k� ∈ X�k; N� k � k0; : : : ; k0 � N − 1

kuNk∞ ≤ 1

x�k0 � N� � xd�k0 � N�
N ∈ N (6)

In problem (6),

uN �

2
64
u�k0 � N − 1�

..

.

u�k0�

3
75

is a control sequence of variable length N to be optimized. The cost

function JN is the same used in [29] and involves the sum of the

number of steps N required to steer x0 toward xd�k0 � N� and the

normalized fuel consumption kuNk1, which is weighted by the scalar
parameter γ ≥ 0. The constraint kuNk∞ ≤ 1 enforces a bound for each
component of the control sequence according to Eq. (3). The state

constraint setsX�k; N� are allowed to depend explicitly on both k and
N. They are assumed to be convex and polytopic for any fixed k andN.

The particular structure ofX�k; N� is detailed inSec. III. Problem (6) is

a nonstandard one in discrete-time optimal control theory, because the
number of decision variables and constraints is dictated by the opti-
mization variable N.

III. RVD Constraints

To safely achieve the RVD objective, collisions must be avoided.
Moreover, the servicer position must be confined within a suitable
visibility region during the final part of the maneuver. A common
approach to address such requirements is to introduce a separate set of
constraints for the rendezvous and the docking phases. To this aim,
we find it convenient to model the safety constraints enforced on the
whole maneuver as xp�k� ∈ X�k; N�, where

X�k; N� �
�
R�k; λN�; k < k0 � λN
D�k�; k ≥ k0 � λN

(7)

InEq. (7),R�k; λN� andD�k� denote the (time-varying) constraint sets
for the rendezvous and the docking phase, respectively, and λN is the
number of sampling instants allocated to the rendezvous phase, within
the planning horizon. The latter is treated as a horizon-dependent
variable, by setting

λN � N − Nd (8)

where the parameter Nd ∈ N indicates a predefined number of time
steps allocated to the docking phase, at the end of the planning horizon.
Note that Nd is fixed a priori because docking operations must be
usually completed within a fixed amount of time.

A. Rendezvous Constraints

In the rendezvous phase, collision avoidance constraints are typi-
callymodeled by enforcing a keep-out zone of radius r (seeFig. 2), i.e.,

kxp�k�k ≥ r (9)

The above constraint is nonconvex and hence not compatible with
Eqs. (6) and (7) [X�k; N� is assumed to be convex]. One way to
convexify Eq. (9) is to employ the so-called rotating-hyperplane
method [20].Within thismethod, the hyperplane rotation rate is treated
as a parameter to be tuned heuristically. The heuristic proposed herein
amounts to parameterizing the hyperplane rotation in terms of both the
time index k and the horizon length N. In particular, the following
safety constraint set is enforced:

R�k; λN� � fξ ∈ R3 : ξT~ν�k; λN� ≥ rg (10)

which defines a half-space by means of a separating plane passing

through the point r~ν�k; λN� with outward unit normal ~ν�k; λN�. The
vector ~ν�k; λN� is obtained from thegeodesic joining the projections on
the unit sphere of the initial position xp�k0� and the reference position
at the end of the rendezvous phase xdp�k0 � λN�, as

~ν�k; λN� � R�ax�λN�; θ�k; λN��~xp�k0� (11)

where

ax�λN� � ~xp�k0� × ~xdp�k0 � λN� (12)

and

θ�k; λN� �
k − k0
λN

arccos�~xTp�k0�~xdp�k0 � λN�� (13)

The setR�k; λN� in Eqs. (10–13) has the property that the constraint
xp�k� ∈ R�k; λN� implies Eq. (9). With respect to [19,20], the half-

spaceR�k; λN� has been designed in such away that its gradual rotation
favors the transition from the initial position xp�k0� to the reference

position xdp�k0 � λN�, where the docking phase will start. Notice that

the time scale of such rotation, and consequently the conservativeness of

Fig. 1 Definition of the docking point.
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the keep-out-zone approximation, is affected by the horizon-dependent

variable λN . For any fixed x
d
p, the approximation gets better for increas-

ing values of λN (see Fig. 3), and thus of N [see Eq. (8)].

B. Docking Constraints

To define the constraints for the docking phase, let us consider the

time-varying set

C�k� � �
ξ ∈ R3 : kξ − �ξT~xdp�k��~xdp�k�k2 ≤ tan�α��ξ − xdp�k��T~xdp�k�

�
(14)

which consists of a cone stemming from the docking point xdp�k�,
whose half-angle amplitude is defined by the parameter α (see again

Fig. 2). The visibility condition during docking can be defined as

xp�k� ∈ C�k�, which represents a convex quadratic constraint. For

the sake of computational performance, however, it is convenient to

devise a polyhedral constraint set implying xp�k� ∈ C�k�. To accom-

plish this, we exploit the inequality

kyk2 � kTyk2 ≤
			
ρ

p kTyk∞ (15)

which holds for any y ∈ R3 and any orthogonal matrix T ∈ R3×3,

where ρ is the number of nonzero elements in Ty. Let us consider the
(orthogonal) rotation matrixT�k� that takes xdp�k� to a basis vector of
the RTN frame. Then, T�k�fξ − �ξT~xdp�k��~xdp�k�g has at most two

nonzero elements, since ξ − �ξT~xdp�k��~xdp�k� and ~xdp�k� are orthogo-
nal. Therefore, introducing the polyhedral set

D�k� �
�
ξ ∈ R3 :kT�k��ξ − �ξT ~xdp�k��~xdp�k��k∞

≤
tan�α�			

2
p �ξ − xdp�k��T ~xdp�k�



(16)

Fig. 2 Illustration of a typical rendezvous anddockingmaneuver (adapted from [1]). For the sake of illustration, the docking point is assumed to be static.

Fig. 3 Illustration of the keep-out-zone approximation scheme on a two-dimensional example, for different values of λN.
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we get fromEq. (15) thatD�k� ⊆ C�k�, as illustrated in Fig. 4. Hence,
the linear constraint set xp�k� ∈ D�k� implies the visibility condition

xp�k� ∈ C�k�. In this work, the matrix T�k� is chosen as

T�k� � R�~xdp�k� × � 100 �T; arccos�� 100 �~xdp�k��� (17)

Although not discussed here for conciseness, other types of
maneuver constraints naturally fit the proposed formulation. For
instance, plume-impingement constraints can be accommodated for
by enforcing a time-varying bound on the control input magnitude
(see [24]). Note that plume impingement is less likely to occur when
the docking point is spinning, as the servicer thrust is mostly directed
away from the target during the final approach, in order to compen-
sate for centrifugal effects.

IV. Solution Strategy

Problem (6) is nonconvex due to the integer optimization variable
N. Nevertheless, it can readily be tackled by solving a sequence of
linear programming problems of the form

min
uN

JN � N � γkuNk1
s:t: x�k0� � x0

x�k� 1� � Ax�k� �Bu�k�
xp�k� ∈ X�k; N� k � k0; : : : ; k0 � N − 1

kuNk∞ ≤ 1

x�k0 � N� � xd�k0 � N� (18)

where the planning horizon N is now a fixed parameter. We denote
the minimizer of Eq. (18) by u�N, and the corresponding optimal cost
by J�N. If the problem is infeasible, the cost is set by definition to
J�N � ∞. To find an optimal solution of problem (6), one can solve
Eq. (18) to obtain the function J�N :N → R�, and then minimize J�N
with respect toN ∈ I � f1; : : : ; Nubg, whereNub is an upper bound
on the optimal horizon N� of Eq. (6). Being JN unbounded for
N → ∞, the upper bound Nub is guaranteed to be finite.
The profile of J�N versus N is reported in Fig. 5 for an example of

RVD maneuver. It can be seen that the horizon length N has a
profound impact onmaneuver performance, and that optimizing over
N is an inherently nonconvex problem. Hence, searching for the
global optimum N� turns out to be as hard as solving Eq. (18) for
all N ∈ I . To rule out some of the values of N, the following result
can be employed.
Proposition 1: Consider the linear system x�k� 1� � Ax�k��

Bu�k�, where x�k� ∈ Rn and u�k� ∈ Rm, and let xd�k0 � N� ∈ Rn

be a target state to be reached from the initial state x�k0� � x0. Define
the N-step reachability matrix RN � �BAB : : :AN−1B� and the
unconstrained minimum energy (least-squares) input sequence

eN � R†
N�xd�k0 � N� −ANx0�. Moreover, let I ⊆ N and

F �
�
N ∈ I :

xd�k0 � N� � ANx0 � RNeN

keNk2 ≤
								
mN

p



(19)

Then, the feasibility problem

find uN

s:t: x�k� 1� � Ax�k� � Bu�k�
x�k0� � x0; x�k0 � N� � xd�k0 � N�
kuNk∞ ≤ 1 (20)

has no solution for N ∈ fI \ Fg.
Proof: The equality in Eq. (19) stems from the equality constraints

of problem (20). To prove necessity of the inequality in Eq. (19),

observe that eN is the minimum energy input sequence that drives the

system from state x0 at time k0 to state x
d at time k0 � N. Hence,

keNk2 ≤ kuNk2 ≤
								
mN

p
kuNk∞ (21)

A necessary condition for problem (20) to be feasible is that

kuNk∞ ≤ 1. This can happen only if keNk2 ≤
								
mN

p
. □

Remark 1: By applying Proposition 1 to system (1), it follows that

problem (18) has no solution forN ∈ fI \ Fg. Moreover, the set I in

Eq. (19) is chosen as I � f1; : : : ; Nubg. Then, the smallest element

ofF is a lower bound on the minimum horizon N � Nmin for which

problem (18) is feasible.
The minimum energy control for different valuesN of the horizon

length can be evaluated very efficiently, given that the reachability

matrix RN , its pseudo-inverse R†
N , and matrix AN can be precom-

puted offline. However, solving problem (18) for all N ∈ F is still

prohibitively complex when the number of elements inF is large. To

mitigate this issue, one has to settle for a locally optimal solution.

More specifically, our aim is to solve a small subset of problems (18),

in which the choice of N is guided by a local search within the

set F . To this purpose, the following three-step solution method is

proposed:
1: Compute an initial guessN1 of the horizon length by evaluating

the cost associated with the minimum energy control eN , i.e.,

N1 � argmin
N∈F

�N � γkeNk1� (22)

If multiple minima are found, take the one with the smallest N
(among equivalent solutions, the one featuring the smallest N is
preferred). Notice that N � N1 is not guaranteed to be feasible for
problem (18).
2: Starting from N � N1, perform a local search within the set F

until a feasible solution to problem (18) is found (see Algorithm 1).
This step amounts to solving a sequence of problems (18) with

Fig. 4 Illustration of the polyhedral set D�k� used to approximate the

docking cone C�k�.
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Fig. 5 Profile of J�
N versus N for the RVD scenario detailed in Sec. V,

with γ � 4. The presence of multiple local minima is due to the target
rotation. The global optimumN� is marked by an asterisk. The problem

is infeasible for N ≤ 25.
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different values ofN in a neighborhood ofN1. If a feasible solution is
found, denote byN2 the corresponding horizon length. If no feasible
solution is found for anyN ∈ F, thenmark problem (6) as infeasible.
3: If N2 > N1, solve a sequence of problems (18) with increasing

horizon lengthwithin the setF , starting fromN � N2. Stopwhen the
optimal cost of Eq. (18) does not decrease anymore. Similarly, if
N2 < N1, apply the same procedure but with decreasing horizon
length. If N2 � N1, decide whether to increase or decrease the
horizon length by comparing the cost J�N1

with two neighboring

solutions of Eq. (18) within the set F . The optimized horizon length

resulting from this step is denoted by N̂.
Algorithm 1 formalizes the proposed method.
Let us remark that steps 1–3 of Algorithm 1 are motivated by the

practical need to trade off performance and computational efficiency.
In step 1, the initial guessN1 is obtained based on the observation that
in the domain F the profile of N � γkeNk1 is often close to that of
N � γku�Nk1, provided by Eq. (18). In steps 2 and 3, a local search is
performed in the neighborhood of N1. By virtue of step 2, a feasible
solution of problem (6) is always found, if it exists. Moreover,

according to step 3, convergence to a local minimum N̂ of J�N is

guaranteed. Global optimality (i.e., N̂ � N�) is ensured if one of the
following conditions is met:
i) J�N has no local minima in the domain F .
ii) γ � 0, in which caseN1 is a lower bound onNmin [see Eq. (22)

and Remark 1], and steps 2 and 3 are guaranteed to find N̂ �
N� � Nmin.
It is also worth observing that the proposed approach can be easily

extended to general linear time-varying systems. Such an extension
may allow one to deal with RVDmaneuvers featuring elliptical or J2-
perturbed orbits (see, e.g., [30,34]).
The performance of Algorithm 1 is evaluated in the next section.

V. Search Algorithm Validation

A qualitative assessment of the proposed solution strategy has
been carried out by testing Algorithm 1 on a specific RVD scenario,
for different values of the parameter γ in Eq. (18). The motivation of
this parametric study is that larger values of γ usually correspond to
longer planning horizons and thus to an increased computational
load. This allows one to draw some conclusions regarding the com-
putational feasibility of the method. The RVD maneuver parameters
are summarized in Table 1, where t0 denotes the initial time. They are
consistent with the specifications of a small satellite mission tailored
to the removal of a debris object in low Earth orbit (see, e.g., [22]).
Within this setup, the performance of Algorithm 1 has been

compared with that of full enumeration and binary search methods.
The full enumeration approach amounts to solving problem (18) for
all N ∈ I , and it is guaranteed to find the global optimum N� of
problem (6). The binary search method minimizes J�N with respect to
N by bisection on the interval I . Its complexity is logarithmic inNub,
and in general it returns a local minimum of J�N . In this study, the
horizon upper bound is set to Nub � 128 samples.
The obtained results are reported in Figs. 6–8 for different values of

γ in the range γ ∈ � 1; 15 �. Figure 6 shows the value function J�N ,
evaluated at the horizon length returned by the three compared meth-
ods. It can be seen that the cost J�

N̂
incurred by Algorithm 1 is either

equal or very close to the optimal cost J�N� obtained via full enumer-

ation. Conversely, the cost J�Nbs
provided by the binary search algo-

rithm is always far from global optimality except for small values of γ.
This is not surprising, because the binary search method is known to
work well for the minimization of unimodal functions, whereas the
unimodality condition is notmet for theproblemat hand (this is evident
in Fig. 5, which depicts the profile of J�N corresponding to the param-
eters in Table 1, for γ � 4). Figures 7 and 8 report, respectively, the
optimized horizon length and the normalized fuel consumption ku�Nk1
incurred by each solution strategy. It can be seen that the binary search
solutionNbs tends to underestimateN�, while requiring amuch higher
fuel consumptionwith respect to the other approaches.Conversely, the

horizon length N̂ provided by Algorithm 1 is very close toN� inmany

instances. When N̂ > N�, the corresponding fuel cost is such that
ku�

N̂
k1 < ku�N�k1. Figure 7 also depicts the initial guessN1 defined by

Eq. (22). It can be seen that the initial guess often falls reasonably close

Algorithm 1: Returning a local optimum N̂ of problem (6)

let F �q� denote the qth largest integer in the set F
if F � ∅ then

return problem (6) infeasible
else ▹ Step 1.

let N1 � argmin
N∈F

�N � γkENk1� ▹ Step 2.

let q1 be such that F�q1� � N1, let i � 0

repeat
solve problem (18) with N � F �q1 � i� and N � F �q1 − i�;
i � i� 1

until a feasible solution is found or both the endpoints of F are reached

if a feasible solution is found then
let N2 be the horizon length

else if two feasible solutions are found at i � ζ then

if J�F�q1�ζ� < J�F �q1−ζ� then
let N2 � F �q1 � ζ�

else
let N2 � F �q1 − ζ�

end if

else
return problem (6) infeasible

end if
▹ Step 3.

let q2 be such that F�q2� � N2, let i � 1

if N2 > N1 then
repeat

solve problem (18) with N � F �q2 � i�; i � i� 1

until an index ς is found such that J�F �q2�ς� > J�F �q2�ς−1�
let N̂ � F �q2 � ς − 1�
return N̂; J�F �q2�ς−1�

else if N2 < N1 then

repeat
solve problem (18) with N � F �q2 − i�; i � i� 1

until an index i � ς is found such that J�F �q2−ς� > J�F �q2−ς�1�
let N̂ � F �q2 − ς� 1�
return N̂; J�F �q2−ς�1�

else
let J � minfJ�F�q1−1�; J

�
F �q1�; J

�
F �q1�1�g

if J � J�F�q1−1� then
proceed as for N2 < N1

else if J � J�F �q1�1� then
proceed as for N2 > N1

else
let N̂ � N1

return N̂; J�F �q1�

Table 1 RVD test maneuver parameters

Parameter Value

Initial docking point position pd�t0� � �1; 0; 0�T m

Target angular velocity ω�t� � �0; 0; 0.01�T rad∕s
Target mean motion η � 0.001 rad∕s
Servicer maximum acceleration amax � 0.001 m∕s2

Sampling interval τs � 2π∕256 rad∕sample

Initial relative position amax

η2
xp�k0� � �0;−100; 0�T m

Initial relative velocity amax

η xv�k0� � �0; 0; 0�T m∕s
Docking cone half-angle α � 20 deg

Keep-out zone radius amax

η2
r � 5 m

Docking phase duration
τs
η Nd � 220.9s�Nd � 9�
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Fig. 6 Maneuver cost incurred by the considered search strategies for different values of γ.
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Fig. 7 Optimized planning horizon provided by the considered search strategies for different values of γ. The initial guess N1 of Algorithm 1 is also
reported.
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Fig. 8 Fuel consumption incurred by the considered search strategies for different values of γ.
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to a local optimum. Table 2 reports the minimum, maximum, and
average CPU time over the considered values of γ for the binary search
and Algorithm 1 solutions, showing that the computational burden of
the twomethods is on a similar level. This is a remarkable result, given

that N̂ ≫ Nbs in most problem instances (see again Fig. 7). The CPU
timeof the full enumeration procedure is by far higher than that of these
two approaches and amounts to approximately 3 s, regardless of the
value of γ. From these results, it can be concluded that the proposed
solution strategy provides an excellent tradeoff between performance
and computational efficiency. Note that the CPU time reported in
Table 2 for Algorithm 1 includes the time required to compute the
initial guess N1.
Finally, it is worth recalling that variable-horizon problems can

often be cast as a MILP; see, e.g., [29]. A MILP formulation of
problem (6) has been tested, but the obtained results turned out to be
unsatisfactory. In part, this is because the feasible region (7) is para-
meterized by an explicit function of N. To cope with this issue, one
has to construct a MILP including all realizations of X�k; N�,
obtained for N ∈ I and k � k0; : : : ; k0 � N − 1, resulting in a

number of state constraints which is proportional to N2
ub. Hence,

the problem rapidly becomes untractable as Nub grows. In the
considered scenario, even by removing the state constraints, the
MILP solution time is in the order of seconds. All computations have
been performed on a standard laptop, via a direct call fromMATLAB
of the commercial solver Gurobi [35].

VI. RVD to the EnviSat Platform

In recent years, a number of studies have focused on in-orbit serv-
icing missions dedicated to capturing and de-orbiting the European
Space Agency (ESA) EnviSat platform; see, e.g., [36]. The EnviSat
operational life ended on April 8, 2012, following the unexpected loss
of contact with the spacecraft. After this event, the spacecraft lost the
ability to hold its Earth-pointing attitude and started to tumble. Because
of its huge size and its particular orbital configuration, EnviSat is
currently regarded as a potential trigger for space debris proliferation
in low Earth orbit. In the following, the proposed guidance scheme is
demonstrated on an RVD scenario inspired by the capture of EnviSat.
A schematic viewofEnviSat is reported in Fig. 9. The spacecraftwas

not designed with servicing in mind, and features an elongated shape
with many protruding elements. Consequently, the determination of a

suitable docking configuration is nontrivial. Following a review of the

literature available on the topic (see, e.g., [37,38]), two favorable

docking points have been identified: the first (P1) is located above

the center of mass (tCM), in the direction opposite to the ASAR

antenna; the second (P2) lies along the spacecraft long axis, in the

direction opposite to the solar panel, as depicted in Fig. 10. It is worth

recalling that these points describe the desired position of the sCMupon

Table 2 Computational burden of
binary search and Algorithm 1

CPU time Binary search Algorithm 1

Minimum, s 0.069 0.020
Average, s 0.094 0.104
Maximum, s 0.126 0.165

Fig. 9 EnviSat spacecraft layout. The length of the various components is reported in meters.

Normal

Radial

Transverse

Fig. 10 Characterization of the docking points (P1, P2) and of the spin
axis in the RTN frame at the initial time t0.

Table 3 EnviSat RVD maneuver parameters

Parameter Value

Initial docking point
position

P1:pd�t0� � �−0.0360;−2.6451; 1.4149�T m

P2: pd�t0� � �−0.1683; 3.5384; 6.6107�T m

Initial angular velocity ω�t0� � �0.0003; 0.0252;−0.0145�T rad∕s
Target mean motion η � 0.001045 rad∕s
Servicer maximum
acceleration

amax � 0.005 m∕s2

Sampling interval τs � 2π∕512 rad∕sample

Initial relative position amax

η2
xp�k0� � �0;−200; 0�T m

Initial relative velocity amax

η xv�k0� � �0; 0; 0�T m∕s
Docking cone half-angle α � 20 deg

Keep-out zone radius amax

η2
r � 22 m

Docking phase duration
τs
η Nd � 187.8 s �Nd � 16�

Weighting parameter γ γ � 4
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docking (seeFig. 1). To account for thegeometrical configuration of the
servicer, a clearance of 1.5 m is left between the docking points and the
nearby EnviSat surfaces, similarly to what done in [37]. Another
important modeling issue is the characterization of the spin axis. It is
generally agreed (see, e.g., [39]) that the EnviSat spin axis is approx-
imately fixedwith respect to the body frame, and alignedwith thevector
joining P1 and the tCM, as depicted in Fig. 10. Moreover, over the
typicalRVDmaneuver time scales, one can safelyassume that the target
angular velocity remains approximately constant in the inertial frame.
Notice that, under this assumption, the angular velocity vector does still
varywhen seen from the RTN frame, due the rotation of theRTN frame
relative to the inertial frame. More specifically, the vector ω�t� in

Eq. (4) (which is expressed in RTN coordinates) evolves according to

ω�t� �

2
64

cos�η�t − t0�� sin�η�t − t0�� 0

− sin�η�t − t0�� cos�η�t − t0�� 0

0 0 1

3
75ω�t0� (23)

whereω�t0� is the angular velocity of the target body frame relative to

the RTN frame at the initial time t0. In this work, the docking-point

trajectory profile is generated by propagating equations (4) and (23).

Based on the results in [39], the EnviSat spin period is taken as 220 s,
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Fig. 11 Radial (R), transverse (T), and normal (N) components of the trajectories of the target docking-point (dashed) and of the servicer (solid) for RVD
to P1 (left) and P2 (right).
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Fig. 12 Radial (R), transverse (T), andnormal (N) components of the velocities of the target docking-point (dashed) and of the servicer (solid) forRVD to
P1 (left) and P2 (right).
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corresponding to a constant angular rate of kω�t�k2 � kω�t0�k2 �
0.029 rad∕s. Reasonable values of amax for the problem at hand may

range from 10−3 to 10−1 m∕s2, on a rough estimate. A relatively low

value ofamax � 0.005 m∕s2 is selected. This choice ismade in order to
showcase the proposed method on a challenging optimization problem
involving a low control authority. Moreover, the resulting maneuver
plan may be realized by using small thrusters, which are lighter and
more accurate than larger ones.The half-angle amplitude of thedocking
cone is set asα � 20 deg,which is in linewith thevalues in [8,29]. The
maneuver parameters are summarized in Table 3.
Problem (6) has been solved using Algorithm 1 for RVD maneu-

vers aimed at reaching the docking points P1 and P2. The resulting
open-loop state and input trajectories are reported in Figs. 11–13. In
both cases, the servicer is successfully steered from a hold point
located 200m behind the target (i.e., EnviSat) to the selected docking
point, in a time interval of approximately 12 minutes. Notice from
Figs. 11 and 12 that the docking-point trajectory (dashed) of P2
displays a much faster variation compared with that of P1. This is

not surprising, because the point P1 lies along the spin axis (see
Fig. 10). Consequently, the motion of P1 (as seen from the RTN
frame) is only due to the precession of this axis, which occurs at the
orbital rate η [see Eq. (23)]. Conversely, the point P2 is orthogonal to
the spin axis. Therefore, its evolution in terms of RTN coordinates
stems from both the spin axis precession and the rotation of P2 about
the spin axis, the latter of which occurs at a frequency much higher
(approximately 30 times) than η. As a result, reaching P2 is far more
challenging than reaching P1. In fact, the fuel consumption corre-
sponding to the control input trajectories in Fig. 13 is about three
times higher in the P2 case than in the P1 test. In Fig. 13, it can also
be seen that the magnitude of the acceleration components stays
within the assigned bound amax (reported in Table 3), over the entire
maneuvering interval. Moreover, the obtained trajectories satisfy by
construction the RVD constraints described in Sec. III. Figure 14
depicts the transition from the rendezvous constraints to the docking
constraints, showing that feasibility is retained during this event.
Figure 15 illustrates how the docking corridor rotates during the final
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Fig. 13 Radial (R), transverse (T), and normal (N) components of the servicer acceleration vector for RVD to P1 (left) and P2 (right).

Fig. 14 Illustration of the transition from the safe rendezvous region (red) to the docking corridor (green), for RVD to P2. The servicer center of mass
(sCM) is marked by a blue point.
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part of themaneuver. It can be seen that the sCMalways lies inside the

set defined by Eq. (16).

The obtained trajectories have been compared with those resulting

from the solution of a continuous-time version of problem (6), in

which the final time is free and the state constraints are nonlinear. In

particular, the keep-out zone is enforced as in Eq. (9), whereas the

docking corridor ismodeled as inEq. (14). The transition between the

RVD phases is accounted for by formulating a two-phase optimal

control problem, which is solved by using the commercial package

GPOPS-II [40]. Similarly towhat has been done in Sec. IV, the initial

guess for the nonlinear solver is constructed from the unconstrained

minimum-energy solution. The results of the comparison are sum-

marized in Table 4. It can be seen that the Algorithm 1 solution is

about 40 times faster than that based on GPOPS-II, whereas the

maneuver cost is approximately the same for the two methods, for

RVD to either P1 or P2. In Fig. 16, the cost incurred by the two

solutions is compared with the profile of J�Nτs for case P2. It can be

seen that the nonlinear solution is close to a local optimumof problem

(6). This indicates that the constraint approximation scheme

described in Sec. III is not overly conservative.

On the whole, the obtained results clearly demonstrate the suit-

ability of the proposed approach for autonomous RVD applications.

In particular, in all our tests Algorithm 1 returned a solution in a

fraction of a second, whereas the CPU time of the full enumeration,

MILP, and GPOPS-II approaches was always greater than 3 s. Con-

sidering that the sampling time of the guidance scheme is in the order

of 10 s, and that spacecraft onboard computers are far less powerful

than the employed hardware, the proposed method appears to be the
right candidate for real-time implementation.

VII. Conclusions

Avariable-horizon guidance scheme has been presented for space-
craft RVD applications featuring a tumbling target. As opposed to
approaches employing a fixed planning horizon, the proposed for-
mulation provides the ability to identify favorable docking opportu-
nities, which are singled out as local minima of a suitably chosen
horizon-dependent cost function. A local optimization strategy has
been developed for this new formulation, which is capable of finding
high-performance solutions, while incurring amodest computational
demand. The method also inherits other advantages of convex for-
mulations, such as guaranteed convergence and ease of implementa-
tion. In view of these features, the proposed guidance schememay be
employed either as a standalonemodule for the autonomous planning
(and replanning) of optimized trajectories to be tracked by the control
system, or as a baseline for the development of variable-horizon
model predictive control strategies, tailored to uncooperativemission
scenarios. The method has been demonstrated on a real-world sce-
nario involving docking with the defunct EnviSat spacecraft, and
found to provide remarkable improvements in terms of computa-
tional efficiency with respect to a nonlinear solver, while incurring
only a negligible performance loss. Extensions of this work include

Fig. 15 Illustration of the docking corridor rotation during the final approach to P2 (green point). The servicer center ofmass (sCM) is marked by a blue

point.

Table 4 GPOPS-II and Algorithm 1 performance for EnviSat RVD

RVD to P1 GPOPS-II Algorithm 1

CPU time, s 5.767 0.156

Maneuver cost 1.5697 J�
N̂
τs � 1.5774

Normalized time of flight 0.7852 N̂τs � 0.7977

Normalized fuel consumption 0.1961 ku�
N̂
k1τs � 0.1949

RVD to P2 GPOPS-II Algorithm 1

CPU time, s 9.319 0.205

Maneuver cost 2.8721 J�
N̂
τs � 2.9328

Normalized time of flight 0.7757 N̂τs � 0.7731

Normalized fuel consumption 0.5241 ku�
N̂
k1τs � 0.5399

0.6 0.7 0.8 0.9 1 1.1
2.5

3

3.5

4

4.5

5

Fig. 16 Profile of J�
Nτs, together with the cost incurred by GPOPS-II

and Algorithm 1, for RVD to P2.
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the incorporation of the guidance scheme into a suitable feedback
loop for noise attenuation and disturbance rejection.
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